

79

70

Hab

BUREAU OF ENGRAVING AND PRINTING

3

E

TRANSPORTATION IMPACT STUDY Full Report with Appendices June 2020 This page intentionally left blank.

TABLE OF CONTENTS

LIST	OF	FIGURES	5	
1.	EX	ECUTIVE SUMMARY	9	
2.	INT	RODUCTION	15	
	А	Project Background	15	
	В	Planning Context	17	
3.	Em	ployee Survey	27	
	А	Survey Results	27	
	В	Implications on Future Traffic Conditions	34	
4.	Exi	sting Conditions	35	
	А	Site Analysis	35	
	В	Existing Transportation Conditions	46	
5.	Fut	ure Conditions	91	
	А	Development of No Action Alternative	91	
	В	Development of Action Alternative	. 107	
	С	Traffic Analysis	. 120	
	D	Other Travel Modes	. 142	
6.	Mitigation Strategies		149	
	А	Identification of Mitigation Strategies	. 149	
	В	Traffic Analysis	. 165	
	С	Signal Warrant Analysis Summary	. 188	
7.	ROM Costs			
	А	Mitigation Design	. 193	
	В	Land Acquisition	. 193	
	С	Responsible Party	. 196	
8.	Ref	erences	197	
9.	APPENDIX A: SIGNED SCOPING AGREEMENT/COMMENT RESPONSES 201			
10.	APPENDIX B: EMPLOYEE SURVEY FULL RESULTS			
11.	APPENDIX C: TRAFFIC COUNT DATA			
12.	APPENDIX D: CRITICAL LANE VOLUME (CLV) REPORTS			

13.	APPENDIX E: SYNCHRO REPORTS	295
14.	APPENDIX F: SAMPLE SIZE	400
15.	APPENDIX G: CALIBRATION REPORT	403
16.	APPENDIX H: SimTraffic REPORT	417
16.	APPENDIX I: SENSITIVITY ANALYSIS	551

LIST OF FIGURES

Figure 1-1. Study Intersection Mitigation Requirement Summary.	11
Figure 1-2. Transportation Study Area. Red circles indicate intersections with recommended improvements	13
Figure 2-1: Greenbelt Sector Plan and SMA Approved Land Uses	21
Figure 3-1: Primary Mode of Transportation Survey Results	28
Figure 3-2: Employee Survey Mapping Sections	29
Figure 3-3: Employee Survey Map Routes - Quadrant 1	30
Figure 3-4: Employee Survey Map Routes - Quadrant 2	31
Figure 3-5: Employee Survey Map Routes - Quadrant 3	32
Figure 3-6: Employee Survey Map Routes - Quadrant 4	33
Figure 4-1: Existing Conditions: Floodplains	36
Figure 4-2: Existing Conditions: Wetlands	38
Figure 4-3: Existing Conditions: Topography (in feet)	39
Figure 4-4: Existing Conditions - Zoning	42
Figure 4-5: Existing Conditions - Right of Way and Easements	43
Figure 4-6: Existing Conditions – Environmental and Historical Protections	44
Figure 4-7: Existing Conditions - Utilities	45
Figure 4-8: Study Area (Circled in Red are Recommended for Mitigation)	47
Figure 4-9: Roadway Functional Classifications	51
Figure 4-10A: Existing Condition Lane Geometry – Map 1	52
Figure 4-10B: Existing Condition Lane Geometry - Map 2	53
Figure 4-11: Study Area Data Collection	55
Figure 4-12A: AM and PM BEP Peak Hour Traffic Volumes - Map 1	56
Figure 4-12B: AM and PM BEP Peak Hour Traffic Volumes - Map 2	57
Figure 4-13: Level of Service Diagram	59
Figure 4-14: HCM-based Signalized Intersection Level of Service	60
Figure 4-15: CLV-based Signalized Intersection Level of Service	61
Figure 4-16: HCM-based Unsignalized Intersection Level of Service	63
Figure 4-17: Existing Condition: Intersection Level of Service (CLV)	65
Figure 4-18: Existing Condition: Intersection Level of Service (HCM)	66
Figure 4-19: Existing Conditions AM and PM Peak Hour Operations Analysis	67
Figure 4-20: Existing Conditions AM and PM Peak Hour Queue Analysis	77
Figure 4-21: Sunnyside Avenue: Weekday Vehicles per Hour	80
Figure 4-22: Powder Mill Road: Weekday Vehicles per Hour	81
Figure 4-23: BW Parkway Southbound Off-ramp at Powder Mill Road: Weekday Vehicles per Hour	81
Figure 4-24: BW Parkway Northbound Off-ramp at Powder Mill Road: Weekday Vehicles per Hour	82
Figure 4-25: Prince George's County Master Plan of Transportation Bikeways and Trails	84
Figure 4-26: Major Service Characteristics of Bus Routes Serving the Study Area	85
Figure 4-27: Bus Routes Serving the Study Area	86
Figure 4-28: Average Weekday Ridership by Bus Route Serving the Proposed Study Area	87
Figure 4-29: Shuttles Serving the Study Area	87
Figure 4-30: Surface Parking Lots	89
Figure 5-1: No Action Alternative Planned Developments	93
Figure 5-2: Planned Developments Trip Generation Summary	96
Figure 5-3: Planned Development Trip Distribution	99

Figure 5-4: Six Years of Traffic Volumes	99
Figure 5-5: Yearly Growth Comparison	100
Figure 5-6A: Regional Growth Turning Movements – Map 1	101
Figure 5-6B: Regional Growth Turning Movements – Map 2	102
Figure 5-7A: Planned Background Development Turning Movements – Map 1	103
Figure 5-7B: Planned Background Development Turning Movements – Map 2	104
Figure 5-8A: AM and PM BEP Peak Hour No Action Alternative Traffic Volumes – Map 1	105
Figure 5-8B: AM and PM BEP Peak Hour No Action Alternative Traffic Volumes – Map 2	106
Figure 5-9: Total Trips Generated	107
Figure 5-10: Administrative Arrival Pattern	107
Figure 5-11: Total Trips Generated	108
Figure 5-12: Categorized Parking Spaces	108
Figure 5-13: Comparison of Carpool Percentages among DC-area Federal Facilities	110
Figure 5-14: Distribution of Employee Zip Codes	111
Figure 5-15: Proposed BEP Modal Split	112
Figure 5-16: Proposed BEP Trip Distribution	113
Figure 5-17: Proposed BEP Vehicle Trip Generation by Route	113
Figure 5-18: Proposed BEP Trip Distribution Map	114
Figure 5-19: BEP Vehicle Trip Generation Summary	115
Figure 5-20A: Proposed BEP Site Turning Movements – Map 1	116
Figure 5-20B: Proposed BEP Site Turning Movements – Map 2	117
Figure 5-21A: AM and PM BEP Peak Hour Action Alternative Traffic Volumes – Map 1	118
Figure 5-21B: AM and PM BEP Peak Hour Action Alternative Traffic Volumes – Map 2	119
Figure 5-22: No Action Alternative Traffic Operations Summary – CLV Method	123
Figure 5-23: No Action Alternative Traffic Operations Summary – HCM Method	124
Figure 5-24: Action Alternative Traffic Operations Summary – CLV Method	125
Figure 5-25: Action Alternative Traffic Operations Summary – HCM Method	126
Figure 5-26: Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour	
Operations	127
Figure 5-27: Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing	137
Figure 5-28: BEP ECF Triangular Probability Processing Times	141
Figure 5-29: BEP AM Peak Hour Entry Control Facility Results	142
Figure 5-30: Prince George's County Master Plan of Transportation Bikeways and Trails	143
Figure 5-31: Construction Truck Generation Summary	147
Figure 6-1: Action Alternative Intersection Mitigation Requirement Summary	150
Figure 6-2: Action Alternative Intersection Mitigation Map	151
Figure 6-3: MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) Conceptual Rendering	156
Figure 6-4: MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7) Conceptual Rendering	157
Figure 6-5: MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) Conceptual Rendering	158
Figure 6-6: Powder Mill Road/MD 295 (BW Parkway)/Springfield Road (Intersections #12/13/14) Conceptual	
Rendering	159
Figure 6-7: Estimated Impervious Surface Created through Mitigation Strategies	161
Figure 6-8: Proposed BEP Driveway Conceptual Rendering (Intersection #10)	162
Figure 6-9A: Action Alternative with Mitigation Lane Geometry – Map 1	163
Figure 6-9B: Action Alternative with Mitigation Lane Geometry – Map 2	164
Figure 6-10: Action Alternative with Mitigation Traffic Operations Summary – CLV Method	166

Figure 6-11: Action Alternative with Mitigation Traffic Operations Summary – HCM Method	167
Figure 6-12: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and	PM
Peak Hour Operations	169
Figure 6-13: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and	PM
Peak Hour Queuing	172
Figure 6-14: MD 201 (Edmonston Road)/Sunnyside Avenue HCM and CLV Mitigation Summary	175
Figure 6-15: MD 201 (Edmonston Road)/Sunnyside Avenue Queuing Mitigation Summary	176
Figure 6-16: Westbound Beaver Dam Road at MD 201 (Edmonston Road) HCM Mitigation Summary	177
Figure 6-17: MD 201 (Edmonston Road)/Powder Mill Road HCM and CLV Mitigation Summary	177
Figure 6-18: MD 201 (Edmonston Road)/Powder Mill Road Queuing Mitigation Summary	179
Figure 6-19: Powder Mill Road/Poultry Road (BEP Driveway) HCM and CLV Mitigation Summary	180
Figure 6-20: Powder Mill Road/Poultry Road (BEP Driveway) Queuing Mitigation Summary	181
Figure 6-21: Powder Mill Road/Springfield Road HCM and CLV Mitigation Summary	182
Figure 6-22: Powder Mill Road/Springfield Road Queueing Mitigation Summary	183
Figure 6-23: Powder Mill Road/BW Parkway Southbound Ramps HCM and CLV Mitigation Summary	184
Figure 6-24: Powder Mill Road/BW Parkway Southbound Ramps Queuing Mitigation Summary	185
Figure 6-25: Powder Mill Road/BW Parkway Northbound Ramps HCM and CLV Mitigation Summary	186
Figure 6-26: Powder Mill Road/BW Parkway Northbound Ramps Queuing Mitigation Summary	187
Figure 6-27: Peak Hour Warrant Analysis Summary	189
Figure 6-28: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road	
Road/Poultry Road (BEP Driveway)	190
Figure 6-29: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road	
Road/Springfield Road	190
Figure 6-30: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road/BN	W
Parkway Southbound Ramps	191
Figure 6-31: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road/BN	W
Parkway Northbound Ramps	191
Figure 7-1: Construction ROM for Mitigation Strategies	193
Figure 7-2: Land Acquisition by Median Square Footage	194
Figure 7-3: Disaggregated Basis for Median Value, Using Intersection #7 Parcels	195
Figure 7-4: Disaggregated Basis for Median Value, Using Intersection #8 Parcels	195
Figure 7-5: Responsible Parties for Improvements at Each Recommended Intersection for Mitigation	196

This page intentionally left blank.

1. EXECUTIVE SUMMARY

This Transportation Impact Study (TIS) evaluates the potential transportation impacts of the proposed relocation of the Bureau of Engraving and Printing (BEP) production facility to a permanent location within the U.S. Department of Agriculture (USDA) Beltsville Agricultural Research Center (BARC). The proposed relocation site is approximately 104 acres.

Through the scoping process and in coordination with the Maryland-National Capital Park and Planning Commission (M-NCPPC), the City of Greenbelt, Maryland State Highway Administration (Maryland SHA), U.S. Army Corps of Engineers (USACE) Baltimore District, National Capital Planning Commission (NCPC), and National Park Service (NPS), the approved vehicular study area for the TIS includes 15 intersections. The intersections are within an area generally bounded by MD 201 (Edmonston Road) on the west of the site, Capital Beltway to the south, Soil Conservation Road on the east, and Odell Road to the north. **Figure 1-1** presents a general map of the study area.

This TIS evaluates the vehicular operations of the study intersections under Existing Conditions and Future Conditions. Existing Conditions analyzes the vehicular operations of the study intersections. It also presents the pedestrian environment, the availability of bicycle facilities, and the availability and ridership of public transit services at present. Future Conditions are defined as roadway conditions in the year 2029 that will result if BEP relocates its production facility (Action Alternative) or if it does not relocate its production facility (No Action Alternative). This TIS also provides mitigation strategies to address vehicular operation inadequacies that result from the relocation of the BEP production facility and the anticipated costs to implement the recommended improvements.

The Project Team (A/E) assessed Existing Conditions and Future Conditions for vehicular operations during the weekday peak hours of the proposed BEP production facility (6:00-7:00 AM and 3:00-4:00 PM) at 15 study intersections, using three analysis methods. These included the following:

- Critical Lane Volume (CLV) a method required by M-NCPPC;
- The latest Highway Capacity Manual (HCM) method delay, a method required by Maryland SHA and Prince George's County; and
- Queuing, a method required by Maryland SHA.

To be considered passing, an intersection must have a CLV or HCM delay within the M-NCPPC and Maryland SHA standards, respectively. Queuing vehicles must also be able to stack in their allotted storage space without blocking an adjacent lane or an upstream intersection.

The **Future Conditions** section of the TIS, which is essential for determining which portions of the roadway network are most likely to experience significant deteriorations in traffic conditions, addresses issues pertaining to the vehicular operations of the study intersections in 2029. The TIS evaluates the comparison between the following two scenarios to assess the impact of BEP relocating its facility to Beltsville:

- The No Action Alternative assumes the addition of four planned background developments and a 1.2% per year regional growth rate to the roadways but does not include the relocation of the BEP production facility.
- The Action Alternative assumes the addition of planned background developments, regional growth to the roadways, and the relocation of the BEP production facility.

The Future Conditions section also discusses the impacts on the pedestrian, bicycle, and transit networks under the No Action Alternative and the Action Alternative.

Based on the transportation scoping form, vehicular forecasts for the **Action Alternative** assumed that 254 administrative staff and 884 production staff would add 944 AM peak period and 946 PM peak period trips (i.e., vehicle trips, single occupancy vehicles [SOVs], and carpooling; transit trips; and bike trips) to the transportation network. Approximately 10% of employees considered above (mostly administrative) would travel to and from the site by public transit or by bicycle. Production and administrative staff would add 850 AM peak hour and 851 PM peak hour vehicle trips to the adjacent street network, assuming all production staff and 24% of administrative staff would commute during the peak hours. Findings from a comparison between the No Action and Action reveal the following:

- Kenilworth Avenue/Edmonston Road (MD 201) between the Beltway and Cherrywood Lane operations would not degrade to failing operations under the Action Alternative. however, queuing in the AM peak hour would degrade from passing conditions under the No Action Alternative to failing operations under the Action Alternative, requiring mitigation between the I-95 northbound off-ramp (Intersection #2) and Cherrywood Lane (Intersection #5).
- Edmonston Road (MD 201) at Sunnyside Avenue (Intersection #6) operations and queueing would degrade from failing operations under the No Action to worse operations under the Action Alternative requiring mitigation.
- Edmonston Road (MD 201) at Powder Mill Road (Intersection #8) operations and queuing would degrade from passing operations under the No Action Alternative to failing operations under the Action Alternative requiring mitigation.
- Powder Mill Road at proposed BEP driveway entrance (Intersection #10) operations and queueing would degrade from failing operations under the No Action Alternative to worse operations under the Action Alternative requiring the BEP driveway intersection to be upgraded.
- Powder Mill Road at Springfield Road and the BW Parkway interchange ramps (Intersections #12, #13, and #14) would degrade from failing operations and queueing under the No Action Alternative to worse operations and queueing under the Action Alternative requiring mitigation.
- Powder Mill Road at Soil Conservation Road would not degrade to failing operations under the Action Alternative.
- Edmonston Road at Odell Road and Powder Mill Road at Research Road (Intersections #9 and #11) would not require mitigation because the minor street approaches would have less than 100 vehicles and this according to M-NMCPPC policy would not be considered a significant traffic impact.
- Edmonston Road at Beaver Dam Road (Intersection #7) would not require mitigation because the minor approach would have less the 100 vehicles; however, there was a safety issue observed where vehicles attempted to turn left from Edmonston Road to Beaver Dam Road and caused a traffic queue extending through the Powder Mill Road intersection.

Mitigation is required to minimize the impact of the proposed BEP site under future conditions. Generally, the goal of mitigation is to ensure that intersections that fail under the No Action Alternative and would continue to do so under the Action Alternative—would operate better than the No Action Alternative when mitigation strategies are applied for the Action Alternative. Additionally, intersections that are passing under the No Action Alternative, but failing under the Action Alternative, would also be targeted for mitigation. **Figure 1-1** presents a summary of the study intersections and indicates if each intersection would pass the CLV, HCM, and queue tests under the Action Alternative; notes if mitigation would be required as a result.

ID	Intersection	CLV	НСМ	Queue	Mitigation Needed	Reason for No Mitigation
1	MD 201/ I-95 SB Off-Ramp	Pass	Pass	Pass	No	CLV and HCM pass
2	MD 201/I-95 NB Off-Ramp	Pass	Pass	Fail		-
3	MD 201/ SHA District 3/Crescent Road	Pass	Pass	Fail		-
4	MD 201/Ivy Lane	Pass	Pass	Fail		-
5	MD 201/Edmonston Road)/Cherrywood Lane	Pass	Pass	Fail		-
6	MD 201/Sunnyside Avenue	Fail	Fail	Fail		-
7	MD 201/Beaver Dam Road	n/a	Fail	Fail	No	Fewer than 100 vehicles on Beaver Dam Road
8	MD 201/Powder Mill Road	Fail	Fail	Fail	\checkmark	-
9	MD 201/Odell Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Odell Road
10	Powder Mill Road/Poultry Road	n/a	Fail	Fail	No	This will be improved through site design
11	Powder Mill Road/Research Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Research Road
12	Powder Mill Road/Springfield Road	n/a	Fail	Pass	\checkmark	-
13	Powder Mill Road/MD 295 SB Ramps	n/a	Fail	Fail	\checkmark	-
14	Powder Mill Road/MD 295 NB Ramps	n/a	Fail	Fail	\checkmark	-
15	Powder Mill Road/Soil Conservation Road	Pass	Pass	Pass	No	CLV and HCM pass

Figure 1-1. Study Intersection Mitigation Requirement Summary.

The intersections on Kenilworth Avenue/Edmonston Road (MD 201) between the Beltway and Cherrywood Lane (Intersections #2, #3, #4, and #5), while operating with failing queues under the Action Alternative, are substantially affected by a lane drop on MD 201 north of Cherrywood Lane. However, mitigation strategies for those intersections were not included as part of this TIS. To address the effect of the lane drop on queueing, geometric changes to MD 201 between Sunnyside Avenue and Cherrywood could remove the lane drop and improve queues; however, MD 201 crosses Beaverdam Creek, which is considered an area of critical concern as a Tier II stream. This presents a key environmental constraint. In the sensitivity analysis that was prepared as an addendum to this TIS in response to agency comments, additional queuing analyses indicated that queues would be accommodated as a result of the mitigation strategies presented in this TIS.

Based on the criteria for mitigation and the conditions of Kenilworth Avenue/Edmonston Road (MD 201) between the Beltway and Cherrywood Lane, the following intersections should be the focal point of improvement investments:

- MD 201 (Edmonston Road)/ Sunnyside Avenue (Intersection #6) mitigation
- MD 201 (Edmonston Road)/ Beaver Dam Road (Intersection #7) recommendation
- MD 201 (Edmonston Road)/ Powder Mill Road (Intersection #8) mitigation
- Powder Mill Road/ Poultry Road (BEP Driveway) (Intersection #10) recommendation
- Powder Mill Road/ Springfield Road (Intersection #12) mitigation
- Powder Mill Road/ BW Parkway Southbound Ramps (Intersection #13) mitigation
- Powder Mill Road/ BW Parkway Southbound Ramps (Intersection #14) mitigation

The mitigation strategies would improve the CLV and HCM operations of MD 201 (Edmonston Road)/ Sunnyside Avenue (Intersection #6) and MD 201 (Edmonston Road)/ Powder Mill Road (Intersection #8) to either acceptable operations or operations that are better than those under the No Action Alternative. Under the No Action Alternative, MD 201 (Edmonston Road)/ Sunnyside Avenue would operate at LOS F during both the AM and PM peak hours based on HCM and CLV methods. Under the Action Alternative with Mitigation, the intersection would operate at HCM LOS D during the AM and PM peak hours, a CLV LOS C during the AM peak hour, and a CLV LOS D during the PM peak hour. While the CLV operations would continue to fail in the PM peak hour, they would be improved from the No Action Alternative. With mitigation strategies, MD 201 (Edmonston Road)/ Powder Mill Road (Intersection #8) would operate with acceptable HCM and CLV operations.

The Rough Order of Magnitude (ROM) cost estimate for mitigation at these intersections is \$27.7M, based on a construction 24-month construction schedule beginning January 2022. **Figure 1-2** presents a map of the study area intersections, with those intersections encircled in red featuring the recommended opportunities for mitigation and improvements.

Figure 1-2. Transportation Study Area. Red circles indicate intersections with recommended improvements.

This page intentionally left blank.

2. INTRODUCTION

This TIS, prepared as part of the environmental impact statement (EIS), intends to identify potential transportation impacts resulting from the relocation of BEP's production facility to the USDA's BARC, as required under the provisions of the National Environmental Policy Act (NEPA) of 1969, as amended, and Section 106 of the National Historic Preservation Act. As such, this TIS has been prepared in accordance with NEPA; the Council on Environmental Quality (CEQ) regulations implementing NEPA (40 Code of Federal Regulations [CFR] Parts 1500–1508 [1986]); United States (U.S.) General Services Administration (GSA) Order ADM 1095.1F *Environmental Considerations of Decision Making* (1999), and GSA's *Public Buildings Service NEPA Desk Guide* (1999).

The analysis of environmental impacts for the proposed site is based on a conceptual site plan informed by both site planning principles and BEP program requirements that would avoid and preserve sensitive environmental resources and respond to concerns raised in public and agency scoping comments. These site plans are conceptual and represent a program-compliant layout that would yield a conservative estimate of the environmental impacts associated with this alternative.

This TIS revises the previously submitted study dated December 2019. Revisions to the original study are based on responses to comments provided by reviewing agencies. Those comments and the Project Team's point-by-point responses are provided in Appendix A.

A Project Background

This section describes the following: BEP's facility needs that have warranted this TIS; an overview of conditions at the BARC site; an outline of the NEPA requirements that initiated the evaluation of transportation impacts for the proposed site and the framework for evaluating the transportation impacts associated with this site; a summary of local land use plans in the study area. These plans establish a planning framework for the remainder of the report and provide context for the evaluation of the proposed site. *Any blank spaces in the subsequent sections are deliberate, awaiting material from the Environmental Impact Statement (EIS) to ensure alignment between the two reports.*

BEP Facility Needs

This TIS provides an evaluation of the potential transportation impacts from the relocation of the BEP facility from Washington D.C. to Beltsville, Maryland. The proposed development includes the relocation of the currency printing facilities along with production and administrative staffing needs to operate the facility. The facility needs include the following:

- Access roads to handle trucks that will haul the raw and finished materials
- A Building that will house the storage and production of the currency as well as office space to accommodate administrative staff and facilities to serve the production staff needs
- Security fencing to protect the facility and entry control facility to screen every employees and truck load entering the facility
- A visitor's center to process visitors wishing to enter the facility.

Conditions at BARC Site

This TIS provides an evaluation of the potential transportation impacts of the proposed BEP facility in Beltsville, Maryland. The proposed development includes an 850,000 to 1,000,000 square foot building, parking area, and security perimeter. The details of the current site are presented in the EIS.

National Environmental Policy Act Requirements

CEQ regulations require that agencies analyze the potential direct and indirect impacts of the proposed action on the natural and human environment for each alternative, including a No Action Alternative. The EIS evaluates two alternatives:

- **No Action Alternative**: BEP staff and operations would remain downtown. The proposed site would continue to operate as BARC; there would be no major changes from the existing condition.
- Action Alternative: BEP staff and operations would be relocated to the proposed site in Beltsville.

In accordance with CEQ regulations, direct, indirect, and cumulative impacts are assessed for each of the action alternatives evaluated in the Final EIS accompanying this TIS and for the No Action Alternative, which provides a baseline for evaluating the impacts of the action alternative. Direct impacts are defined as those that are caused by the action and occurring at the same time and place; indirect impacts are defined as those reasonably foreseeable impacts caused by the action but occurring later in time or farther removed in distance. Cumulative impacts are defined as the overall impacts caused by the action plus all reasonably foreseeable impacts.

This TIS analyzes the transportation conditions associated with the proposed site. To comprehensively evaluate transportation impacts for the proposed site, this TIS evaluates the following conditions:

- **Existing Condition**: existing transportation system conditions, current to 2019.
- **No Action Alternative**: future transportation system conditions assuming the BEP facility *is not* relocated to the proposed site for the build year of 2029.
- Action Alternative: future transportation system conditions assuming the BEP facility *is* relocated to the proposed site for the build year of 2029.
- Action Alternative with Mitigation Condition: future transportation system conditions assuming the BEP facility *is* relocated to the proposed site for the build year of 2029 and

including mitigation measures that would avoid or minimize adverse impacts on, or enhance the quality of, the natural and human environment.

Impacts associated with the alternatives are analyzed in the No Action and Action Alternatives comparison sections. Potential impacts are described in terms of:

- Type: the positive or negative effects of an action
 - beneficial, reducing congestion or barriers and/or improving travel patterns, safety, or travel time;
 - adverse, increasing congestion or barriers and/or degrading travel patterns, safety, or travel time.
- **Category**: the type of effects
 - o *direct effects* are caused by the action and occur at the same time and place;
 - *indirect effects* are caused by the action and are later in time or farther removed in distance but are still reasonably foreseeable.
- **Duration**: the length of time of the effects
 - o **short term**, lasting during construction or up to one year after;
 - o *long term*, lasting more than one year.
- **Intensity**: the thresholds for determining the intensity of effects on local pedestrian, bicycle, transit, parking, traffic networks, and truck access
 - Not Measurable a localized impact that is barely perceptible to most users;
 - o Beneficial or Adverse a localized impact that is measurable to most users;
 - **Adverse Major** a broad area impact that is highly noticeable and would substantially affect a large numbers of network users.

B Planning Context

Existing Land Use

The proposed BEP facility site is bordered by Powder Mill Road to the south, government service buildings to the east and west, and a wooded area and Odell Road to the north. Agricultural land use and government office and maintenance buildings are the major land uses on this site. Private development is not permitted on the site. Residential land use occurs approximately 1/2 mile from the site, which is situated in a well-populated suburb of Washington, DC.

Beltsville Agricultural Research Center

The 7,000-acre BARC is in Prince George's County, Maryland. USDA has owned and operated the area as a research park for soil, water, air, plant, and animal sciences since 1910. Current subjects of investigation include poultry research, soybean genetics, bee research, and dairy cattle health. According to the BARC map at the National Agricultural Library, Building 228 is located on the site (USDA 2019). The proposed siting of the actual BEP production facility is bounded by BARC Building 307c to the east, Poultry Road to the west, Powder Mill Road to the south, and forested land to the north. Adjacent to the Beltsville site is USDA-owned land and BARC service buildings to the north and west, the BARC National Visitor Center (Building 302) to the south, and the Baltimore-Washington Parkway (Maryland Route [MD]-295) to the east.

The area surrounding the Beltsville site was originally developed as agricultural land in the eighteenth and nineteenth centuries (M-NCPPC 2013). In the 1830s, the Washington line of the Baltimore and Ohio Railroad (now CSX) was built in the stream valley adjacent to the Beltsville site. Suburban residential development began in earnest in the area in the twentieth century, starting with the planned community of Greenbelt to the south, just outside what is now the Capital Beltway. The Capital Beltway was planned in the 1950s and opened in the early 1960s. Major roadway improvements during this period spurred suburban growth along their corridors, including the Springhill Lake apartment complex adjacent to the Beltway, now known as Franklin Park at Greenbelt Station (south of the site, adjacent to Cherrywood Lane). Springhill Lake was the largest garden apartment complex on the East Coast at the time it was constructed; when completed, it included nearly 2,900 apartment and townhouse units, social and retail services for its residents to help build a spirit of community, and later an elementary school and shopping center within walking distance and parking lots located at the perimeter of each section to maximize green space. By 1998, the parking infrastructure at the Greenbelt Metro Station had been completed, and the site and surrounding property have remained relatively unchanged since that time (GSA 2015). Ongoing projects and plans continue to shape the area surrounding the Beltsville site, including the BARC Master Plan, Plan Prince George's 2035, and the Subregion 1 Master Plan and Sectional Map Amendment. These plans highlight Beltsville's rich agricultural land and natural and public resources (M-NCPPC 2012).

Federal Elements of the Comprehensive Plan for the National Capital

The Federal Elements of the Comprehensive Plan for the National Capital address matters related to federal properties and interests in the National Capital Region (NCR), which includes the District of Columbia; Montgomery and Prince George's Counties in Maryland; Arlington, Fairfax, Loudoun, and Prince William Counties in Virginia; and all cities within the boundaries of those counties. The Federal Elements were prepared pursuant to Section 4(a) of the National Capital Planning Act of 1952. The eight Federal Elements presented in the Comprehensive Plan are (1) Urban Design, (2) Federal Workplace, (3) Foreign Missions & International Organizations, (4) Transportation, (5) Parks and Open Space, (6) Federal Environment, (7) Historic Preservation, and (8) Visitors & Commemoration. The National Capital Planning Commission (NCPC) develops and administers these Federal Elements, which were last updated in 2016, except for the Parks & Open Space element, which was updated in 2018, and the Federal Workplace and Transportation elements, which are in the process of being updated (NCPC 2016).

The Federal Elements of the Comprehensive Plan for the NCR provide criteria for the location of federal facilities and policies on federal employment in the NCR. The goals of the elements regarding land use include:

- Maintaining Washington, DC, as the seat of the national government by enhancing the federal workforce through efficiency, productivity, and economic well-being;
- Ensuring federal developments are compatible with adjacent neighborhood uses;
- Developing and maintaining a multi-modal regional transportation system that meets the travel needs of residents, workers, and visitors;
- Conserving and enhancing the park and open space system of the NCR;
- Promoting an appropriate balance between open space resources and the built environment;
- Preserving and enhancing the guiding principles of the L'Enfant and McMillan Plans.

The transportation policies included in the Federal Elements of the Comprehensive Plan are built upon the principles of transit-oriented development and sustainability (NCPC 2016). Overall, the goal of the transportation Federal Element is to develop and maintain a multi-modal regional transportation system that meets the travel needs of workers, residents, and visitors, while improving regional mobility, accessibility, air quality, and environmental quality through expanded transportation alternatives and transit-oriented development. The transportation element presents various policies to achieve this goal, including supporting the development and expansion of regional transit services, implementing parking guidelines that encourage a shift away from SOV commuting, developing transportation management plans to encourage more efficient employee commuting, encouraging active commuting and bicycling, and supporting smart investment priorities.

Plan Prince George's 2035

The Maryland-National Capital Park and Planning Commission (M-NCPPC) initiated *Plan Prince George's 2035* to examine recommendations for guiding future development in the county. The plan designates eight regional transit centers as the focus of the county's planned growth and mixed-use development with the capacity to become major economic generators (M-NCPPC 2014a). The plan contains recommended goals, policies, and strategies for a multitude of elements, including transportation and mobility.

Plan Prince George's 2035 policies are shaped by a desire to create a transportation network that provides convenient and equitable multimodal access to jobs and services. The Purple Line, an approved 16-mile, 21-station, east-west light rail transit line extending inside the Capital Beltway from New Carrollton to Bethesda in Montgomery County, is one of several planning efforts to realize a connected, equitable, and multimodal transportation system. The Purple Line would connect the major central business districts and activity centers of Takoma/Langley Park, College Park/University of Maryland (one stop from Greenbelt on the Green Line), New Carrolton, Bethesda, and Silver Spring. The new line would provide direct connections to Metrorail at New Carrolton, College Park, Silver Spring, and Bethesda, which would link the Orange, Green, and Red Lines.

A variety of policies and strategies in *Plan Prince George's 2035* intend to advance the vision of a strong transportation network. The County intends to integrate countywide transportation improvements and land use patterns with the 2035 vision through capital road improvements and streetscape enhancements, designated bicycle-pedestrian priority areas (BPPAs), bike and car sharing programs, physical connections between new and existing developments, and the conversion of existing arterial roadways to multi-way boulevards where feasible.

The plan also envisions expanded and improved transit that would invest in the existing bus service, as well as new bus and light rail service. In addition, the plan identifies new transitway corridors to support the 2035 guidelines and priorities, implements the recommendations for MetroBus priority Corridor Networks recommended in *Momentum – The Next Generation of Metro (Strategic Plan 2013–2025)* (Momentum Strategic Plan) (WMATA 2014a), uses "complete street" practices to design and operate the transportation network to improve travel conditions, improves overall safety levels within the country's transportation network, and ensures that minimum and maximum parking requirements for transit-accessible areas are appropriate to advance the overall goals of *Plan Prince George's 2035*. Complete street policies and designs call for streets to be planned, built, operated, and maintained to enable safe, convenient transportation options for all users, regardless of the mode of transportation or the age and abilities of the person.

Greenbelt Sector Plan and Sectional Map Amendment

The Prince George's County Planning Department initiated the *Greenbelt Sector Plan and Sectional Map Amendment* (SMA) in March 2013. SMA envisions the development of the Greenbelt Metro Metropolitan Center as an interconnected, vibrant, and diverse mixed-use, transit-oriented ecocommunity that builds on the historical commitment to sustainability of the City of Greenbelt and Town of Berwyn Heights (Prince George's County Planning Department 2013). The SMA designates goals and objectives for multiple components of planning for the City of Greenbelt, including land use and urban design, environmental infrastructure, transportation, economic development, and housing and neighborhood preservation. The approved land use plan for Greenbelt and the surrounding area, shown in **Figure 2-1**, indicates the desired mix of land uses that may occur on a given property. This study is adjacent to the proposed BEP facility site but would not directly affect the project.

Figure 2-1: Greenbelt Sector Plan and SMA Approved Land Uses

Source: M-NCPPC (2001)

The Greenbelt Sector Plan's goals and objectives for transportation, including safety, connectivity, mobility, and access, include:

- Facilitating alternative forms of transportation by providing a continuous network of sidewalks, bikeways, and trails;
- Implementing reconfigured road lanes, dedicated bicycle facilities, and wide sidewalks along MD 193 to maximize pedestrian friendliness;
- Constructing additional trail connections and facilities to connect neighborhoods with Greenbelt Metro Station, the Indian Creek stream valley, and regional trail networks;
- Considering a new alignment of the Greenbelt Station Parkway that minimizes impacts;
- Running the potential realignment of Narragansett Run while ensuring any additional temporary impacts on the waterway would accommodate the construction of the Greenbelt Station Parkway Bridge;
- Providing full interchange movements from Greenbelt Metro Station to and from the Capital Beltway (I-95/I-495);
- Redesigning the MD 193 Bridge over Kenilworth Avenue to eliminate dangerous left-hand turns, streamline traffic flow, and enhance pedestrian and cyclist safety;
- Implementing a comprehensive wayfinding system for orientation and to help direct people and traffic to major destinations and attractions;
- Recommending a comprehensive managed parking program;

• Exploring alternative means of addressing comprehensive transportation networks and traditional measurements of adequate public facilities for transportation.

City of Greenbelt Pedestrian and Bicyclist Master Plan

The *Pedestrian and Bicyclist Master Plan* initiated by the Greenbelt Planning Office in January 2014 provides a series of recommendations to improve the conditions for walking and cycling throughout the City of Greenbelt (City of Greenbelt 2014). Recommendations are divided into five sections: general, location-specific, location-specific concepts, pedestrian, and bicyclist recommendations.

The goals of the Master Plan include:

- Establishing a long-range vision that prioritizes pedestrian and bicycle travel and specific goals for improving conditions for bicycling and walking;
- Establishing a safe street environment for pedestrians, bicyclists, and drivers;
- Establishing a pedestrian and bicycle network accessible by all;
- Establishing an easy-to-use pedestrian and bicycle network with direct connections to destinations;
- Establishing a safe environment that feels comforting and inviting to pedestrians and bicyclists;
- Coordinating with the Prince George's County unit of M-NCPPC to amend the county zoning code and other development requirements to ensure safer, more comfortable, and more convenient bicycle and pedestrian access and accommodations for new and renovated commercial and retail establishments;
- Slowing vehicular speeds and improving visibility at locations where paths intersect streets;
- Improving bicyclist comfort and safety on the existing bicycling network and clarifying its location and extent by adding on-road bicycling facilities and improving paths designated for shared use;
- Taking steps to ensure an adequate supply of well-designed and conveniently located bicycle parking facilities at shopping centers, office buildings, community facilities, and multi-family residences.

Beltsville Agricultural Research Center Master Plan

BARC's existing Master Plan was developed in 1979 and updated in 1984 and 1996. The 1996 *Master Plan Update* initiated by the USDA Agricultural Research Service documented BARC's existing conditions and planned proposals. (USDA-ARS 1996). The most critical planning elements include retaining adequate land resources, consolidating land uses, retaining an internal circulation system between facilities, promoting perimeter buffer zones, and maintaining low-density development and agrarian uses.

Overall, the plan has the following goals:

- Preserving BARC's low-density character;
- Retaining adequate land resources for research;
- Improving BARC's visual environment;
- Protecting wildlife and birds;
- Providing a safe and environmentally friendly workplace;
- Renovating buildings to bring them into compliance with codes and regulations for building, laboratory, handicapped accessibility, and animal handling requirements;
- Upgrading and/or replacing infrastructure to comply with regulations and increasing capacity as required to support existing and proposed building functions;
- Increasing the number of parking spaces for the physically challenged to comply with regulations;
- Developing a more integrated means of recycling solid waste;
- Reducing energy consumption through increased energy efficiency, including greater reliance on natural gas and elimination of electric heaters;
- Integrating adjoining property owners into the planning process;
- Remediating environmental problems, including upgrading underground storage tanks in compliance with 1998 U.S. Environmental Protection Agency regulations, and conducting environmentally hazardous materials cleanup.

M-NCPPC Approved Subregion 1 Master Plan and Section Map Amendment 2010

The Subregion 1 Master Plan and Sectional Map Amendment establishes development policies, objectives, and strategies that are consistent with the recommendations of the 2002 Prince George's *County Approved General Plan*, now superseded by *Plan Prince George's 2035*. The master plan's overarching goal is to ensure that the subregion becomes an inviting place to live, work, and play, and that it provides a planning framework to guide the preservation, revitalization, and redevelopment of the subregion with specific recommendations for new development, while protecting existing communities and significant environmental, historical, and cultural resources (M-NCPPC 2010). Major goals of the master plan include:

- Enhancing the quality and character of existing communities;
- Encouraging quality economic development;
- Preserving and protecting environmentally sensitive and scenic land;
- Making efficient use of existing and proposed county infrastructure and investment;
- Providing a safe, affordable, and accessible multi-modal transportation system;
- Providing needed public facilities in locations that efficiently serve the subregion's population;

The master plan area consists of approximately 44 square miles in northeastern Prince George's County and includes large portions of BARC land. Subregion 1 has two distinct growth policy tiers, the Developing Tier and the Rural Tier. BARC is classified under the Rural Tier. The vision for the Rural Tier is the protection of large amounts of land for wooded wildlife habitat, recreation and agricultural pursuits, and preservation of the rural character and vistas that now exist. The properties in the Rural Tier are primarily publicly owned lands, including the Washington Suburban Sanitary Commission-owned Rocky Gorge Reservoir and the Patuxent Research Refuge, in addition to BARC (M-NCPPC 2010).

Priority Preservation Area Functional Master Plan

This plan provides goals, policies, and strategies necessary to plan for a continued vibrant and viable agricultural community in the Rural Tier, which is consistent with the Master Plan of Prince George's County (*Plan Prince George's 2035*) and *Subregion 1 Master Plan*. The plan reaffirms the definition for the Rural Tier which is "the protection of large amounts of land for woodland, wildlife habitat, recreation and agriculture pursuits, and preservation of the rural character and vistas that now exist." The Priority Preservation Area Plan addresses agricultural preservation in the Rural Tier of the county, where many of the agricultural preservation programs are focused. This plan summarizes the programs that are used to preserve land in Prince George's County and meets the new state planning requirement for a priority preservation plan. The goal of the plan is to preserve 80% of the remaining undeveloped land in the priority preservation area while maintaining and enhancing agricultural and forestry production on already protected farm and forest lands. (M-NCPPC 2012). Major policies of the master plan include:

- Seeking opportunities to increase the value of farm and forest land used for agricultural production, agritourism, and agricultural support services;
- Seeking available federal, state, local, and other sources of funding to achieve preservation of 80% of eligible lands;
- Minimizing development in areas of prime farm and forest acreage to preserve critical masses of the agricultural land base;
- Preserving farm and forest land as important natural resources for their environmental and economic value;
- Identifying valuable mineral resources, seeking methods to protect and manage access, and reclaiming these areas where possible for future farm or forest enterprises, or agricultural support services;
- Supporting profitable agricultural operations by encouraging new farm and forest enterprises that complement the existing agricultural industry.

Baltimore-Washington Parkway Traffic Safety Plan

The Baltimore-Washington Parkway Traffic Safety Plan provides an action plan for the implementation of improvements related to transportation safety on the Parkway, specifically engineering, education, enforcement, and emergency services, commonly referred to as the "4Es." Since the construction of the Parkway in 1954, no capacity improvements have been made to the Baltimore-Washington Parkway. However, regional development has continued in the vicinity of the corridor, with only limited mitigation to the road, mostly in the form of modest safety improvements that still preserve the historic character of the road. This approach has resulted in increased traffic congestion and crashes. The *Traffic Safety Plan* identifies key investment interests and strategies that conserve natural, historical,

and cultural resources while reducing crashes and enhancing driver mobility on the Parkway. The goal of the plan is to reduce fatalities and serious injuries. Major objectives of this plan include:

- Incorporating 4E considerations into transportation safety projects;
- Promoting transportation safety in projects and policies without threatening park resources and values;
- Collecting and analyzing crash data to make better investment decisions;
- Reducing transportation-related incidents and preparing for future emergencies;
- Continuing to engage stakeholders;
- Developing an action-oriented implementation plan.

BEP Future Workplace Recommendations Report

The Bureau of Engraving and Printing released its *Future Workplace Recommendations Report* in August 2017. This document states the BEP's intent, in partnership with the General Services Administration (GSA), in developing a Program of Requirements (POR) to acquire real property for the relocation of the manufacturing facilities, modeled after the existing Western Currency Facility in Fort Worth. The report provides a detailed assessment of space utilization by operation or administrative function, while offering extensive analyses of the requirements for integrated security. Lastly, it illustrates the anticipated printing workflow and its components. While this Recommendations Report only explores transportation considerations tangentially, with limited analysis on long-term traffic impacts, it does offer a general diagramming and the basic parameters for a concept design on a secured entrance to the proposed facility.

USACE Environmental Condition of Property Report: Poultry Road

The most recent and most extensive study is USACE-Baltimore District's draft of the *Environmental Condition of Property Report (ECP): 104-Acre Parcel of Land Surrounding Poultry Road*, released in August 2019. This document offers an in-depth exploration of the portion of BARC proposed to host the new BEP Production Facility: specifically, the former poultry research campus near the point where Poultry Road previously intersected Odell Road. This ECP Report provide extensive analysis of both environmental constraints to the campus, as well as key administrative and regulatory considerations that must take place at the site prior to any major earth-moving activity. The Report re-states key features from the 1996 BARC Master Plan regarding the road network, as well as other documents that pertain to the historic uses of the land, surveys, inventories, and inspections.

Regulatory Requirement and Transportation Assumption Agreement

Jurisdictional Agreement

Prior to initiating the transportation analysis, it was essential to determine what tools, data parameters, and assumptions would provide the basis of the analysis. In coordination with GSA, the Project Team met with representatives from Maryland SHA, M-NCPPC, Prince George's County, NPS, and the City of Greenbelt in 2019 to agree on the assumptions to follow for the site and study area.

M-NCPPC, through its scoping process (M-NCPPC 2012), requires that a scoping form be approved prior to analysis that outlines the agreed upon level of detail, the data parameters, and the type of analysis. These parameters and assumptions include a study area, trip generation, trip distribution, modal split, analysis years, analysis methods, and No Action transportation assumptions (background growth, planned developments, and planned roadway improvements). Appendix A Contains the Beltsville Site Transportation Agreement.

National Capital Planning Commission Guidance

This TIS considered a number of other assumptions determined by regulatory requirements and federal policy guidance. One such assumption is the parking ratio goals stated in the Transportation Element of NCPC's Comprehensive Plan for the National Capital (NCPC 2016). In response to regional congestion and air quality levels, NCPC recommends that parking be provided only for those federal employees who are unable to use other travel modes. To accomplish this goal, NCPC created parking ratio goals for federal facilities based on their location in relation to available transit services, walking distances, conditions in the surrounding area, and other criteria. Parking ratios are the number of parking spaces available per employee population. In accordance with NCPC parking policy for suburban areas beyond 2,000 feet of Metrorail and not near an existing freeway with a high occupancy vehicle lane, a parking ratio of one parking space for every one and a half employees is assumed in this TIS.

3. Employee Survey

To choose a site for the new production facility, BEP conducted a transportation study to determine the potential impacts to the local roadways if the new facility were to be located at the proposed BEP facility site. The intention of the survey was to understand what mode of transportation employees would use and the routes to access the facility. **Figure 3-1** shows the general distribution of employees based on a database showing zip primary residences as organized by zip code. At this point in time, while the BEP facilities remain located in central Washington DC, the largest concentration of employees come from southern Prince George's County, western Charles County, and northern Stafford County Virginia, with comparatively few employees claiming residence north of the proposed BEP facility site.

A Survey Results

A total of 689 employees responded to the survey, significantly greater than 50% of the total number of recipients. Nearly 85% of the respondents indicated that they worked the primary, daytime shift; the remaining 15% of responses were relatively evenly distributed between the evening and midnight shifts. Based on the survey results, the majority of employees would be driving in a Single-Occupancy Vehicle (SOV) with approximately 58% reporting that they would be driving alone to the new facility. 27% would be using transit (using the USDA shuttle to travel from the Greenbelt Metro Station to the production facility). 13% would be carpooling while 2% would be biking, using a motorcycle, or other mode, including walking, or being picked up or dropped off by another driver not employed at the facility. Regarding general attitudes toward mass transit, the features that the respondents valued the most were "Travel Time" and "Convenience", while "Reliability" and "Safety and Comfort" were rated as less important overall.

Figure 3-1: Primary Mode of Transportation Survey Results

Of the 13% that would be carpooling, approximately 98% of these responses indicated they would be carpooling with a coworker, versus using a carpooling service available in the transit study area such as Lyft or Via.

Employees were instructed to select which quadrant they originate from in order to determine trip distribution, using the Map in **Figure 3-2** as the standard. This survey placed the axes used to generate the quadrants at a location intended to distribute both population and travel paths as clearly and evenly as possible, with the proposed BEP facility site falling within Quadrant I. Based on the responses, the majority of employees would be traveling from Quadrants III and IV. The placement of the four quadrants in a matter that would distribute Approximately 35% of employees would be traveling from Quadrant III and 28% from Quadrant IV.

Of these two quadrants, specific routes were identified that were most likely to be used when traveling to the new production facility. **Figure 3-3** through **Figure 3-6** show the individual route options in each of the four quadrants. 30% of employees traveling from Quadrant III anticipated that they would travel from the Capital Beltway Outer Loop to Baltimore-Washington Parkway Northbound to Powder Mill Road and 30% would travel from the Capital Beltway Outer Loop to Kenilworth Avenue/Edmonston Road (MD 201) to Powder Mill Road. Within Quadrant IV, 48% of employees would travel from Capitol Beltway Inner Loop to US 1 to Sunnyside Avenue to Kenilworth Avenue/Edmonston Road (MD 201) to Powder Mill Road while 24% would travel from US 1 Northbound to Powder Mill Road.

Figure 3-2: Employee Survey Mapping Sections

Figure 3-3: Employee Survey Map Routes - Quadrant 1

Figure 3-4: Employee Survey Map Routes - Quadrant 2

Figure 3-5: Employee Survey Map Routes - Quadrant 3

Figure 3-6: Employee Survey Map Routes - Quadrant 4

B Implications on Future Traffic Conditions

The survey results provide insight on the expected or desired travel patterns of the employees but are limited by the fact that the BEP production has not yet relocated to the proposed site, and the primary residences of the labor force may shift if BEP relocates to the site at BARC, since some employees will seek new employment with a less lengthy and onerous commute. It is reasonable to anticipate that, if BEP relocates, a higher percentage of the labor force by year 2029 will come from areas north of the proposed site: Quadrants I and II, in northern Prince George's County or Howard County.

Additionally, actual travel behaviors may differ after the relocation. Experienced travel times, feasibility, costs, or conditions of the chosen modes of transportation all may affect travel behavior. Employees will also factor their shift times (e.g., the period from 6:30 AM to 3:00 PM) to reconcile their anticipated travel patterns (before the relocation) with their experienced travel patterns (after the relocation). Employees may initially choose a mode of transportation reflecting their survey responses, but ultimately change modes—if it is within their ability—if they believe it would improve their commute. For similar reasons, for those employees who drive, actual route selections would manifest based on the experience of the employees once BEP relocates its facility to the proposed site, in contrast to the survey results of route selection. Survey respondents indicating they intend a particular route may decide, either from experience or from GPS-based smart phone applications, that the route is not actually favorable and, for lack of an alternative mode of transportation available to them, may attempt to drive different route in the future to improve their commute. These alternative routes may involve greater mileage that the preferred route but take less time, due to superior traffic conditions. In summation, the shortest and most obvious route-typically the one the respondents would select on a survey such as this one-often does not prove to be the fastest or most efficient route, making the survey results a weak predictor of commuter behavior. Appendix B contains the employee survey full results.

4. Existing Conditions

A Site Analysis

Environmental Constraints: General

The proposed site for the new BEP currency production facility at the old poultry research campus is in the middle of BARC, surrounded on three sides by additional BARC properties used for other research purposes. Only to the north are private lands, specifically a residential development immediately opposite Odell Road. Though close to heavily developed and mature Washington D.C. suburbs, the BARC lands themselves assume a rural and sparsely developed character befitting the farming-related research. The proposed new BEP facility will sit within a 104-acre area at BARC, formerly involved in various facets of poultry and avian research. As indicated in the August 2019 USACE-Baltimore District's draft, *Environmental Condition of Property Report: 104-Acre Parcel of Land Surrounding Poultry Road*, the 23 buildings from the Poultry Research Area have been largely or completely vacant since the mid-1990s, and most are in an advanced state of disrepair. Only three buildings are occupied, and only one of the three (the Wildlife Office) regularly used by human personnel. Despite the abandoned and unused character of the proposed BEP facility site, this new construction would not constitute a greenfield development, since the area is already serviced with infrastructure and features considerable impervious surfaces.

The remainder of the site features cropland, forest, pasture, some wetlands, surface parking, and roads with varying degrees of paved quality. South of the site is an east-west arterial, Powder Mill Road. Poultry Road, which serviced this research campus and terminates at Powder Mill, extends northward toward the various structures, terminating again at Odell Road, where a gate permanently blocks ingress and egress from Odell Road, the east-west arterial that roughly delineates the northern boundary of the proposed facility site.

Floodplains

As indicated by **Figure 4-1**, the proposed Project Boundaries for the proposed BEP Facility are largely free of major hydrological constraints. The most recent data, from a Digital Flood Insurance Rate Map (DFIRM) of the Middle Potomac-Anacostia-Occoquan Watershed (last surveyed in September 2016), indicates that no floodplains or floodways exist on site. The closest flood-prone areas include Beaver Dam Creek, to the south of the proposed BEP Facility which largely parallel Beaver Dam Road, and Indian Creek to the west of the proposed site, with high concentrations of lands with 1% annual flood risk immediately to the west of Edmonston Road (MD 201).

Figure 4-1: Existing Conditions: Floodplains Source: FEMA Digital Flood Insurance Rate Maps (DFIRMs) (2016)
Wetlands

Wetlands data for the proposed BEP facility site comes from a variety of sources, because hydric soil conditions change over time. The largest and most comprehensive nationwide delineation comes from the National Wetlands Inventory (NWI), a mapping initiative provided by the United States Fish and Wildlife Service (FWS), which largely derives its classifications through a combination of high-altitude aerial photography and on-screen image analysis integrated into a digital data layer that helped generate GIS maps at varying scales. The NWI results (indicated in the map in **Figure 4-2**) offer considerable geographic breadth and multiple wetland tiers of classification: in this case, freshwater emergent/forested wetlands, freshwater ponds, and riverine. However, the scale of the NWI undertaking prevents it from being as detailed or accurate as an on-the-ground survey.

A USACE-initiated delineation of wetlands at the proposed BEP facility site in mid-year 2019 revealed considerable small-scale instances of hydric soils and intermittent wetlands, particularly to the east of Poultry Road, as is also visible in the inset map at **Figure 4-2**. The largest and highest quality of these, visible in the southern portion of the site (most clearly visible in the inset map in the lower-left corner), is largely groundwater-fed and derived from an intermittent channel. The Maryland Department of the Environment is the first agency responsible for regulating any development that might take place near these wetlands; both state and USACE permitting process would aggregate all impacts to wetlands and streams.

Topography

The proposed BEP facility site features comparatively little grade change, a landscape befitting for extensive agricultural research. As indicated from **Figure 4-3**, slopes are particularly modest on the western half of BARC, though they intensify to the west, with visible hillocks as Power Mill and Odell roads meander toward the Baltimore-Washington Parkway. The elevation range within the proposed BEP facility site is from approximately 135' above sea level to a high point of approximately 200' at the far west of the project boundary. Most grade changes are modest; however, the northeastern corner likely exceeds a 10% slope, though it does not surpass a 15% grade change. Landscape less than 15% is the common threshold for categorizing whether to add grading to the development costs. Steeper slopes would either place a development under differing construction conditions or, if sufficiently steep (often over 25%), would preclude development altogether. Both the proposed BEP facility and any new roads leading to the facility from Powder Mill (a potential re-routing of Poultry Road) would involve no more than typical remediation to manage any grade change.

Figure 4-2: Existing Conditions: Wetlands Sources: FWS National Wetlands Inventory (ongoing), USACE Wetlands Delineation (2019)

Figure 4-3: Existing Conditions: Topography (in feet) Sources: M-NCPPC, Prince George's County Contours (1993)

Legal Constraints: Zoning

The proposed BEP facility site, like BARC as a whole, benefits from a near complete unity of ownership and singularity of land use regulations. Guided by Prince George's County's zoning classifications (seen in **Figure 4-4**), virtually the entire BARC premises fall within the Reserved-Open-Space (R-O-S) classification, which intends to provide for the permanent maintenance of certain areas of land in an undeveloped state, promoting preservation of trees, scenic and environmentally sensitive areas, and very low-density residential development, as well as a limited range of public, recreational, and agricultural uses (Prince George's County Planning Department, 2019). Typically, in R-O-S, the minimum lot size is 20 acres and the maximum dwelling units per net acre is .05, or one dwelling unit per 20 acres. This classification covers the entirety of the proposed BEP facility site.

The other classifications within BARC are Open Space (O-S) and Rural-Residential (R-R), both also promoting a rural character with extremely low-density development. Despite the agrarian character that pervades, a much more intensive land use pattern exists just north of Odell Road, to the northeast of the proposed BEP facility site, where Townhomes (R-T) and 1-Family Detached Residential (R-80) pervade in the subdivision called Vansville. The proposed BEP facility will be out of compliance with the zoning regulations and not in keeping with the general character of BARC, which could give greater credence to an organized remonstration from the surrounding community. However, the previous land use at this exact location—an expansive poultry research campus—also did not align with the character; additionally, both it and the proposed BEP facility may find viable exception through the R-O-S classification's provision for "a limited range of public, recreational, and agricultural uses."

Legal Constraints: Rights of Way and Easements

Figure 4-5 maps the distribution of land holdings, rights of way, and easements at the proposed BEP facility site, the residual of BARC, and the surrounding more urbanized areas nearby, which include City of Greenbelt as well as the unincorporated areas of Beltsville to the west and Vansville to the north. A disproportionate amount of the land in the area is county and state exempt, in keeping with its status as federally owned property (US Department of Agriculture), as well as 100% of the project boundaries to the proposed BEP facility site.

Right of ways could inhibit the capacity to mitigate traffic concerns caused by the relocation to the proposed BEP facility site. Throughout BARC and adjacent communities, the parcels immediately abut the road, indicating that ROWs are typically constrained to the existing roadways themselves. Only two major exceptions exist. One is the Capital Beltway (I-495/I-95), with a considerably larger right of way, due mainly to the formidable width of the multi-lane limited access highway. The other is Baltimore-Washington Parkway, which, although primarily four lanes (two in each direction), involves a right of way of considerable width, averaging over 500 feet. As is typical of NPS-managed roadways, the extra right of way is not for future expansion purposes, but for preservation—to retain the park-like character by ensuring that no development can take place close to the parkway, thereby retaining a parklike character. Mitigation strategies must recognize that NPS is unlikely to compromise on viewsheds throughout the Baltimore-Washington Parkway; thereby, improvements must take place on the federally owned lands immediately adjacent to it.

Relatively few easements are likely to affect construction activity throughout the site. However, several parcels abutting Powder Mill Road feature restrictions: specifically, floodplain easements (a type of environmental easement) affect multiple parcels at the northwest corner of the Powder Mill/MD 201 (Edmonston Road) intersection. Other easements—water, sanitary sewer, and slope—could restrict

parcels through which a tributary of Indian Creek flows, also in this same area northwest of the Powder Mill/MD 201 intersection. Lastly, a transportation/circulation easement, specifically accommodating public utilities, affects a considerable segment of the northern shoulder of Powder Mill Road at this same location. Potential improvements to this intersection may face legal barriers imposed by these easements.

Legal Constraints: Environmental and Historic/Cultural

Specific protections at and around the proposed BEP facility site are infrequent; however, **Figure 4-6** indicates those that merit consideration. The linear path bisecting the proposed BEP facility site reflects the last major archaeological survey that took place in the area in 1994; according to the 1996 *Master Plan Update*, several sites of archaeological significance (mostly prehistoric Archaic) exist at BARC, but most are not eligible for listing on the National Register due to short occupations of the site or lack of information. The only potential exception is a site near Indian Creek, which is south of the proposed BEP facility site; thus, no potential development will affect it.

An extensive 1997 survey provided a preliminary national register eligibility assessment for the buildings that comprise the old poultry research campus. Of the 23 buildings surveyed, all but 6 met the standards of eligibility for contributing to a potential historic district, and all but 5 retained their integrity. A more recent eligibility review in 2017 reaffirms the character of the buildings and their capacity to contribute to a historic district; however, after more than two decades of abandonment, all buildings at the campus are in poor condition, posing great challenges to a case for further preservation.

The final consideration in **Figure 4-6** are the reforestation areas in the northernmost portion of the proposed BEP facility site. Much like BARC's significant expansion from 1933 to 1941, President Franklin D. Roosevelt's New Deal prompted many of the earliest conservation and reforestation projects through the Civilian Conservation Corps. USACE reiterated during a design charrette for this BEP relocation project that reforestation projects impose heavy mitigation projects on any nearby development, which is often cost prohibitive. Thus, it is advisable that the reforestation areas indicated on the map remain outside the scope of development. Furthermore, they serve as a buffer to the homes opposite Odell—a community that is likely to seek retention of any features that might mitigate the visual and audio impacts of a major new manufacturing operation such as the BEP's proposed facility.

Utilities

Figure 4-7 depicts the extant utilities lines that traverse through the proposed BEP facility site. BARC provides water and sanitary sewer to the property, while Baltimore Gas and Electric (BGE) and Potomac Electric Power Company (PEPCO) provide electric and natural gas. As indicated in the draft of the *Existing Conditions Report*, stormwater from pastures, buildings and paved surfaces flow to the nearest catch basing, which drain into the stream in the southeast portion of the property, abutting the wetlands that USACE recently delineated. Ages and conditions for all utility lines on the property are unknown. A fiber optic presence also remains on the site from its operational period.

Figure 4-4: Existing Conditions - Zoning Source: Prince George's County Parcels and Zoning

Figure 4-5: Existing Conditions - Right of Way and Easements Source: Prince George's County Parcels and Easements

Figure 4-6: Existing Conditions – Environmental and Historical Protections

Figure 4-7: Existing Conditions - Utilities

B Existing Transportation Conditions

This section describes the transportation study area for the proposed site in Prince George's County, Maryland, and summarizes the transportation conditions in the study area as of November 2019. This section covers the following modes of transportation: traffic (vehicular), pedestrian, bicycle, and public transit. Data were collected between August 2019 and November 2019 with traffic counts obtained as early as September 2019. The data, therefore, represent a snapshot in time, and aspects of the data included in this report may have changed since the data were originally collected (e.g., detailed bus schedules and ridership and pedestrian and bicycle improvements).

Study Area Description

The proposed site includes approximately 104 acres and is located adjacent to a populated suburb of Washington, DC, in Prince George's County, Maryland. It is bordered by a wooded area to the north adjacent to Odell Road, and BARC agricultural land and facilities to the east, west, and south. Development in proximity to the site includes residential neighborhoods, suburban office parks, a local park, a WMATA rail yard, an elementary school, and a federal court facility. The site itself is predominately used for agricultural land uses.

The traffic study area, as **shown in Figure 4-8**, is generally bounded by Edmonston Road/Kenilworth Avenue (MD 201) on the west, Capital Beltway on the south, Soil Conservation Road on the east, and Odell Road on the north. The vehicular transportation study area covers intersections between the proposed site and regional highway network or last major decision point before entering a freeway facility. Intersections included in the vehicular study area also include those along roadways that are reasonably anticipated to carry a substantial portion of employee vehicle traffic percent based on trip generation data. The study area only includes the selected intersections, but it does not have a clearly defined study boundary; it was established in consultation with M-NCPPC, the City of Greenbelt, Maryland SHA, USACE Baltimore District, BEP, NCPC, and NPS and includes 15 intersections for the Existing Condition analysis.

The transit study area consists of a quarter-mile radius from the project site to represent a typical walking distance between the project site and nearest bus stop, while the bicycle network study area consists of a one-mile radius from the project site to represent a typical distance that a visitor might be willing to use a bicycle to reach the project site.

Figure 4-7: Study Area (Circled in Red are Recommended for Mitigation)

Roadway Descriptions

The following section describes the roadways in the study area and includes the roadway classification (e.g., arterials, collectors, local roads) assigned by Maryland SHA in its 2018 roadway functional classification. These descriptions also feature number of lanes in each direction, the 2018 Annual Average Daily Traffic (AADT) volumes (12-months of traffic volumes averaged) available from Maryland SHA, any noteworthy characteristics such as the roadway's role within the transportation network, and the presence/absence of bike lanes. The Project Team (A/E) collected the information from Maryland SHA's 2013 Functional Class GIS data (Maryland SHA 2014a), observations in the field, aerial imagery, and Maryland SHA's AADTs of stations for 2007-2013 (Maryland SHA 2014b). The functional classification is the process of grouping public streets and highways into classes according to the character of service they are intended to provide. Interstates, freeways, and expressways provide the highest level of service at the greatest speed for the longest uninterrupted distance, followed by principal arterials, minor arterials, collector roads, and finally local roads. The primary interstate within the study area providing regional access is I-95. The study area includes several arterials: Edmonston Road or Kenilworth Avenue (MD 201) to the west, Greenbelt Road (MD 193) to the south, Powder Mill Road traversing through the study area, and the Baltimore-Washington Parkway (MD 295) to the east. Soil Conservation Road, Sunnyside Avenue, Cherrywood Lane, and Beaver Dam Road are classified as collector roadways that collect traffic from local roads and connect with arterials. Local roadways in the study area include Odell Road, Crescent Road, Research Road, Poultry Road, and Ivy Lane.

Baltimore-Washington Parkway (MD 295) is a southwest-northeast-oriented roadway that is classified by Maryland SHA as a principal arterial road (Maryland SHA 2018). It connects Prince George's County with downtown Baltimore. NPS maintains a portion of the parkway, and the State of Maryland maintains the remaining sections. The roadway ranges between four to six lanes in each of the northbound and southbound directions. Trucks and commercial vehicles are prohibited on the parkway south of MD 175. Within the study area, the parkway connects to Powder Mill Road (a minor arterial), and Greenbelt Road (MD 193, a principal arterial). The Baltimore-Washington Parkway speed limit is 55 miles per hour (MPH). In 2018, the AADT for the Baltimore-Washington Parkway at Powder Mill Road was 11,960 (Maryland SHA 2014b).

Capital Beltway, also known as I-95, travels southwest of the study area and forms a circle around Washington, DC. Maryland SHA classifies this two-way roadway as an Interstate (Maryland SHA 2018). The roadway is northwest-southeast-oriented near the location of the Beltsville site and connects Maryland to Virginia. The roadway ranges between four to eight lanes in each of the northbound and southbound directions. In the vicinity of the study area, the Capital Beltway connects to Baltimore Avenue/Route 1 (a principal arterial) and Kenilworth Avenue/MD 201 (a minor arterial road as it continues northward and changes name to Edmonston Road), which becomes Edmonston Road as it continues northward toward BARC. The Capital Beltway serves as a major regional and commuter route between Maryland, Virginia, and Washington, DC. The Capital Beltway speed limit is 55 MPH. In 2018, the AADT for the Capital Beltway when traversing through the study area was 212,070 vehicles (Maryland SHA 2014b).

Cherrywood Lane is a southwest-northeast-oriented roadway that Maryland SHA classifies as a major collector road (Maryland SHA 2018). The road travels over the Capital Beltway but does not connect to it. Cherrywood Lane travels from Greenbelt Road on the southwest side of the site northeast towards Edmonston Road (MD 201). In addition, this road connects to secondary residential roadways such as Breezewood Drive, Cherrywood Court, and Springhill Drive. The road varies between one lane in each direction near the Greenbelt Metro to two lanes in each direction near its ends points with Edmonston

Road and Greenbelt Road. The roadway has a shared center left-turn lane and striped median along most of its length in the study area, with periodic on-street parking on the eastern (northbound) side of the street. Cherrywood Lane has a speed limit of 30 MPH south of Springhill Drive and 35 MPH north of Springhill Drive. According to Maryland SHA, the AADT for Cherrywood Lane in 2018 was 8,801 vehicles (Maryland SHA 2014b). Cherrywood Lane also has bicycle lanes on either side of the street between Edmonston Road to the north and Breezewood Drive to the south.

Edmonston Road / Kenilworth Avenue (MD 201) travels southwest to northeast and connects to both the Capital Beltway and Greenbelt Road. The roadway contains two to four through lanes in each direction, but north of Sunnyside Avenue, the road eventually becomes one through lane in each direction. Maryland SHA classifies the roadway as a minor arterial road north of I-495 and a principal arterial road south of I-495 (Maryland SHA 2018). The roadway has a speed limit of 40 MPH within the study area. On Kenilworth Avenue from Greenbelt Road (MD 193) to I-95, the AADT was 54,290 vehicles in 2018; from I-95 to Sunnyside Avenue the 2018 AADT was 35,860 vehicles, from Sunnyside Avenue to Powder Mill Road (MD 212) the 2018 AADT was 23,490, and from Powder Mill Road (MD 212) to Old Baltimore Pike the 2018 AADT was 16,860 (Maryland SHA 2014b).

Greenbelt Road (MD 193) is east-west oriented and is classified by Maryland SHA as a principal arterial road (Maryland SHA 2018). The roadway is a section of MD 193 and contains both commercial and residential development. The roadway has three through lanes in each direction, additional left turn lanes periodically, and a protected median. Greenbelt Road connects to Kenilworth Avenue (MD 201) on the west side and Baltimore-Washington Parkway (MD 295) on the east side. Greenbelt Road has a speed limit of 40 mph through the study area. In 2018, the AADT on Greenbelt Road from Kenilworth Avenue to I-95 was 49,420 vehicles, whereas from I-95 to the Baltimore-Washington Parkway the 2018 AADT was 47,480 and from the Baltimore-Washington Parkway (MD 295) to Good Luck Road, the 2018 AADT was 55,323 (Maryland SHA 2014b).

Ivy Lane is classified by Maryland SHA as a local road (Maryland SHA 2018). This roadway has a curvilinear shape that connects Cherrywood Lane to Edmonston Road (MD 201). Ivy Lane primarily has one lane in each direction with a shared center left turn lane. The roadway has a speed limit of 30 mph. Ivy Lane also has bicycle lanes on both sides of the street.

Beaver Dam Road is classified by Maryland SHA as a local road (Maryland SHA 2018). The roadway has a curvilinear shape that connects Edmonston Road (MD 201) to Soil Conservation Road. Beaver Dam Road has one lane in each direction. The roadway as a speed limit of 30 mph.

Odell Road is classified by Maryland SHA as a local road. This roadway has a curvilinear shape that connects Edmonston Road (MD 201) to Muirkirk Road and Springfield Road. Odell Road has one lane in each direction. The roadway has a speed limit of 35 mph.

Soil Conservation Road is a north-south oriented road that is classified as a local roadway by Maryland SHA (Maryland SHA 2018). It connects Powder Mill Road to Greenbelt Road (MD 193). The roadway primarily has one lane in each direction with turn lanes into the NASA Goddard Space Flight Center. Soil Conservation Road has a speed limit of 40 mph.

Powder Mill Road (MD 212) is an east-west oriented road that is classified as a minor arterial roadway by Maryland SHA (Maryland SHA 2018). The road connects to Edmonston Road (MD 201) to the west, and the Baltimore-Washington Parkway and Soil Conservation Road to the east, and then extends further in either direction. The roadway has one lane in each direction, with intermediary left and right

turn lanes at intersections. The speed limit for Powder Mill Road is 35 mph as it crosses through the study area. In 2018, the AADT for Powder Mill Road, traversing through BARC, was 11,960 vehicles (Maryland SHA 2014b).

Sunnyside Avenue is an east-west oriented road that is classified as a major collector roadway by Maryland SHA (Maryland SHA 2018). The road connects Baltimore Avenue (U.S. Route 1) and Rhode Island Avenue to Edmonston Road. The roadway has two lanes in each direction for a majority of its length; however, on the east side of the road where it intersects Edmonston Road there is one lane in each direction. Where Sunnyside Avenue has two lanes in each direction on its western end, the road also has periodic left turn lanes and pedestrian sidewalks on both sides. The speed limit for Sunnyside Avenue is 30 mph. In 2018, the AADT for Sunnyside Avenue was 8,930 (Maryland SHA 2014b).

Research Road and Poultry Road are classified by Maryland SHA as local roads (Maryland SHA 2018). They primarily serve the BARC facility. These roadways are predominately unstriped with one lane in each direction.

The roadway functional classifications within the study area according to Maryland SHA are shown in **Figure 4-9**.

As part of the field data collected, the Project Team (A/E) conducted a detailed inventory of the lane geometry through field reconnaissance and a study of aerial imagery. Based on this information, the existing lane geometry and traffic control type (signalized or unsignalized) of intersections in the study area is shown in **Figure 4-10**.

Figure 4-9: Roadway Functional Classifications

Figure 4-10A: Existing Condition Lane Geometry – Map 1

Figure 4-10B: Existing Condition Lane Geometry - Map 2

Data Collection and Development of the Peak Hour

The Project Team (A/E) collected vehicle turning movement counts on Tuesday, September 17, 2019 during weekday AM and PM peak hours (6:00 AM–9:00 AM and 3:00 PM–7:00 PM), a non-holiday week in mid-September at the 15 study intersections. Traffic volumes were collected and tabulated at 15-minute intervals within the observational periods, then hourly volumes were summarized. The one-hour periods associated with the highest volume of traffic during the AM and PM peaks are generally referred to as the peak hours. The traffic counts collected were used in combination with signal timings from Maryland SHA and observations in the study area.

The proposed BEP production facility is unique in that the majority of employees will all be arriving and leaving within the same morning and evening hours during the shift changes. The AM shift change occurs between 6:00 AM and 7:00 PM and the PM shift change occurs between 3:00 PM and 4:00 PM. Because these time periods represent the highest volumes generated by the proposed BEP site, they serve as the basis for developing the existing condition AM and PM traffic volumes.

In addition to the vehicular turning movements, four Automatic Traffic Recorders (ATR) were placed within the study area. ATRs are black tubes placed along the roadway that record a vehicle each time two axles cross the tube. These locations include Sunnyside Avenue, Powder Mill Road, and the two Baltimore-Washington Parkway off-ramps at Powder Mill Road. The ATRs captured volumes for three consecutive weekdays during the week of September 17, 2019, recording the volumes. ATR data provide a daily log of traffic, highlighting the multiple peak periods and change in vehicle demand at all times during a typical weekday.

The Project Team (A/E) compared the ATRs to the turning movement counts as a way of balancing intersection volumes and establishing a baseline of existing conditions volumes that closely represent vehicle demand and typical turning movement patterns. In instances where the ATR was substantially higher than the total intersection volume approach downstream of the ATR, the turning moving counts for that approach were increased to match the ATR volume by applying the increase to the existing percent of vehicles turning left, right or continuing through the intersection. Intersection turning movement counts were also adjusted based on a review of previous ATR and intersection turning movement count data from Maryland SHA and previous count data collected by Louis Berger. Intersection turning movement volumes were adjusted to match ATR volume data because the ATR data are a more representative indication of vehicle demand than intersection turning movement counts. Intersection reported volumes are more affected by intersection capacity. The changes in traffic volume were then carried through the other relevant study area intersections to balance volume. This process affected all the study area intersections, except MD 201 at I-95 Southbound off-ramp and Edmonston Road at Odell Road.

Figure 4-11 shows the data collection plan and **Figure 4-12** shows the existing AM and PM weekday BEP peak hour turning movement volumes occurring in the study area extracted from all study area intersection approaches and ATR data. Appendix C contains the existing conditions vehicle turning movements and ATR data.

Figure 4-11: Study Area Data Collection

Figure 4-12A: AM and PM BEP Peak Hour Traffic Volumes - Map 1

Figure 4-12B: AM and PM BEP Peak Hour Traffic Volumes - Map 2

Observations

During the September 2019 observations of the study area, traffic generally flowed unobstructed for most of the AM and PM peak hour. Traffic congestion and delays were observed going southbound on Edmonston Road at Sunnyside Avenue during the AM peak hour. Also, Edmonston Road at Sunnyside Avenue experienced delays in both the northbound and southbound directions during the PM peak hour.

Traffic

This section explains the tools, concepts, and definitions for analyzing the traffic operations; the process used to analyze the study area intersections; and the traffic analysis results.

Analysis Tools

The study analyzed the study area intersections using Critical Lane Volume (CLV), Synchro[™] Traffic Signal Coordination Software Version 10.3 (Build 122, Revision 0), and SimTraffic[™] Version 10.3 (Build 122, Revision 0). Two analyses were performed for traffic, including an intersection capacity analysis and an intersection queueing analysis. The CLV method was used for signalized intersections only. The intersection capacity analysis used the Synchro[™] software tool and various input values as described in the following sections to determine the level of service (LOS) or driver perception of an intersection queuing analysis used the SimTraffic[™] software tool to determine the length that vehicles may back up at an intersection. SimTraffic was used in addition to the standard Synchro tool to analyze queueing, because it provides a more robust analysis of 95th percentile queuing than Synchro and it was agreed to in the Beltsville Site Transportation Agreement (Appendix A). This section both describes the intersection queuing analysis process in greater detail, then presents the traffic study area results of the queuing analysis.

Intersection Operations Analysis Method

LOS is the primary measure of traffic operations for both signalized and unsignalized intersections, as well as freeway facilities. LOS is a performance measure developed by the transportation profession to quantify driver perception for such elements as travel time, number of stops, total amount of stopped delay, and impediments caused by other vehicles. The LOS provides a scale that is intended to match the perception by motorists of the operation of the transportation facility and to provide a scale to compare different facilities. Detailed LOS descriptions are presented in **Figure 4-13**.

Level of Service

Traffic congestion is expressed by the term Level of Service (LOS), as defined by the Highway Capacity Manual. LOS is a letter code ranging from "A" for excellent conditions to "F" for failure conditions. The conditions defining the LOS for roadways are summarized as follows.

Represents the best operating condition, where traffic stream is considered free-flow.

absorbed.

may form.

free-flow conditions. The ability to maneuver is only slightly restricted. Effects of minor incidents are still easily

Represents speeds at or near free-low conditions. The freedom to maneuver is noticeably restricted. Queues

Represents traffic operations approaching unstable flow. Speeds decline slightly with increasing flows. Road density increases more quickly. The freedom to maneuver is more noticeably limited. Minor incidents cause queuing.

Represents operation that is near or at capacity. There are no usable gaps in the traffic stream. Operations are extremely volatile. Any disruption causes queuing.

-

LOSF

LOSE

Represents a breakdown in flow. Queues form behind breakdown points. The demand is greater than capacity.

Figure 4-13: Level of Service Diagram

Source: TRB (2000)

Signalized Intersection Level of Service

The LOS for signalized intersections in Maryland is guided by both the *Highway Capacity Manual* (HCM) 6th Edition method and the Critical Lane Volume (CLV) method.

The HCM 6th Edition method requires several inputs to determine an accurate LOS (TRB 2016). The primary inputs include:

- vehicular volumes
- pedestrian volumes
- traffic signal timings
- roadway geometry
- speed limits
- truck percentages
- peak hour factor (PHF) (measure of vehicle 15-minute flow rate)

The average vehicle control delay, measured in seconds per vehicle, is calculated using these parameters with the Synchro procedures. This represents the average extra delay in seconds per vehicle caused by the presence of a traffic control device or traffic signal and includes the time required to decelerate, stop, and accelerate. LOS can be characterized for the entire intersection, each intersection approach, and each lane group. Control delay is used to characterize LOS for the entire intersection or an approach. Control delay and volume-to-capacity ratio are used to characterize LOS for a lane group. Delay quantifies the increase in travel time due to a traffic signal control. It is also a surrogate measure for driver discomfort and fuel consumption (TRB 2010). Signalized intersections or approaches that exceed a delay of 55 seconds have LOS E, and 80 seconds have LOS F. **Figure 4-14** shows the average control delay and corresponding LOS for signalized intersections. Using the HCM 6th Edition method, LOS E and LOS F constitute failing operations within M-NCPPC's definition for the Rural Tier designation of the proposed Site.

To determine the LOS of an intersection, the Project Team (A/E) entered the critical input values into the analysis software (Synchro[™]), calculating the average vehicle delay (seconds per vehicle). Based on the average vehicle delay, the LOS was determined for all movements (left, through, and right), approaches, and the intersection as a whole. The 15 Existing Condition intersections analyzed consisted of eight signalized intersections and seven unsignalized intersections.

LOS	Average Control Delay (seconds/vehicle)	Description
А	Less than or equal to 10	Stable conditions – Passing
В	>10–20	Stable conditions – Passing
С	>20–35	Stable conditions – Passing
D	>35–55	Stable conditions- Passing
E	>55–80	Unstable conditions – Failing
F	More than 80	Above capacity and unstable conditions – Failing

Figure 4-14: HCM-based Signalized Intersection Level of Service

Source: TRB, 2016

The CLV method, a M-NCPPC intersection analysis requirement, also requires several inputs to determine LOS; these inputs include vehicular volumes, signal phasing, and roadway geometry. Using these parameters, the CLV method measures the conflicted vehicle movements through an intersection (usually through volumes plus opposing left-turn volumes). The critical volume is determined by adding the highest vehicle conflicting movements along two perpendicular approaches (one east-west volume plus one north-south volume). Volumes are adjusted to reflect the number of lanes serving each vehicle move. **Figure 4-15** shows the CLV and corresponding LOS for signalized intersections. Based on Plan Prince George's 2035 and the Priority Preservation Area Functional Master Plan, a CLV greater than 1,300 constitutes (LOS D) failing operations for intersections within M-NCPPC's definition for the-Rural Tier designation of the proposed Site.

As noted above, acceptable operation of a signalized intersection for HCM 6th method is LOS D or better, while acceptable or passing operation of a signalized intersection for the CLV method is LOS C or better.

LOS	Critical Lane Volume (vehicles)	Description
А	Less than or equal to 1,000	Stable conditions – Passing
В	> 1,000 – 1,150	Stable conditions – Passing
С	> 1,150 – 1,300	Stable conditions – Passing
D	> 1,300 – 1,450	Unstable for Rural Tier– Failing
E	> 1,450 – 1,600	Unstable conditions – Failing
F	> 1,600	Above capacity and unstable conditions – Failing

Figure 4-15: CLV-based Signalized Intersection Level of Service

Source: M-NCPPC, 2012

Unsignalized Intersection Levels of Service

The LOS for unsignalized intersections (STOP-Controlled intersections or roundabouts) is based on the Highway Capacity Manual (HCM) 6th Edition method and requires several inputs to determine an accurate LOS, including:

- vehicular volumes
- pedestrian volumes
- roadway geometry
- speed limits
- truck percentages peak hour factor (PHF)

The average vehicle control delay, in seconds per vehicle, is calculated using these parameters with the HCM 6th Edition procedures (TRB 2016). This represents the average delay, caused by the presence of a stop sign or roundabout, and includes the time required to decelerate, stop, and accelerate.

LOS for a two-way STOP-Controlled (TWSC) intersection (i.e., unsignalized intersection) is determined for each minor-street movement (or shared movement) as well as the major-street left turns. LOS F is assigned to the movement if the Volume-to-Capacity (v/c) ratio for the movement exceeds 1.0 or if the movements control delay exceeds 50 seconds. The LOS for TWSC intersections is different from the criteria used for signalized intersections, primarily because user perceptions differ among transportation facility types. The expectation is that a signalized intersection. Unsignalized intersections are also associated with more uncertainty for users because delays are less predictable than at signals, which can reduce users delay tolerance. LOS is not defined for the TWSC intersection as a whole or for major-street approaches for three primary reasons: (a) major-street through-vehicles are assumed to experience zero delay; (b) the disproportionate number of major-street through-vehicles at a typical TWSC intersection skews the weighted average of all movements, resulting in a very low overall average delay for all vehicles; and (c) the resulting low delay can mask important LOS deficiencies for minor movements (TRB 2010).

The capacity of the controlled intersection legs is based primarily on three factors: the conflicting volume, the critical gap time (defined as the number of seconds between vehicles passing the same point along the major street approach), and the follow up time(defined as the number of seconds between the departure of the first and second vehicle in queue along the minor street approach). The HCM-based capacity analysis procedure assumes consistency for driver's critical gap time. Critical gap times are based on many factors including delay experienced by drivers on the approaches controlled by STOP signs. As delay increases, drivers become less patient and accept shorter gaps, which results in higher capacities for unsignalized intersections that are operating at LOS D or worse. The unsignalized intersection procedure uses fixed critical gap times. Unless the critical gap times are adjusted, the procedure tends to overestimate the delay at unsignalized intersections that are operating at LOS D or worse. Also, poor operations at an unsignalized intersection encourages some drivers to turn right and make a U-turn on the mainline or accept shorter critical gaps (safety issue) rather than attempt a turn left (TRB 2010).

Figure 4-16 shows the average control delay and corresponding LOS for unsignalized intersections. It should be noted that the worst LOS at one-way, STOP-controlled, and TWSC intersections represents the delay for the minor approach only. Using the HCM 6th Edition unsignalized intersection method, a 50-second delay or LOS F constitutes failing operations.

Figure 4-16: HCM-based	Unsignalized	Intersection	Level of Service
J			

LOS	Average Control Delay (seconds/vehicle)	Description
А	Less than or equal to 10	Stable conditions – Passing
В	>10–15	Stable conditions –Passing
C	>15–25	Stable conditions – Passing
D	>25–35	Stable conditions – Passing
E	>35–50	Unstable conditions – Failing
F	More than 50	Above capacity and unstable conditions – Failing

Source: TRB, 2016

Existing Condition Intersection Operations Analysis

The Project Team (A/E) used Synchro[™] to calculate the vehicle delay and LOS operation based on the HCM 6th Edition method for each study area intersection, with the exception of the MD 201 intersections with Ivy Lane and Sunnyside Avenue, where the team applied the HCM 2000 method. Within the Synchro[™] software, the algorithms following the HCM 6th Edition require traffic signal timings to follow the National Electrical Manufacturers Association (NEMA) requirements. Instead, the signal timings for these two intersections assigned by the Maryland SHA contain special pedestrian or hold phases, or the assignment of phases that do not meet NEMA standards. For example, NEMA requires no special phases for pedestrians and that the phases that serve the north approach must be assigned the phase number two and south approach be assigned the phase number six. The HCM 2000 method is not as restrictive and was therefore used to calculate the LOS. Custom designed Excel sheets were used to calculate the LOS operation based on the CLV method.

Based on the Synchro[™] and CLV Excel-based worksheet analysis, the majority of study intersections operate at acceptable overall conditions during the morning and afternoon peak hours. However, the following signalized intersections in the study area operate with overall unacceptable conditions (LOS E or LOS F) using the HCM 6th or HCM 2000 method (average control delay exceeds 35 seconds per vehicle) or LOS C using the CLV method (CLV greater than 1,300):

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) during the AM peak hour
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) during the PM peak hour
- Powder Mill Road/Soil Conservation Road (Intersection #15) during the PM peak hour

Using the HCM 6th method, a total of five unsignalized intersections have lane groups and/or approaches that operate under unacceptable conditions (LOS E or LOS F) during the morning or afternoon peak hours:

- MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7)
 - Westbound Beaver Dam Road during the AM and PM peak hours
- MD 201 (Edmonston Road)/Odell Road (Intersection #9)

- Eastbound Odell Road during the AM and PM peak hours
- Powder Mill Road/Springfield Road (Intersection #12)
 - Southbound Springfield Road during the PM peak hour
- Powder Mill Road/MD 295 (BW Parkway) Southbound Ramps (Intersection #13)
 - o Southbound BW Parkway off-ramp during the AM and PM peak hours
 - o Southbound left turn lane of BW Parkway off-ramp during the AM and PM peak hours
- Powder Mill Road/MD 295 (BW Parkway) Northbound Ramps (Intersection #14)
 - o Northbound BW Parkway off-ramp during the PM peak hour
 - Northbound left turn lane of BW Parkway off-ramp during the PM peak hour

Figure 4-17 depicts the CLV LOS grades for signalized intersections for AM and PM peak hours. The overall signalized intersection LOS grades and worst unsignalized lane group LOS grades are depicted in **Figure 4-18** for AM and PM peak hours using HCM analysis. **Figure 4-19** shows the results of the LOS capacity analysis (HCM) and the intersection vehicle delay for the existing conditions during the AM and PM peak hours. Appendix D contains the CLV worksheets. Appendix E contains the Synchro intersection operations results.

Figure 4-17: Existing Condition: Intersection Level of Service (CLV)

Figure 4-18: Existing Condition: Intersection Level of Service (HCM)

				AM	Peak Ho	ur			PM F	Peak Ho	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
1	MD 201 (Kenilworth Avenue) and	I-95 SB Of	f-Ramp (S	Signalized	d)								
	EB (I-95 SB Off-Ramp)	L	0.57	50.2	D			0.62	50.2	D			
	EB Overall (I-95 SB Off-Ramp)			50.2	D				50.2	D			Pass
	NB (Kenilworth Avenue)	Т	0.25	1.9	Α			0.40	2.5	А			
	NB Overall (Kenilworth Avenue)			1.9	Α				2.5	Α			Pass
	SB (Kenilworth Avenue)	Т	0.32	2.2	Α			0.41	2.6	Α			
	SB Overall (Kenilworth Avenue)			2.2	Α				2.6	Α			Pass
	Overall		-	4.1	Α	468	Α		4.3	Α	644	Α	Pass
2	MD 201 (Kenilworth Avenue) and	I-95 NB Of	f-Ramp (S	Signalized	d)								
	WB (I-95 NB Off-Ramp)	L	0.45	24.7	С			0.65	33.6	С			
	WB (I-95 NB Off-Ramp)	R	0.88	37.2	D			0.82	38.7	D			
	WB Overall (I-95 SB Off-Ramp)			32.3	С				36.2	D			Pass
	NB (Kenilworth Avenue)	Т	0.19	13.4	В			0.25	9.4	А			
	NB Overall (Kenilworth Avenue)			13.4	В				9.4	Α			Pass
	SB (Kenilworth Avenue)	Т	0.44	16.1	В			0.42	10.8	В			
	SB Overall (Kenilworth Avenue)			16.1	В				10.8	В			Pass
	Overall			23.5	С	714	Α		19.4	В	739	Α	Pass

			AM Peak Hour PM Peak Hour										
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
3	MD 201 (Kenilworth Avenue) and	Maryland	SHA Dist	rict 3/Cres	scent Ro	ad (Sign	alized)						
	EB (Maryland SHA District 3)	LTR	0.04	30.6	С			0.15	34.5	С			
	EB Overall (Maryland SHA Distric	t 3)		30.6	С				34.5	С			Pass
	WB (Crescent Road)	LT	0.72	51.6	D			0.86	74.8	Е			
	WB (Crescent Road)	R	0.21	30.7	С			0.29	35.2	D			
	WB Overall (Crescent Road)			44.0	D				61.0	E			Fail
	NB (Kenilworth Avenue)	L	0.69	61.3	E			0.58	62.7	Е			
	NB (Kenilworth Avenue)	Т	0.46	13.5	В			0.41	12.8	В			
	NB (Kenilworth Avenue)	R	0.00	0.0	Α			0.00	0.0	Α			
	NB Overall (Kenilworth Avenue)			15.0	В				13.7	В			Pass
	SB (Kenilworth Avenue)	L	0.71	65.5	E			0.78	56.7	Е			
	SB (Kenilworth Avenue)	TR	0.46	28.9	С			0.40	24.7	С			
	SB Overall (Kenilworth Avenue)			29.5	С				26.8	С			Pass
	Overall			23.7	С	539	Α		24.6	С	632	Α	Pass

				AM	Peak Ho	ur			PM I	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
4	MD 201 (Kenilworth Avenue) and	d Ivy Lane	(Signali	zed) ^a									
	EB (Ivy Lane)	R	0.07	0.1	Α			0.14	0.2	Α			
	EB Overall (Ivy Lane)			0.1	Α				0.2	Α			Pass
	NB (Kenilworth Avenue)	L	0.37	30.4	С			0.38	27.4	С			
	NB (Kenilworth Avenue)	Т	0.35	0.3	Α			0.32	0.3	А			
	NB Overall (Kenilworth Avenue)			2.8	Α				2.8	Α			Pass
	SB (Kenilworth Avenue)	Т	0.44	2.5	Α			0.43	1.1	А			
	SB (Kenilworth Avenue)	R	0.01	1.4	А			0.01	0.1	А			
	SB Overall (Kenilworth Avenue)			2.5	Α				1.1	Α			Pass
	Overall			2.6	Α	548	Α		1.8	Α	654	Α	Pass
5	MD 201 (Kenilworth Avenue/Edn	nonston R	Road) and	d Cherryw	vood Lar	ne (Signa	alized)						
	EB (Cherrywood Lane)	L	0.57	46.3	D			0.70	47.0	D			
	EB (Cherrywood Lane)	R	0.27	44.5	D			0.62	48.2	D			
	EB Overall (Cherrywood Lane)	-		46.0	D				47.3	D			Pass
	NB (Kenilworth Avenue)	L	0.45	6.8	Α			0.23	5.5	А			
	NB (Kenilworth Avenue)	Т	0.41	3.7	Α			0.40	4.0	А			
	NB Overall (Kenilworth Avenue)	-		4.1	Α				4.1	Α			Pass
	SB (Edmonston Road)	Т	0.50	8.1	Α			0.48	8.1	А			
	SB (Edmonston Road)	R	0.27	6.5	Α			0.14	5.8	А			
	SB Overall (Edmonston Road)			7.8	Α				7.8	Α			Pass
	Overall			8.5	Α	681	Α		10.7	В	761	Α	Pass

				AM	Peak Ho	ur			PM F	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
6	MD 201 (Edmonston Road) and S	Sunnyside	e Avenue	(Signaliz	zed) ^a								
	EB (Sunnyside Avenue)	L	0.70	104.2	F			0.72	71.4	E			
	EB (Sunnyside Avenue)	R	0.37	57.3	Е			0.57	34.8	С			
	EB Overall (Sunnyside Avenue)			71.8	E				46.3	D			Fail
	NB (Edmonston Road)	L	0.95	94.1	F			0.71	47.7	D			
	NB (Edmonston Road)	TR	0.53	4.8	Α			0.00	0.0	А			
	NB Overall (Edmonston Road)			33.1	С				21.1	С			Pass
	SB (Edmonston Road)	Т	1.08	87.8	F			1.03	76.3	E			
	SB (Edmonston Road)	R	0.10	7.9	А			0.10	10.5	В			
	SB Overall (Edmonston Road)			79.1	E				66.4	E			Fail
	Overall			58.2	E	1298	С		42.0	D	1250	С	Fail
7	MD 201 (Edmonston Road) and I	Beaver Da	m Road	(TWSC)									
	WB (Beaver Dam Road)	LR	0.57	133.7	F			0.52	121.4	F			
	WB Overall (Beaver Dam Road)			133.7	F				121.4	F			Fail
	SB (Edmonston Road)	LT	0.04	10.8	В			0.06	11.8	В			
	SB Overall (Edmonston Road)			0.2					0.4	Α			Pass
	Overall			2.0		n/a	n/a		1.8		n/a	n/a	Pass

				AM	Peak Ho	ur			PM	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
8	MD 201 (Edmonston Road) and	Powder I	Mill Road	l (Signali	zed)								
	EB (Powder Mill Road)	L	0.31	63.0	E			1.29	234.2	F			
	EB (Powder Mill Road)	Т	0.34	54.3	D			1.14	155.8	F			
	EB (Powder Mill Road)	R	0.00	0.0	Α			0.00	0.0	Α			
	EB Overall (Powder Mill Road)			57.3	E				186.9	F			Fail
	WB (Powder Mill Road)	L	0.30	47.8	D			0.24	56.8	E			
	WB (Powder Mill Road)	Т	0.24	34.1	С			0.24	33.1	С			
	WB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	Α			
	WB Overall (Powder Mill Road)			40.3	D				40.7	D			Pass
	NB (Edmonston Road)	L	0.83	41.3	D			0.78	37.4	D			
	NB (Edmonston Road)	Т	0.51	22.1	С			0.58	26.2	С			
	NB (Edmonston Road)	R	0.00	0.0	Α			0.00	0.0	Α			
	NB Overall (Edmonston Road)			30.5	С				30.8	С			Pass
	SB (Edmonston Road)	L	0.09	32.1	С			0.29	41.0	D			
	SB (Edmonston Road)	TR	0.60	43.6	D			0.47	41.6	D			
	SB Overall (Edmonston Road)			43.0	D				41.4	D			Pass
	Overall			38.4	D	851	Α		74.2	E	1010	В	Fail

				AM	Peak Ho	ur			PM	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
9	MD 201 (Edmonston Road) and	Odell Ro	ad (TWS	C)									
	EB (Odell Road)	LTR	0.16	37.7	E			0.19	35.4	E			-
	EB Overall (Odell Road)			37.7	E				35.4	E			Fail
	WB (Odell Road)	LT	0.05	32.1	D			0.02	30.6	D			
	WB (Odell Road)	R	0.00	12.5	В			0.00	11.9	В			
	WB Overall (Odell Road)			29.3	D				23.1	С			Pass
	NB (Edmonston Road)	LT	0.05	9.0	A			0.03	9.3	Α			
	NB Overall (Edmonston Road)			0.8					0.4				Pass
	SB (Edmonston Road)	LTR	-	0.0	А			0.00	8.7	Α			
	SB Overall (Edmonston Road)			0.0					0.0				Pass
	Overall			1.3		n/a	n/a		1.1		n/a	n/a	Pass
10	Powder Mill Road and Poultry F	Road (AW	SC)										
	EB (Powder Mill Road)	LT	0.21	8.4	Α			0.81	23.3	С			
	EB Overall (Powder Mill Road)			8.4	Α				23.3	С			Pass
	WB (Powder Mill Road)	LT	0.37	9.5	Α			0.36	10.3	В			
	WB Overall (Powder Mill Road)			9.5	Α				10.3	В			Pass
	SB (Poultry Road)	LR	0.00	8.0	А			0.02	9.2	Α			
	SB Overall (Poultry Road)			0.0	-				9.2	Α			Pass
	Overall			9.1	Α	n/a	n/a		19.4	С	n/a	n/a	Pass
11	Powder Mill Road and Research	h Road (T	WSC)										
	NB (Research Road)	L	0.05	12.6	В			0.11	18.8	С			
	NB Overall (Research Road)			12.6	В				18.8	С			Pass
	Overall			0.5		n/a	n/a		0.6		n/a	n/a	Pass
Figure 4-19: Existing Conditions AM and PM Peak Hour Operations Analysis (continued)

				AM	Peak Ho	ur			PM I	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
12	Powder Mill Road and Springfie	eld Road (TWSC)										
	EB (Powder Mill Road)	L	0.01	8.6	Α			0.02	8.2	А			
	EB Overall (Powder Mill Road)			0.2					0.3				Pass
	SB (Springfield Road)	LR	0.42	19.2	С			0.93	71.0	F			
	SB Overall (Springfield Road)			19.2	С				71.0	F			Fail
	Overall			3.8		n/a	n/a		17.4		n/a	n/a	Pass
13	13 Powder Mill Road and MD 295 SB Ramps (TWSC)												
	WB (Powder Mill Road)	L	0.08	8.3	Α			0.16	10.2	В			
	WB Overall (Powder Mill Road)			1.8					3.4				Pass
	SB (MD 295 SB Off-Ramp)	L	0.98	83.9	F			1.73	405.2	F			
	SB (MD 295 SB Off-Ramp)	TR	0.27	12.2	В			0.17	10.6	В			
	SB Overall (MD 295 SB Off-Ran	וp)		56.4	F				277.2	F			Fail
	Overall			21.3		n/a	n/a		70.1		n/a	n/a	Fail
14	Powder Mill Road and MD 295 I	NB Ramps	s (TWSC))									
	EB (Powder Mill Road)	L	0.12	9.6	Α			0.31	11.7	В			
	EB Overall (Powder Mill Road)		-	1.9					3.0				Pass
	NB (MD 295 NB Off-Ramp)	L	0.35	33.7	D			1.07	240.6	F			
	NB (MD 295 NB Off-Ramp)	TR	0.17	11.7	В			0.11	14.1	В			
	NB Overall (MD 295 NB Off-Ramp)			20.1	С				146.6	F			Fail
	Overall			3.2		n/a	n/a		10.4		n/a	n/a	Pass

Figure 4-19: Existing Conditions AM and PM Peak Hour Operations Analysis (continued)

			AM Peak Hour				PM Peak Hour						
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
15 Powder Mill Road and Soil Conservation Road (Signalized)													
	EB (Powder Mill Road)	Т	0.29	20.5	С			0.50	24.0	С			
	EB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	А			
	EB Overall (Powder Mill Road)			20.5	С				24.0	С			Pass
	WB (Powder Mill Road)	L	0.22	34.1	С			0.12	32.7	С			
	WB (Powder Mill Road)	Т	0.33	9.7	Α			0.29	9.3	А			
	WB Overall (Powder Mill Road)			13.4	В				11.7	В			Pass
	NB (Soil Conservation Road)	L	0.84	47.1	D			1.30	184.1	F			
	NB (Soil Conservation Road)	R	0.00	0.0	Α			0.00	0.0	А			
	NB (Soil Conservation Road)			47.1	D			-	184.1	F			Fail
	Overall			27.9	С	567	Α		96.0	F	888	Α	Fail

Notes:

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

LOS = Level of Service

V/C = Volume-to-Capacity ratio

LTR = left / through / right lanes

LTR/LTR = No-Build/Build with Mitigation

TWSC = Two-way STOP-Controlled unsignalized intersection (TWSC intersections do not have an overall LOS)

AWSC = All-way STOP-Controlled unsignalized intersection

Delay is Measured in Seconds Per Vehicle.

Red cells denote intersections or approaches operating at unacceptable conditions.

a Highway Capacity Manual 2000 results (Intersections #4 and #6)

Intersection Queuing Analysis Method

In addition to analyzing the vehicle delay, the Project Team (A/E) calculated the vehicle queue lengths for each approach. The 95th percentile queue length is the worst-case scenario, calculated as the queue that has a 5% probability of being exceeded. A failing queue length is determined by a queue length exceeding the intersection lane group storage capacity. As the available storage for each intersection lane group differs, these values reflect whether the existing storage provides enough space for vehicles waiting to pass through the intersection without blocking another lane or another intersection. Because failing queues might occur along the same approach as a failing LOS, these values are calculated independently and might result in one approach receiving a failing LOS score, while another lane group or approach has a failing queue length. The study used SimTraffic[™] to calculate 95th percentile queue lengths for the 15 study intersections.

SimTraffic provides a more robust analysis than Synchro and was agreed on by the parties in the Beltsville Site Transportation Agreement. The use of SimTraffic involved calibrating the model, ensuring the model runs for the appropriate amount of time, and determining the number of simulations runs to be statistically within a plus or minus 5% error at the 95% confidence interval. The model was calibrated by adjusting link speeds, turning speeds, and vehicle positioning decision points (distance prior to decision point when vehicles position themselves in the correct lane for upcoming moves). The goal was to adjust the model to resemble a simulation closely representing the Existing Condition. Running the model included a seeding time (time for vehicles to completely travel the network) plus four 15minute recording times (totaling 60 minutes). Based on the distance from the farthest points on the network, an 8-minute seed time was applied. The minimum number of simulation runs was calculated by running the simulation ten runs. Based on the results of the 10 runs, the standard deviation was calculated using the vehicle hours of travel (VHT) metric. VHT provides a good indication of vehicle delays by requiring more simulations given facility operation and queuing issues. Using the calculated standard deviation, the number of simulations required was calculated to be within plus or minus 5% at the 95th percentile confidence level. Because SimTraffic varies guite a bit between runs in terms of VHT, even for small networks, a plus or minus 5% error was established. The number of simulation runs to reduce the error to 4% would require dozens of runs for little gain in accuracy. In some cases where little congestion occurred, ten runs achieved better than a plus or minus 5% error at the 95% confidence interval. Appendix F contains the statistical Excel sheets used to determine the appropriate number of simulation runs. Appendix G documents the SimTraffic model validation and calibration process.

Existing Condition Intersection Queue Analysis

SimTraffic[™] was used to calculate the 95th percentile queue lengths. The SimTraffic[™] simulations have a statistical error of plus or minus 4.4% error at the 95% confidence interval for the AM peak hour and 5.0% error for the PM peak hour simulations.

Based on SimTraffic[™] analysis, the following intersection lane groups experience failing queue lengths.

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)
 - \circ $\,$ Northbound left of MD 201 (Edmonston Road) during the AM peak hour $\,$
 - o Southbound right of MD 201 (Edmonston Road) during the PM peak hour
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
 - o Eastbound left of Powder Mill Road during the PM peak hour

- o Eastbound through of Powder Mill Road during the PM peak hour
- Eastbound right of Powder Mill Road during the PM peak hour
- Westbound right of Powder Mill Road during the AM and PM peak hours
- Powder Mill Road/MD 295 (BW Parkway Southbound Off-Ramp) (Intersection #13)
 - Southbound left of MD 295 (BW Parkway Southbound Off-Ramp) during the AM and PM peak hours
- Powder Mill Road/MD 295 (BW Parkway Northbound Off-Ramp) (Intersection #14)
 - Northbound left of MD 295 (BW Parkway Northbound Off-Ramp) during the AM and PM peak hours
- Powder Mill Road/Soil Conservation Road (Intersection #15)
 - Northbound right of Soil Conservation Road during the PM peak hour

The remaining intersections in the study area have acceptable queue lengths. **Figure 4-20** provides more details on the percentile values observed at each intersection. The percentile values are expressed in feet, and an average car plus space between the next vehicle requires roughly 25 feet of space. Appendix H contains the SimTraffic Queuing analysis results.

ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)			
1	MD 201 (Kenilworth Avenue)	and I-95 SB	Off-Ramp	(Signalized)					
	I-95 SB Off-Ramp	EB	L	325	35	44			
	I-95 SB Off-Ramp	EB	L	1540	107	128			
	I-95 SB Off-Ramp	EB	R	1540		109			
	MD 201 (Kenilworth Avenue)	NB	Т	4600	73	129			
	MD 201 (Kenilworth Avenue)	SB	Т	1400	91	131			
2	MD 201 (Kenilworth Avenue)	and I-95 NB	Off-Ramp	Signalized)					
	I-95 NB Off-Ramp	WB	L	400	172	225			
	I-95 NB Off-Ramp	WB	L	1580	221	266			
	I-95 NB Off-Ramp	WB	R	1580	276	230			
	I-95 NB Off-Ramp	WB	R	300	261	217			
	MD 201 (Kenilworth Avenue)	NB	Т	250	71	76			
	MD 201 (Kenilworth Avenue)	NB	Т	1400	93	114			
	MD 201 (Kenilworth Avenue)	SB	Т	680	156	120			
3	MD 201 (Kenilworth Avenue) and SHA District 3/Crescent Road (Signalized)								
	SHA District 3	EB	LTR	130	23	33			
	Crescent Road	WB	LT	1080	136	171			
	Crescent Road	WB	R	250	59	67			
	MD 201 (Kenilworth Avenue)	NB	L	250	69	56			
	MD 201 (Kenilworth Avenue)	NB	Т	680	164	193			
	MD 201 (Kenilworth Avenue)	NB	R	200	32	63			
	MD 201 (Kenilworth Avenue)	SB	L	300	68	124			
	MD 201 (Kenilworth Avenue)	SB	TR	740	79	102			
4	MD 201 (Kenilworth Avenue)	and Ivy Lane	e Signaliz	ł					
	MD 201 (Kenilworth Avenue)	NB	L	350	61	66			
	MD 201 (Kenilworth Avenue)	NB	L	740	96	101			
	MD 201 (Kenilworth Avenue)	SB	Т	1120	120	74			
5	MD 201 (Kenilworth Avenue/	Edmonston F	Road) and	Cherrywood	Lane (Signal				
	Cherrywood Lane	EB	L	250	83	108			
	Cherrywood Lane	EB	L	750	108	132			
	Cherrywood Lane	EB	R	750	56	114			
	MD 201 (Kenilworth Avenue)	NB	L	750	108	94			
	MD 201 (Kenilworth Avenue)	NB	Т	1120	179	102			
	MD 201 (Edmonston Road)	SB	Т	580		174			
	MD 201 (Edmonston Road)	SB	R	580	220	53			

Figure 4-20: Existing Conditions AM and PM Peak Hour Queue Analysis

ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
6	MD 201 (Edmonston Road) and	Sunnyside	Avenue (Signalized)	•	•
	Sunnyside Avenue	EB	L	1400	194	262
	Sunnyside Avenue	EB	R	350	233	313
	MD 201 (Edmonston Road)	NB	L	450	464	384
	MD 201 (Edmonston Road)	NB	TR	4160	401	452
	MD 201 (Edmonston Road)	SB	Т	1500	1114	1015
	MD 201 (Edmonston Road)	SB	R	250	239	316
7	MD 201 (Edmonston Road) and	Beaver Dan	n Road (1	TWSC)		
	Beaver Dam Road	WB	LR	1300	65	57
	MD 201 (Edmonston Road)	NB	TR	1500	5	11
	MD 201 (Edmonston Road)	SB	LT	1480	163	355
8	MD 201 (Edmonston Road) and	Powder Mil	Road (S	ignalized)		
	Powder Mill Road	EB	L	250	122	322
	Powder Mill Road	EB	Т	1430	174	1780
	Powder Mill Road	EB	R	500	63	768
	Powder Mill Road	WB	L	250	147	111
	Powder Mill Road	WB	Т	1100	196	217
	Powder Mill Road	WB	R	40	57	62
	MD 201 (Edmonston Road)	NB	L	400	250	353
	MD 201 (Edmonston Road)	NB	Т	1480	298	444
	MD 201 (Edmonston Road)	NB	R	275	54	208
	MD 201 (Edmonston Road)	SB	L	275	46	126
	MD 201 (Edmonston Road)	SB	TR	780	253	252
9	MD 201 (Edmonston Road) and	Odell Road	(TWSC)			
	Odell Road	EB	LTR	740	71	54
	Odell Road	WB	LT	520	35	12
	Odell Road	WB	R	50	19	17
	MD 201 (Edmonston Road)	NB	LT	760	63	78
	MD 201 (Edmonston Road)	SB	LTR	1320	1	4
10	Powder Mill Road and Poultry R	Road (AWSC	;)			
	Powder Mill Road	EB	LT	240	92	219
	Powder Mill Road	WB	TR	1280	93	96
	Poultry Road	SB	LR	420		20
11	Powder Mill Road and Research	n Road (TWS	SC)			
	Powder Mill Road	EB	TR	1280		21
	Research Road	NB	L	65	38	49

Figure 4-20: Existing Conditions AM and PM Peak Hour Queue Analysis (continued)

ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)				
12	Powder Mill Road and Springfield Road (TWSC)									
	Powder Mill Road	EB	L	50	11	24				
	Powder Mill Road	WB	TR	140		6				
	Springfield Road	SB	LR	4110	69	144				
13	Powder Mill Road and MD 295 S	B Ramps(TWSC)							
	Powder Mill Road	EB	TR	140	3	15				
	Powder Mill Road	WB	L	225	35	60				
	Powder Mill Road	WB	Т	520	2	4				
	BW Parkway SB Ramp	SB	L	25	58	56				
	BW Parkway SB Ramp	SB	TR	1020	127	565				
14	Powder Mill Road and MD 295 N	B Ramps (1	WSC)							
	Powder Mill Road	EB	L	250	56	131				
	Powder Mill Road	WB	TR	850	11	15				
	BW Parkway NB Ramp	NB	L	50	52	70				
	BW Parkway NB Ramp	NB	TR	880	53	79				
15	Powder Mill Road and Soil Cons	ervation Ro	ad (Sign	alized)						
	Powder Mill Road	EB	Т	850	122	194				
	Powder Mill Road	EB	R	260	25	37				
	Powder Mill Road	WB	L	300	75	61				
	Powder Mill Road	WB	Т	780	126	131				
	Soil Conservation Road	NB	L	6400	222	1101				
	Soil Conservation Road	NB	R	475		625				

Figure 4-20: Existing Conditions AM and PM Peak Hour Queue Analysis (continued)

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Existing Traffic Patterns

The Project Team (A/E) placed four ATRs (Sunnyside Avenue, Powder Mill Road, BW Parkway southbound off-ramp, and BW Parkway northbound off-ramp) in the study area to capture an hourly record of vehicles inside or surrounding the installation. The Sunnyside ATR was positioned far enough away from the Edmonston Road intersection to capture the traffic demand heading east. The Powder Mill Road ATR was positioned at the approximate location of the BEP site driveway under the Action Alternative. The BW Parkway off-ramp ATRs were positioned to capture the traffic demand exiting the parkway at Powder Mill Road before entering the queue to proceed past the stop-controlled intersection at Powder Mill Road.

ATR data were collected for three consecutive days (Tuesday through Thursday) during the week of September 17, 2019, a typical work week, with no holidays or major weather events that would prompt atypical traffic patterns. The Project Team organized vehicle counts by direction, allowing separate analysis of each direction's traffic volumes. All hourly weekday volumes collected have some slight variations between days.

Figures 4-21 through **4-24** show the weekday ATR summary data along Sunnyside Avenue, Powder Mill Road, and BW Parkway off-ramps at Powder Mill Road.

Figure 4-22: Powder Mill Road: Weekday Vehicles per Hour

Figure 4-23: BW Parkway Southbound Off-ramp at Powder Mill Road: Weekday Vehicles per Hour

Figure 4-24: BW Parkway Northbound Off-ramp at Powder Mill Road: Weekday Vehicles per Hour

Analysis of the ATR data for the average day reveals several trends for traffic volumes.

- The AM and PM peak hours are similar in intensity along Sunnyside Avenue and BW Parkway northbound off-ramp.
- Peak hours last over four hours along Sunnyside Avenue and BW Parkway southbound offramp.
- Powder Mill Road and Sunnyside Avenue flow predominately in the eastbound direction.
- BW Parkway southbound off-ramp maintains a high volume for 14 hours a day.
- BW Parkway northbound off-ramp has a much higher PM peak flow than AM peak flow.

Pedestrian Network

This section includes a description of where sidewalks are present; the origin and destination points of pedestrians and/or commonly used sidewalks in the study area; disruptions or obstacles in the pedestrian environment; and general Americans with Disabilities Act (ADA) compliance. The Project Team recorded sidewalk measurements and other observations in the field in September 2019 (Site Visit, September 17, 2019) and via imagery from Google Maps. Measurements were recorded from the edge of the sidewalk to the edge of the curb.

Overall Sidewalk Observations

Basic sidewalk accommodations do not exist along a majority of roads throughout the study area, due to the predominately agrarian and rural character. The internal circulation for BARC is vehicle oriented and makes nonmotorized transportation difficult. Sidewalks are provided along the residential streets in the neighborhoods to the north of the site. Sidewalks are also located along parts of Edmonston Road (MD 201) but primarily adjacent to residential neighborhoods. There are no pedestrian crossing locations due to the lack of connectivity in the study area. Existing sidewalks are not the recommended minimum width of 5.0 feet wide (FHWA 2006).

Accessibility Compliance

According to ADA, there is a minimum requirement of 3-foot clearances on street curb ramps, as well as minimal slopes and detectable warnings (i.e., dome-shaped bumps) (USDOJ 2007). Due to long blocks and generally consistent sidewalk widths along each block, ADA compliance focused on sidewalk widths and less on intersection ramp compliance.

The Federal Highway Administration (FHWA) guidelines recommend that sidewalks have a minimum width of 5.0 feet if setback from the curb or 6.0 feet if at the curb face (FHWA 2014). Any sidewalk width less than 5.0 feet must be 3.0 feet wide with 5–foot turn-around locations every 200 feet to meet the minimum requirements for people with disabilities (USDOJ 2010).

Based on the ADA guidelines, all intersections are not ADA compliant due to either a lack of sidewalks or sidewalks that are not the appropriate width and do not have tactile paving (i.e., dome-shaped bumps) (USDOJ 2007).

Bicycle Network

There are no multi-use paths and roadways with bicycle accommodations in the bicycle study area (**Figure 4-25**) (M-NCPPC 2009; PGC PD 2013; site visit in September 2019; Google Maps). Within the larger study area, Cherrywood Lane and Ivy Lane both have bicycle lanes, although they do not extend the full length of the roadways. Powder Mill Road does contain a three-foot to six-foot striped shoulder between Edmonston Road and the BW Parkway that provides space for bicyclists. According to the Federal Highway Administration, bicycle striped lanes should be five feet wide (FHWA, 2017).

Public Transit

Several modes of transit converge in the transit study area, including local buses, shuttles, and carsharing. The Greenbelt Metro Station is located in the vicinity but is not within the study area. Because the public transit system is dynamic in nature with possible service adjustments, ridership changes, and station access improvements, this information provides a snapshot in time to provide a baseline of data to develop the No-build and Build Conditions. Therefore, the transit information in this report records transit information as of the fall of 2019; some bus and transit schedules may have changed since the initial data were collected.

Figure 4-25: Prince George's County Master Plan of Transportation Bikeways and Trails

Bus: Local

The proposed site is served by two WMATA Metrobus lines. Most of the bus routes serve the cities of Laurel and Greenbelt and other surrounding areas of Prince George's County. Metrobus route 87 (Laurel Express) connects Greenbelt to the City of Laurel, and Metrobus route B30 (Greenbelt-BWI Thurgood Marshall Airport Express) connects Greenbelt with BWI Thurgood Marshall International Airport in Anne Arundel County, Maryland. **Figure 4-26** summarizes the major characteristics of bus routes serving the study area as well as the weekday headways and spans of service on routes that

serve the proposed site. Headways represent the time between buses in minutes. Most routes operate throughout the day with peak service during the morning and evening rush hours, which fall between 6:00 AM and 9:00 AM and 3:00 PM and 7:00 PM, respectively. Some routes have limited or reduced service during the midday period (from 9:00 AM to 3:00 PM), including Metrobus Route 87 which does not operate at all during this period. Metrobus Route 87 provides 30-minute peak headways. **Figure 4-27** illustrates bus routes serving the study area.

Figure 4-26: Major Service	Characteristics of Bus	Routes Serving the Study Area
----------------------------	-------------------------------	-------------------------------

Route Name	Route Endpoints	Headway (during hours of operation)	Service Hours for Study Area						
Major Route									
87	Operates between Greenbelt Metro Station and Laurel	30 minutes weekdays	Weekdays: northbound 5:50 AM–7:47 PM Weekdays: southbound 4:46 AM–7:45 PM						
B30*	Operates between Greenbelt Metro Station and BWI Business District	30 minutes weekdays	Weekdays: northbound 6:00 AM–9:54 PM Weekdays: southbound 7:00 AM–10:45 PM						

Note*: Bus route traverses through study area but does not stop.

Source: WMATA (2019a)

Figure 4-27: Bus Routes Serving the Study Area

Source: WMATA (2014f); PGC DPWT (2014); Regional Transit Agency (2014)

Ridership

Figure 4-28 shows ridership by route for the two Metrobus routes in the area. Ridership during the AM Peak and PM Peak periods is fairly consistent by route in each direction, likely because the routes connect to multiple Metro stations on opposite ends of the route.

Maximum passenger loads represent the maximum number of passengers on a given route at one time. Maximum passenger loads on routes serving the study area indicate the potential for overcrowding on one of the routes. Route 87 does not experience overcrowding. Route B30 does not stop in the study area; therefore, ridership information was not provided.

Figure 4-28: Average Weekday Ridership by Bus Route Serving the Proposed Study Area

Route Name	Route Endpoints	Time Period	Average Ridership (Persons)	Max Patrons per Bus (Persons)	Bus Capacity (Percent Full)	
87	Operates between Greenbelt	AM Peak	320	24	60%	
	Station and Laurel	PM Peak	396	29	72%	

Bus: Intercity

There is currently no intercity bus service to the proposed site.

Bus: Commuter

There is currently no commuter bus service to the proposed site.

Shuttles

There is one shuttle that serves the study area for the U.S. Department of Agriculture (USDA, 2015). USDA provides a single shuttle between its facilities in Beltsville and the Greenbelt Metro Station. Passengers must present a USDA identification card. **Figure 4-29** provides details on shuttle service in the Greenbelt study area.

Figure 4-29: Shuttles Serving the Study Area

Agency/ Group	Route Name	Locations Served	Headway (Minutes)	Span of Service
USDA	Beltsville	Greenbelt Metro Station, USDA Offices, Beltsville Agricultural Center	30-60	6:42 AM to 6:08 PM (Mon-Fri)

Ridesharing (Slugging)

There are no slugging routes in the study area.

Carsharing

Carsharing is a mobility option that allows individuals to rent a vehicle for short periods (Minutes, hours, or days) and has become an increasingly popular way for people to travel around Washington, DC. Several carsharing companies currently serve the DC metro area including Zipcar and Turo. All services are provided by private companies that offer automobile access to registered users.

Parking

Parking near the proposed site is primarily limited to BARC service vehicles and employees. Several surface parking lots serve BARC office buildings and maintenance facilities, as shown in **Figure 4-30**. There is no on-street parking in the study area. Information about parking in the study area was gathered through the use of Google Maps that consisted of images from summer 2018, as well as onsite observations (Louis Berger Site Visit September 17, 2019).

Figure 4-30: Surface Parking Lots

This page intentionally left blank.

5. Future Conditions

This section describes the No Action Alternative or the baseline condition if BEP does not relocate to Beltsville and Action Alternative if BEP does relocate to Beltsville. Analysis of the No Action Alternative assumes background development and growth through 2029, the full implementation year of the associated Action Alternative.

A Development of No Action Alternative

Under the No Action Alternative, no changes are proposed in the project area. Therefore, this section only describes changes that are planned or reasonably foreseeable within the various modal study areas covered in the Existing Conditions section.

The following sections describe the No Action alternative improvements located within the study area including the planned developments and planned roadway improvements.

Planned Developments

Based on the M-NCPPC scoping form (Attachment A), the No Action Alternative includes 3 planned developments that are reasonably foreseeable to be completed by 2029. In addition, one other planned development was announced after the M-NCPPC scoping form was agreed, reflecting an increase of employees at the USDA facility located on Sunnyside Avenue. Collectively, these four planned developments create a conservative background vehicle trip forecast.

These developments range in size, scale, and function from a 354-unit multifamily residential building, to multiple-building, multiple-phased mixed-use projects with commercial and residential uses, and the relocation of 1,065 USDA employees. Most of the planned developments are located south and west of the project area near Cherrywood Lane and Sunnyside Avenue. The numbers beside each project description correspond to the location of the project on **Figure 5-1**. Planned developments include the following:

- 1) Greenbelt Town Center at Beltway Plaza is a phased redevelopment of the shopping center site in the northeastern quadrant of the MD 193 (Greenbelt Road) intersection with Cherrywood Lane that will result in a mixed-use project with neighborhood-oriented, pad site, and destination retail; multifamily housing and townhomes; and a new grid of internal street connections via MD 193 (Greenbelt Road), Cherrywood Lane, and Breezewood Drive. The site was the subject of a conceptual site plan (CSP) in 2006 (CSP-05007); the Prince George's County Planning Board approved an updated CSP (CSP-18010) in March 2019. Whereas the existing Beltway Plaza site has a total of 800,000 square feet (SF) of shopping center space, the approved redevelopment will consist of 700,000 SF of shopping center space, 250 townhouses, and 2,250 multifamily housing units (M-NCPPC n.d.a). The timeline for construction was not known at the time of this study.
- 2) Greenbelt Station North Core is a mixed-use development adjacent to the Greenbelt Metro Station that was the subject of CSP-01008 approved in 2006. The North Core development program includes 1,100,000 SF of retail space, 1,200,000 SF of office space, a 300-room hotel, and 1,267 multifamily residential dwelling units (M-NCPPC n.d.a). North Core's proximity and immediate access to the Green Line of Metrorail, Maryland Rail Commuter (MARC) commuter rail, and several local bus routes increase the likelihood of site trips that would be taken by transit as

opposed to by private automobile. The site plan includes a grid of internal street connections that will permit synergistic interactions between the various land uses and further limit the number of external vehicle trips to the public network. Access to the public roadway network will be provided from a new connector road that links MD 193 (Greenbelt Road) with I-95 (Capital Beltway). The current interchange at the Capital Beltway by the Greenbelt Metro Station will be reconfigured to improve vehicular circulation to and from the site. Access will also occur from Cherrywood Lane. The timeline for construction of North Core was not known at the time of this study.

- 3) Greenbelt Metro (6400 Cherrywood Lane) is a 354-unit multifamily residential apartment building to be developed on a triangular area of land composed of three parcels located on the north side of Cherrywood Lane. Access to the site is proposed from the north side of Cherrywood Lane opposite Ivy Lane. The project is the subject of a Preliminary Plan of Subdivision case #4-19010 that was approved by the Prince George's County Planning Board on October 10, 2019 (M-NCPPC n.d.a). The timeline for construction was not known at the time of this study.
- 4) U.S.D.A Consolidation (George Washington Carver Center) is an effort as part of the OneNeighborhood initiative for USDA in the NCR that includes the relocation of 1,065 employees to vacant office space that currently exists in the GWCC at 5601 Sunnyside Avenue (Censky 2019). This proposed relocation was not discussed in the scope of work with M-NCPPC, and it is not known if an EIS has been performed to assess the impact of this substantial increase in jobs on the local area. As such, the inclusion of this project, for the purpose of evaluating a No Action Alternative, should be considered conservative.

Figure 5-1: No Action Alternative Planned Developments

Planned Roadway Improvements

There are no new planned roadway improvements that would result in roadway capacity improvements. The only project in the study area is the ongoing work to reconstruct the bridge along Sunnyside Avenue.

No Action Alternative Trip Generation and Modal Split

Trip generation represents the magnitude of person trips generated by the various background planned developments, organized by time period. Office and residential land uses tend to generate the most trips during the AM and PM rush periods when employees commute between their homes and place of work. Retail land use tends to generate the most trips during the afternoon and evening rush and weekend afternoons, indicative of the times when most people frequent shopping centers, strip malls, wholesale centers, and regional malls.

The process to add trips generated by each development to the No Action Alternative followed the M-NCPPC/Prince George's County guidelines and used the County's prescribed trip generation formulas (M-NCPPC 2012c). Depending on the type of development and size, the trip generation either relied on the Prince George's County trip rates or Institute of Transportation Engineers (ITE) 9th Edition of the *Trip Generation Manual* trip rates. Prince George's County supplies trip rates for a number of typical land uses, such as office and residential. In a sensitivity analysis prepared in response to requests for further analysis from reviewing agencies (see Appendix I), the ITE 10th Edition *Trip Generation Manual* trip rates were used. In addition, the sensitivity analysis includes an alternate development program for the Greenbelt Town Center at Beltway Plaza where the residential component is assumed to comprise 2,500 multifamily housing units and no townhouses, compared with the 2,250 multifamily housing units and 250 townhouses assumed in this study.

After establishing the proper trip rates, the Project Team (A/E) followed the internal capture procedures outlined in National Cooperative Highway Research Program (NCHRP) 684 to account for existing trips where individuals would choose to walk, rather than drive, between nearby land uses (TRB 2011). The NCHRP process relies on capture rates between specific land uses. This procedure is endorsed as the preferred procedure for handling internal capture by the ITE's *Proposed Trip Generation Handbook*, Third Edition (ITE 2014). Two planned developments required this procedure to reflect the mixed use. The Project Team also followed the M-NCPPC/Prince George's County guidelines to account for pass-by trips (M-NCPPC 2012c), which represent existing trips that include a stop at a retail use along their route and continue on their way following the stop. For example, a person may stop at the dry cleaners or a take-out restaurant on his or her way home from work. According to the M-NCPPC/Prince George's County guidelines, the smaller the retail space, the higher the percentage of pass-by trips assigned. Two planned developments required this procedure.

M-NCPPC/Prince George's County procedures allow for a transit credit to be applied for developments near transit. This credit, with a permitted maximum of 20%, would be applied to the trip generation, thus reducing the forecasted vehicle trips and assigning them as transit trips. The North Core Greenbelt Station development is planned to be situated next to the Greenbelt Metro Station; therefore, a previous study's guidelines were followed (Renard Development Company 2014). Based on the study, Maryland SHA guidance forecast that the office would have a 25% transit share, retail would have a 25% transit share, residential would have a 30% transit share, and the hotel would have a 25% transit share. With the modernization of the GWCC as part of the USDA consolidation, it is anticipated that a USDA shuttle

for employees of the agency will transport riders between the Greenbelt Metro Station and the GWCC. An EIS for the USDA consolidation has not been completed, but for purposes of this analysis, a 10% transit share is assumed based on provision of a shuttle.

The four planned developments would add 3,770 trips during the AM peak hour of the adjacent street and 4,113 trips during the PM peak hour of the adjacent street. These trips were reduced from the peak hour of the adjacent street volume to match this study's peak hour of analysis, which differs from the regional roadway system peak hour, since the commuting patterns to the proposed BEP facility do not align with the regional peak hour standards. To calculate an appropriate diurnally adjustment or trip reduction, the ATR volumes were evaluated, and the AM peak trips were reduced by 25.1% and the PM peak trips were reduced by 12.9%. **Figure 5-2** contains the AM and PM study peak hour vehicle trips generated.

PROJECT	UNITS/SIZE/	AM	PEAK	HOUR S	PM PEAK HOUR TRIPS		
	CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
North Core (West side of Greenbelt Station	Parkway)						
General Office (ITE – 710) ^a	1,200,000 sf	1,229	168	1,397	242	1,180	1,422
Internal Capture Trips (following NCHRP 684							
Tables)		-97	-47	-144	-42	-135	-177
Net External Trips		1,132	121	1,253	200	1,045	1,245
Transit Credit (following Maryland							~
Jurisdiction Guidance)	25% credit	-283	-30	-313	-50	-261	-311
Net External Vehicle Trips		849	91	940	150	784	934
		-213	-23	-236	-19	-101	-120
Net External Diurnally-Adjusted Vehicle Trips	4 400 000	636	68	704	131	683	814
Snopping Center ($IIE - 820$)	1,100,000 st	417	256	673	1,434	1,553	2,987
Internal Capture Trips (Ioliowing NCHRP 684		61	50	110	244	074	E1E
Not External Trino		-01	-52	-115	-241	-274	-010
Transit Cradit (following Manyland		350	204	500	1,195	1,279	2,472
	25% credit	-80	-51	-140	-298	-320	-618
Net External Vehicle Trins	2070 01001	267	153	420	895	959	1 854
Pass-by Trips (reduction based on overall		201	100	720	000	000	1,004
retail development) ^d	20% pass-by	-42	-42	-84	-186	-185	-371
Net External Vehicle and Pass-by Trips	,	225	111	336	709	774	1,483
Diurnal Adjustment ^c		-56	-28	-84	-91	-100	-191
Net External Diurnally-Adjusted Vehicle Trips		169	83	252	618	674	1,292
Apartments (Prince George's County							
Guidance)	1,267 units	127	532	659	494	266	760
Internal Capture Trips (following NCHRP 684							
Tables)		-3	-16	-19	-247	-130	-377
Net External Trips		124	516	640	247	136	383
Transit Credit (following Maryland	0.00/		4.5.5	100	- 4		
Jurisdiction Guidance)	30% credit	-37	-155	-192	-/4	-41	-115
Net External Vehicle Trips		87	361	448	1/3	95	268
Diurnal Adjustment [~]		-22	-91	-113	-22	-12	-34
	200 ******	05	270	335	151	83	234
Hotel (ITE - 310)	300 rooms	94	60	159	92	88	180
		0	16	46	24	11	20
Net External Trips		0/ 0/	-40	-40	-24	-14	-30
Transit Credit (following Maryland		34	13	115	00	17	142
Jurisdiction Guidance) ^b	25% credit	-24	-5	-29	-17	-19	-36
Net External Vehicle Trips	20% orodit	70	14	84	51	55	106
Diurnal Adiustment ^c		-18	-4	-22	-7	-7	-14
Net External Diurnally-Adjusted Vehicle Trips		52	10	62	44	48	92
TOTAL VEHICLE TRIPS		922	431	1,353	944	1,488	2,432

^a Per Prince George's County Guidance, ITE followed for developments exceeding 108,000 square feet

^b Maryland SHA, MNCPPC, Prince George's County, WMATA, and City of Greenbelt ^c Diurnal adjustment based on the total ATR volumes assembled for the 6:00-7:00 AM hour as a percentage of the total ATR volumes assembled for the 8:00-9:00 AM hour; and the 3:00-4:00 PM hour as a percentage of the total ATR volumes assembled for the 5:00-6:00 PM hour. Approximately a 25% reduction is applied to AM and a 13% reduction is applied to PM.

^d Per Prince George's County Guidance, a 20% pass-by trip reduction is applied for shopping centers exceeding 600,000 square feet

PROJECT	UNITS/SIZE/	AM PEAK HOUR TRIPS			PM PEAK HOUR TRIPS			
TROLOT	CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL	
Greenbelt Town Center at Beltway Plaza		<u> </u>	•				<u> </u>	
Existing Shopping Center (to be removed) (ITE – 820)	800,000 sf	343	211	554	1,158	1,255	2,413	
Pass-by Trips ^d Net External and Pass-by Trips Diurnal Adjustment ^c Net External Diurnally-Adjusted Vehicle Trips	20% pass- by	-56 287 -72 215	-55 156 -39 117	-111 443 -111 332	-242 916 -118 798	-241 1,014 -131 883	-483 1,930 -249 1.681	
Approved Shopping Center (to be added) (ITE – 820)	700,000 sf	317	194	511	1,059	1,148	2,207	
Internal Capture Trips (following NCHRP 684 Tables) Net External Trips	20% pass-	-11 306	-5 189	-16 495	-106 953	-299 849	-405 1,802	
Pass-by Trips ^d Net External and Pass-by Trips Diurnal Adjustment ^c Net External Diurnally-Adjusted Vehicle Trips	by	-50 256 -64 192	-49 140 -35 105	-99 396 -99 297	-180 773 -100 673	-180 669 -86 583	-360 1,442 -186 1,256	
Apartments (Prince George's County Guidance) Internal Capture Trips (following NCHRP 684	2,250 units	225	945	1,170	878	473	1,351	
Net External Trips Diurnal Adjustment ^o		-4 221 -55	-10 935 -235	-14 1,156 -290	-260 618 -80	-92 381 -49	-352 999 -129	
Townhouses (Prince George's County Guidance) Internal Capture Trips (following NCHRP 684	250 units	166 35	140	175	130	70	200	
Tables) Net External Trips Diurnal Adjustment ^o Net External Diurnally-Adjusted Vehicle Trips		-1 34 -9 25	-1 139 -35 104	-2 173 -44 129	-39 91 -12 79	-14 56 -7 49	-53 147 -19 128	
^c Diurnal adjustment based on the total ATR volumes assembled for the 6:00-7:00 AM hour as a percentage of the total ATR volumes assembled for the 8:00-9:00 AM hour; and the 3:00-4:00 PM hour as a percentage of the total ATR volumes assembled for the 5:00-6:00 PM hour. Approximately a 25% reduction is applied to AM and a 13% reduction is applied to PM.								
square feet								
Apartments (Prince George's County Guidance)	354 units	35	149	184	138	74	212	
Diurnal Adjustment ^c	004 01113	-9 26	-37	-46	-18	-10	-28	
		20 26	112	138	120 120	64 64	184	
[°] Diurnal adjustment based on the total ATR volumes assembled for for the 8:00-9:00 AM hour; and the 3:00-4:00 PM hour as a percent Approximately a 25% reduction is applied to AM and a 13% reduction	or the 6:00-7:00 AM tage of the total ATF ton is applied to PM	hour as R volum	a percen es assem	tage of the to bled for the s	otal ATR v 5:00-6:00	olumes as PM hour.	sembled	

Figure 5-2: Planned Developments Trip Generation Summary (continued)

Figure 5-2: Planned Developments Trip Generation Summary (continued)

DRO JECT	UNITS/SIZE/	AM PE	AK HOUI	R TRIPS	PM PE	AK HOUF	R TRIPS
PROJECT	CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
USDA GWCC Modernization							
	1,065						
Single-Tenant Office (ITE – 715)	employees	490	61	551	75	428	503
Transit Credit (USDA shuttle to Greenbelt							
Station)	10% credit	-49	-6	-55	-8	-43	-51
External Vehicle Trips		441	55	496	67	385	452
Diurnal Adjustment ^c		-111	-14	-125	-9	-50	-59
Net External Diurnally-Adjusted Vehicle							
Trips		330	41	371	58	335	393
TOTAL VEHICLE TRIPS 330 41 371 58 335					393		
^c Diurnal adjustment based on the total ATR volumes assembled for the 6:00-7:00 AM hour as a percentage of the total ATR volumes assembled							
for the 8:00-9:00 AM hour; and the 3:00-4:00 PM hour as	a percentage of the	e total ATR	volumes ass	sembled for t	ne 5:00-6:00) PM hour.	
Approximately a 25% reduction is applied to Alvi and a 1.	5% reduction is app	ned to Pivi.					

No Action Alternative Trip Distribution

Trip distribution represents the origin-destination pattern by percentage for vehicle trips generated by each planned development to and from points beyond the study area boundary. In some cases, planned developments would be located just outside the study area; therefore, the only vehicle trips included were trips that would travel through the study area intersections. Given the location of the study area, the distribution includes the primary arterials of Edmonston Road/Kenilworth Avenue and Powder Mill Road with trips entering the study area from Cherrywood Lane and Sunnyside Avenue.

The Project Team (A/E) developed trip distributions by either following previous studies (in the case of the Greenbelt Station North Core development) or estimating future traffic patterns based on the existing traffic pattern for the other three planned developments. **Figure 5-3** contains a summary of the planned development trip distribution. The distributions for each planned development total less than 100% because only a portion of trips for each development would occur in the study area.

Figure 5-3: Planned Development Trip Distribution

	North Core		Graanhalt		
Origin-Destination	Residential and Office	Retail	Town Center	Greenbelt Metro	USDA GWCC
MD 201 north via Sunnyside Avenue	-	-	-	-	25%
MD 201 south via Sunnyside Avenue	-	-	-	-	25%
MD 201 north via Cherrywood Lane	7.5%	12.5%	20%	20%	-
MD 201 south via Cherrywood Lane	7.5%	12.5%	-	70%	-
MD 201 south via I-95 (Capital Beltway) from the west	-	-	20%	-	-
MD 201 south via I-95 (Capital Beltway) from the east	-	-	20%	-	-

No Action Alternative Background Growth

Six years of Maryland SHA traffic counts were compared to develop a background growth rate for the study area. Traffic volumes from MD 201 – south of Sunnyside Avenue, MD 201 – north of Sunnyside Avenue, and Powder Mill Road between MD 201 and Baltimore-Washington Parkway were compared. Based in the comparison, the average yearly growth rate was 1.2%. **Figure 5-4** presents six years of traffic volumes and **Figure 5-5** presents the yearly growth comparison.

rigure 5-4. Six rears of frame volumes	Figure	5-4:	Six	Years	of	Traffic	Volumes
--	--------	------	-----	-------	----	---------	---------

Functional	Street	Traffic Volumes						
Class	Officer	2013	2014	2015	2016	2017	2018	
Minor Arterial	MD 201 – South of Sunnyside	32,821	32,722	36,330	34,601	35,432	35,860	
Minor Arterial	MD 201- North of Sunnyside	24,331	24,262	26,643	25,374	25,985	23,490	
Minor Arterial	Powder Mill Road	10,861	10,832	11,893	11,324	11,605	11,960	

Source: Maryland SHA: 2018

Figure 5-5: Yearly Growth Comparison

Functional Class	Street	Avg. 2013- 2014	Avg. 2014- 2015	Avg. 2015- 2016	Avg. 2016- 2017	Avg. 2017- 2018	Avg. 2011- 2018
Minor Arterial	MD 201 - South of Sunnyside	-0.3%	11.0%	-4.8%	2.4%	1.2%	1.9%
Minor Arterial	MD 201- North of Sunnyside	-0.3%	9.8%	-4.8%	2.4%	-9.6%	-0.5%
Minor Arterial	Powder Mill Road	-0.3%	9.8%	-4.8%	2.5%	3.1%	2.1%
Overall Yearly Growth Average							1.2%

No Action Alternative Forecasted Traffic Volumes

The vehicle trips from the M-NCPPC-approved planned developments, background growth, and existing conditions are combined to create the No Action Alternative turning movement volumes covering the study area intersections. The traffic signal timings along Edmonston Road/Kenilworth Avenue and Powder Mill Road were optimized. This would reflect that Maryland SHA and/or Prince George's County Department of Public Works and Transportation (DPW&T) would most likely perform these upgrades over the next ten years. Within the traffic model software, the traffic signal timing splits and offsets were optimized to most efficiently process the future No Action Alternative forecasted traffic volumes. Performing the optimization process would improve the operations at some of the intersections compared to existing conditions, such as Soil Conservation Road and Powder Mill Road (Intersection #15). **Figure 5-6** shows additional trips forecasted to be generated from regional growth, **Figure 5-7** shows the total planned development AM and PM turning movement volumes, and **Figure 5-8** shows the No Action Alternative AM and PM peak hour turning movement volumes.

Figure 5-6A: Regional Growth Turning Movements – Map 1

Figure 5-6B: Regional Growth Turning Movements – Map 2

Figure 5-7A: Planned Background Development Turning Movements – Map 1

Figure 5-7B: Planned Background Development Turning Movements – Map 2

Figure 5-8A: AM and PM BEP Peak Hour No Action Alternative Traffic Volumes – Map 1

Figure 5-8B: AM and PM BEP Peak Hour No Action Alternative Traffic Volumes – Map 2

B Development of Action Alternative

This section describes the Action Alternative. BEP would construct a new facility at Beltsville with its main driveway access from Powder Mill Road near the existing intersection with Poultry Road. The new facility would employ 1,427 workers who would move from the existing facility in Washington DC. The following sections describe the process to calculate the number of future vehicle trips that would be produced by the Action Alternative.

Action Alternative Trip Generation

The proposed site would employ 1,427 production and administrative staff. The production staff would be present during their shift hours. Administrative staff would be present during the daytime shift and are expected to arrive in a similar pattern as a typical government office. **Figure 5-9** contains a breakdown of number of employees by time of day.

Shift	Total Employees	Production Staff	Administrative Staff	Shift Hours
Day	1,138	884	254	6:30 AM–3:00 PM
Evening	168	168		2:30 PM-11:00 PM
Midnight	166	166		10:30 PM–7:00 AM
TOTAL	1,472	1,218	254	

Figure 5-9: Total Trips Generated

The *ITE Trip Generation Manual* 9th Edition was referenced to provide guidance regarding the number of administration employees who would arrive during the shift peak hour and external roadway peak hour. The ITE Land Use Code 715 (Single Tenant Office Building) provided the best match to the proposed facility because it closely matches the proposed land use and has been studied more than 35 times by ITE (ITE 2012). The resultant trips calculated by the ITE manual were subtracted from the total administrative trips to estimate the number of administrative trips that would occur between 6:00 AM and 8:00 AM and 3:00 PM and 5:00 PM. These values were then divided by two to estimate the number of administrative trips and afternoon shift peak hour. Administrative trips were assumed to be all inbound during the BEP AM peak hour and all outbound during the BEP PM peak hour as a worst-case scenario. **Figure 5-10** presents the administrative trip pattern.

Figure	5-10:	Administrative	Arrival	Pattern
iguic	0 10.	Administrative	/u	/ accorri

	Arrivals Outside of Shift Peak Hour (ITE Calculated)		Arrivals During Shift Peak Hour (254 staff minus ITE calculated value/2)		
	AM	PM	AM	PM	
Daytime Staff	135*	130**	60	62	

* ITE Land Use Code 715 (0.53 X 254 administrative staff)

** ITE Land Use Code 715 (0.51 X 254 administrative staff)

The trips of the production staff and administrative employees who would arrive during the same AM and PM peak hours were combined, resulting in 944 and 946 peak hour trips, respectively. The total administrative employee trips generated during the external roadway AM and PM peak hour would be 135 and 130, respectively. **Figure 5-11** presents the results.

Figure	5-11:	Total	Trips	Generated
iguic	0-11.	<i>i</i> otur	inp3	Ocheratea

	Peak Arrival Time	AM	Peak Departure Time	РМ
Shift Peak Hour	6:00 – 7:00 AM	944	3:00 – 4:00 PM	946
Roadway System Peak Hour	7:45 – 8:45 AM	135	5:00 – 6:00 PM	130

Based on the M-NCPPC scoping form, the study assumes the shift peak hour is the worst-case scenario in terms of trips generated and assess this impact for the study area intersections.

Action Alternative Parking and Modal Split

NCPC recommends that federal agencies located beyond 2,000 feet from a Metro station provide a parking ratio of one space per every two employees. Visitor and government vehicle parking spaces are exempt from the NCPC parking ratio. The new facility is expected to employ 1,138 daytime employees. The Project Team (A/E) recommends two parking ratios to cover BEP employees depending on the staff type as follows:

- All production staff would follow a 1:1 parking ratio
- All administrative staff would follow a 1:2 parking ratio

Figure 5-12 details how the 1,179 parking spaces, would be categorized.

Figure 5-12: Categorized Parking Spaces

Employee	Number of Parking Spaces	Parking Ratio
Daytime Production Staff	884	1:1
Daytime Administrative Staff	127	1:2
Overlap of Other Shifts	168	1:1

The recommended 1:1 parking ratio for production staff is based on several factors, including impact to the BEP mission, transit availability, and union agreements:

 <u>BEP MISSION</u>: As noted in the April 2018 Government Accountability Office report titled *Options* for and Costs of a Future Currency Production Facility, "The BEP is not an ordinary government agency requiring an ordinary government building. The BEP is a manufacturing facility – a printing plant – which produces an iconic commodity trusted worldwide." As such, BEP employees are not typical government employees who have wide latitude on work center arrival and departure times.
BEP production and production support employees must be at their respective work center at specific times or the BEP production process comes to a halt.

There is approximately a 30-minute overlap of production staff employees to ensure continuity of printing press operations. Production presses cannot be taken off-line in order to facilitate a shift change, because the resulting shut down/restart process will significantly increase product spoilage and production costs. As such, BEP requires enough parking spaces to accommodate both the out-going and in-coming production and production support workers.

BEP has agreements with a number of unions that represent the production workers. These agreements include the start and end of shift times.

2. <u>METRORAIL TRANSIT AVAILABILITY:</u> Access to BEP by Metrorail would require employees to ride the Metro Green or Yellow Line to Greenbelt Metro Station, transfer to a USDA shuttle bus that would drop them off at the pedestrian gate entrance, and then they would have a short walk to the BEP building entrance. For BEP production staff to arrive in time for the daytime shift, they must board a 6:00 AM USDA shuttle bus at the Greenbelt Station. Only the first Green Line or Yellow Line train on weekdays is scheduled to arrive before 6 AM (5:51 and 5:53 AM) at Greenbelt Station (WMATA 2019). The USDA shuttle bus will take 10-12 minute to drive to the BEP security gate. After departing the bus, an additional 15-20 minutes must be allocated to cover the time for employees to pass through site security and change into BEP provided uniforms before starting their shift.

For employees arriving for the 6:30 AM shift, the Metrorail schedule creates a single point of mission failure given that there is only one train arriving on each line that could meet the 6:00 AM USDA shuttlebus. It could endanger the mission to assume all employees will successfully catch one of these trains and that the trains will operate on time each weekday of the year.

While the current BEP staff modal split for public transportation is 44%, this is due to the proximity of BEP to the center of the Metrorail hub and spoke system and a station is located within a five-minute walk. The 44% represents the percentage of all BEP employees and may represent a majority of administrative workers who have the flexibility to arrive between 6:00 and 9:00 AM each weekday.

Figure 5-14 presents the distribution of employees' residences by zip code and reveals that a sizable number of employees live in southeastern Prince George's County, Charles County, and Stafford County (VA), well outside the limits of WMATA's Metrorail lines.

- 3. <u>METROBUS TRANSIT AVAILABILITY:</u> One Metrobus route serves the BEP facility (Route 87), but an employee would need to reside in Laurel, MD to access the bus (less than 20 current employees live in Laurel).
- MARC TRANSIT AVAILABILITY: The first MARC Train from Baltimore to Greenbelt Station could meet the USDA 6:00 AM shuttle departure, but shift staff ending their shift at 3:00 PM would have to wait 2 hours before they could board a train home (MDOT, 2019).

MARC Trains from Washington, DC, in the morning do not arrive until after the start of the daytime shift.

5. <u>CARPOOL OPTION</u>: Carpools could help to offer production staff another transportation option. The MWCOG 2016 State of the Commute indicated that 5.4% of commuters carpool on a daily basis and up 7% carpooled when traveling to work less than 5 days per week (MWCOG 2016). Based on a comparison of the federal facilities in the national capital region, the highest percent of commuters that traveled in a carpool did not exceed 12% These values are presented in **Figure 5-13**.

Figure 5-13: Comparison of Carpool Percentages among DC-area Federal Facilities

Federal Facility	Percent that Carpooled
2013 NSA Bethesda TMP	11.3%
2014 JBAB TMP	10.5%
2015 NRL TMP	5.5%
2013 Carderock TMP	10.7%
2014 Naval Observatory TMP	7.6%
2013 NSF Arlington TMP	9.0%
2015 Navy Yard TMP	10.2%

Source: Transportation Management Plans prepared for NAVFAC by Louis Berger

Figure 5-14: Distribution of Employee Zip Codes

Based on this analysis, 1,179 parking spaces would be needed to accommodate daytime employees (1,011) and the maximum number of staff from the evening or overnight shifts (168).

Based on the M-NCPPC scoping form, about 10% of administrative employees (equivalent to 2% of all daytime employees) would carpool. Assuming a 3-person per vehicle occupancy for carpools, carpoolers would require 8 parking spaces, leaving 1,003 parking spaces for SOVs. This would result in SOVs representing 47% of administrative employees (equivalent to 88% of all daytime employees). The remaining 10% would represent those who would opt to take transit or use a bicycle to commute. Because of the site location, no employees are expected to commute by walking. **Figure 5-15** presents the proposed modal splits.

Travel Mode	Percent	Persons	Vehicles
SOV	88%	1,003	1,003
Carpool	2%	23	8
Transit	9%	100	N/A
Bicycle	1%	11	N/A
TOTAL	100%	1,138	1,011

Figure 5-15: Proposed BEP Modal Split

Alternative Trip Distribution

The TIS relied on two methods to develop trip distribution patterns for BEP employees. Zip codes for existing employees were used to develop a trip distribution. Based on the zip code database and time of day representing the employee peak hour, employee trips were assigned to the major freeways (e.g., the BW Parkway or Capital Beltway) to travel to the proposed site. The employee survey administered in September 2019 was also evaluated to develop a trip distribution. The survey indicated that many employees would travel on several alternative routes, including Sunnyside Avenue and Powder Mill Road, east of the BW Parkway.

The TIS relied on an average of both methods to capture a combination of freeway use and alternative route options. Because most of the employees live in Prince George's County and southern Maryland, the current residence of the employees is not expected to change as a result of a change in their job site location. Based on the zip codes, most of the employees would arrive from south and west of the proposed site. **Figure 5-16** contains the Action Alternative trip distribution, **Figure 5-17** contains the vehicle trips by route, and **Figure 5-18** illustrates the Action Alternative trip distribution.

Figure 5-16: Proposed BEP Trip Distribution

Route	Zip Code	Survey Results	Average
I-95 (Capital Beltway) from the West	22.5%	2.0%	12%
I-95 (Capital Beltway) from the East	31.5%	17%	24%
Baltimore-Washington Parkway from the South	32.0%	28%	30%
Baltimore-Washington Parkway from the North	9.5%	6%	8%
Powder Mill Road from the West	0.5%	15%	8%
Powder Mill Road from the East	0.5%	9%	5%
MD 201 (Edmonston Road) from the North	1.5%	7%	4%
Sunnyside Avenue from the West	0.0%	14%	7%
MD 201 from the south	2.0%	2%	2%
TOTAL	100%	100%	100%

Figure 5-17: Proposed BEP Vehicle Trip Generation by Route

Route	Trip Distribution	AM Trips	PM Trips
I-95 (Capital Beltway) from the West	12%	102	102
I-95 (Capital Beltway) from the East	24%	204	204
Baltimore-Washington Parkway from the South	30%	255	255
Baltimore-Washington Parkway from the North	8%	68	68
Powder Mill Road from the West	8%	68	68
Powder Mill Road from the East	5%	42	43
MD 201 (Edmonston Road) from the North	4%	34	34
Sunnyside Avenue from the West	7%	60	60
MD 201 from the south	2%	17	17
TOTAL (88% of total trip generation)	100%	850	851

Figure 5-18: Proposed BEP Trip Distribution Map

Action Alternative Forecasted Traffic Volumes

Vehicle trips generated from the Action Alternative and the No Action Alternative were combined to create the Action Alternative turning movement volumes covering the study area intersections. **Figure 5-19** shows the AM and PM peak hour Action Alternative vehicle trip generation. **Figure 5-20** shows the proposed BEP site AM and PM peak hour turning movement volumes, and **Figure 5-21** shows the Action Alternative AM and PM peak hour turning movement volumes.

Figure 5-19: BEP Vehicle Trip Generation Summary

PROJECT	UNITS/SIZE/	A	M PEAM TRIF	(HOUR PS		PM PEA TR	k hour IPs
	CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
Bureau of Engraving and Printing							
Single-Tenant Office (ITE – 715)	254 administrative staff	135	0	135	0	130	130
Arrivals and Departures During Shift Peak Hour		60	0	60	0	62	62
	884 production staff	884	0	884	0	884	884
External Trips		944	0	944	0	946	946
Transit/Bicycle Credit (includes USDA shuttle to Greenbelt Station)	10% credit	-94	0	-94	0	-95	-95
External Vehicle Trips		850	0	850	0	851	851
TOTAL VEHICLE TRIPS		850	0	850	0	851	851

Figure 5-20A: Proposed BEP Site Turning Movements – Map 1

Figure 5-20B: Proposed BEP Site Turning Movements – Map 2

Figure 5-21A: AM and PM BEP Peak Hour Action Alternative Traffic Volumes – Map 1

Figure 5-21B: AM and PM BEP Peak Hour Action Alternative Traffic Volumes – Map 2

C Traffic Analysis

Intersection Operations Comparison (CLV and HCM)

The Project Team (A/E) used Synchro[™] to calculate the vehicle delay and LOS operation based on the HCM 6th Edition method for each study area intersection, except for the MD 201 intersections with Ivy Lane and Sunnyside Avenue. The HCM 2000 method was applied for the MD 201 intersections with Ivy Lane and Sunnyside Avenue, because, as noted previously, the HCM 6th Edition method has limitations regarding special pedestrian or hold phases or the assignment of phases that do not follow the NEMA requirements.

Based on the Synchro[™] and CLV Excel-based worksheet analysis, most study intersections would operate at acceptable overall conditions during the AM and PM peak hours of the Action Alternative. However, the following signalized intersections in the study area would operate with overall unacceptable conditions (LOS E or LOS F) using the HCM 6th Edition or HCM 2000 method (average control delay exceeds 35 seconds per vehicle) or LOS C using the CLV method (CLV greater than 1,300):

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) during the AM and PM peak hours
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) during the PM peak hour

Compared with the No Action Alternative, the MD 201 (Edmonston Road)/Sunnyside Avenue would continue to experience an overall LOS F, but with greater delays during the AM and PM peak hours. At the MD 201 (Edmonston Road)/Powder Mill Road intersection, the PM peak hour shows a degradation from LOS D to LOS F.

Unsignalized intersection analysis requires a two-step test following the M-NCPPC Transportation Review Guidelines. If the minor approach, which is generally defined as the street of an intersection that has a lower volume relative to its cross street, has more than 100 vehicles per hour (Step 1), then proceed to Step 2 to model the intersection using CLV. If the CLV equals or exceeds 1,150, the intersection requires roadway improvements. Using the HCM 6th Edition method, all seven unsignalized intersections have lane groups and/or approaches that would operate under unacceptable conditions (LOS E or LOS F) during the morning or afternoon peak hours of the Action Alternative, including the following:

- MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7)
 - Westbound Beaver Dam Road during the AM and PM peak hours would operate at LOS F and experience worse delays in the Action Alternative than in the No Action Alternative.
 - However, the peak hour volumes for the minor approach are less than 100 vehicles, thus the intersection is deemed to be operating acceptably and no further analysis is required.
- MD 201 (Edmonston Road)/Odell Road (Intersection #9)
 - Eastbound Odell Road during the AM and PM peak hours would operate at LOS F and experience worse delays in the Action Alternative than in the No Action Alternative.

- Westbound Odell Road during the AM peak hour would operate at LOS E and experience worse delay under the Action Alternative than under the No Action Alternative.
- Westbound shared through-right lane of Odell Road during the AM peak hour.
- However, peak hour volumes for the minor approaches are less than 100 vehicles, thus the intersection is deemed to be operating acceptably and no further analysis is required.
- Powder Mill Road/Poultry Road (Intersection #10)
 - Eastbound Powder Mill Road during the AM and PM peak hours. The AM peak hour would degrade from LOS A during the No Action Alternative to LOS F under the Action Alternative. During the PM peak hour, the eastbound approach would experience LOS F, but with worse delays under the Action Alternative compared to the No Action Alternative.
 - Westbound Powder Mill Road during the AM peak hour, degrading from LOS B under the No Action Alternative to LOS F under the Action Alternative.
 - Southbound Poultry Road during the PM peak hour, degrading from LOS A under the No Action Alternative to LOS F under the Action Alternative.
 - The peak hour volumes for the minor approaches are greater than 100 vehicles, triggering a review of the intersection with the CLV method. The intersection has an AM peak hour CLV of 1,631 and a PM peak hour CLV of 1,611, exceeding the 1,150 CLV threshold that triggers further analysis. Since the intersection will operate as the site driveway, improvements to its operation will be part of the site design process and not as a mitigation measure.
- Powder Mill Road/Research Road (Intersection #11)
 - Northbound Research Road during the PM peak hour would degrade from LOS C under the No Action Alternative to LOS E under the Action Alternative.
 - However, the peak hour volumes for the minor approaches are less than 100 vehicles, thus the intersection is deemed to be operating acceptably and no further analysis is required.
- Powder Mill Road/Springfield Road (Intersection #12)
 - During the AM peak hour, the southbound approach would degrade from LOS D to LOS F.
 During the PM peak hour, the LOS F delays under the No Action Alternative would be longer than the delays under the Action Alternative.
 - The peak hour volumes for the minor approaches are greater than 100 vehicles, triggering a review of the intersection with the CLV method. The intersection has an AM peak hour CLV of 1,059 and a PM peak hour CLV of 1,270, exceeding the 1,150 CLV threshold that triggers further analysis.
 - The intersection is in a priority preservation area and within the jurisdiction of USDA and NPS. To limit the impact to forest conservation and natural visibility, the goal of mitigation will be to improve its overall LOS to an acceptable operation based on HCM method and not CLV.
- Powder Mill Road/MD 295 (BW Parkway) Southbound Ramps (Intersection #13)

- Southbound BW Parkway Southbound Off-Ramp during the AM and PM peak hours would operate at LOS F, but with longer delays under the Action Alternative than under the No Action Alternative.
- Southbound left turn lane of BW Parkway Southbound Off-Ramp during the AM and PM peak hours.
- The peak hour volumes for the minor approaches are greater than 100 vehicles, triggering a review of the intersection with the CLV method. The intersection has an AM peak hour CLV of 899 and a PM peak hour CLV of 1,564, exceeding the 1,150 CLV threshold that triggers further analysis.
- The intersection is in a priority preservation area and within the jurisdiction of NPS. To limit the impact to forest conservation and natural visibility, the goal of mitigation will be to improve its overall LOS to an acceptable operation based on HCM method, not the CLV method.
- Powder Mill Road/MD 295 (BW Parkway) Northbound Ramps (Intersection #14)
 - The BW Parkway northbound off-ramp during the AM and PM peak hours would degrade from LOS E under the No Action Alternative to LOS F under the Action Alternative during the AM peak hour; and would operate at LOS F during the PM peak hour under both the No Action Alternative and the Action Alternative, but with longer delays under the Action Alternative than under the No Action Alternative.
 - The northbound BW Parkway off-ramp left-turn lane would operate at LOS F during the AM and PM peak hours, but with longer delays under the Action Alternative compared with the No Action Alternative.
 - The peak hour volumes for the minor approaches are greater than 100 vehicles, triggering a review of the intersection with the CLV method. The intersection has an AM peak hour CLV of 874 and a PM peak hour CLV of 1,304, exceeding the 1,150 CLV threshold that triggers further analysis.
 - The intersection is in a priority preservation area and within the jurisdiction of NPS. To limit the impact to forest conservation and natural visibility, the goal of mitigation will be to improve its overall LOS to an acceptable operation based on HCM method and not CLV.

The CLV LOS grades for signalized intersections are depicted in **Figure 5-22** for AM and PM peak hours for the No Action Alternative. The overall signalized intersection LOS grades and worst unsignalized lane group LOS grades are depicted in **Figure 5-23** for AM and PM peak hours (HCM). **Figures 5-24** and **5-25** offer comparable depictions for the Action Alternative. **Figure 5-26** shows the results of the LOS capacity analysis and the intersection vehicle delay comparing the No Action Alternative and the Action Alternative during the AM and PM peak hours. Appendix D contains the CLV worksheets. Appendix E contains the Synchro intersection analysis results.

Figure 5-22: No Action Alternative Traffic Operations Summary – CLV Method

Figure 5-23: No Action Alternative Traffic Operations Summary – HCM Method

Figure 5-24: Action Alternative Traffic Operations Summary – CLV Method

Figure 5-25: Action Alternative Traffic Operations Summary – HCM Method

			No Action Alternative Action Alternative AM Peak Hour PM Peak Hour AM Peak Hour														n Altern	ative						
				AM F	Peak Ho	ur			PM	Peak Ho	our				AM I	Peak Ho	ur			PM F	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
1	MD 201 (Kenilworth Avenue) and	I-95 SB O	ff-Ramp	(Signaliz	ed)										•									
	EB (I-95 SB Off-Ramp)	L	0.68	49.7	D			0.69	49.7	D				0.78	47.8	D			0.69	49.7	D			
	EB Overall (I-95 SB Off-Ramp)			49.7	D				49.7	D			Pass		47.8	D				49.7	D			Pass
	NB (Kenilworth Avenue)	Т	0.36	2.6	А			0.50	3.3	А				0.38	3.8	А			0.50	3.3	А			
	NB Overall (Kenilworth Avenue)			2.6	Α				3.3	Α			Pass		3.8	Α				3.3	Α			Pass
	SB (Kenilworth Avenue)	Т	0.41	3.0	А]		0.57	4.0	А				0.43	4.2	А			0.57	4.1	А			
	SB Overall (Kenilworth Avenue)			3.0	Α				4.0	Α			Pass		4.2	Α				4.1	Α			Pass
	Overall			5.2	Α	606	Α		5.5	Α	885	Α	Pass		7.9	Α	667	Α		5.5	Α	894	Α	Pass
2	MD 201 (Kenilworth Avenue) and	I-95 NB O)ff-Ramp	(Signaliz	ed)				_						_									
	WB (I-95 NB Off-Ramp)	L	0.47	21.3	С			0.74	33.3	С				0.42	18.3	В			0.74	33.3	С			
	WB (I-95 NB Off-Ramp)	R	0.89	34.6	С]		0.83	37.8	D				1.00	52.7	F			0.83	37.8	D			
	WB Overall (I-95 SB Off-Ramp)			29.4	С]			35.5	D			Pass		40.9	D				35.5	D			Pass
	NB (Kenilworth Avenue)	Т	0.31	17.8	В]		0.37	12.4	В				0.41	21.6	С			0.37	12.4	В			
	NB Overall (Kenilworth Avenue)			17.8	В]			12.4	В			Pass		21.6	С				12.4	В			Pass
	SB (Kenilworth Avenue)	Т	0.62	22.1	С]		0.59	15.1	В				0.68	26.1	С			0.67	16.6	В			
	SB Overall (Kenilworth Avenue)			22.1	С]			15.1	В			Pass		26.1	С				16.6	В			Pass
	Overall			24.7	С	860	Α		21.3	С	969	Α	Pass		32.2	С	973	Α		21.7	С	1,051	В	Pass
3	MD 201 (Kenilworth Avenue) and	SHA Dist	rict 3/Cre	escent Ro	oad (Sig	nalized))		_				-		_									
	EB (SHA District 3)	LTR	0.04	30.6	С			0.17	31.5	С				0.04	30.6	С			0.17	31.5	С			
	EB Overall (SHA District 3)			30.6	С				31.5	С			Pass		30.6	С				31.5	С			Pass
	WB (Crescent Road)	LT	0.81	62.7	E			0.87	72.7	E				0.81	62.7	E			0.87	72.7	E			
	WB (Crescent Road)	R	0.27	31.2	С			0.26	31.2	С				0.27	31.2	С			0.26	31.2	С			
	WB Overall (Crescent Road)			50.4	D				58.0	E			Fail		50.4	D				58.0	E			Fail
	NB (Kenilworth Avenue)	L	0.73	62.9	E			0.60	62.4	E				0.73	62.9	E			0.60	62.4	E			
	NB (Kenilworth Avenue)	Т	0.58	15.4	В			0.61	19.1	В				0.73	18.2	В			0.61	19.1	В			
	NB (Kenilworth Avenue)	R	0.00	0.0	Α			0.00	0.0	А				0.00	0.0	Α			0.00	0.0	А			
	NB Overall (Kenilworth Avenue)			16.7	В				19.8	В			Pass		19.1	В				19.8	В			Pass
	SB (Kenilworth Avenue)	L	0.75	66.5	Е			0.80	56.0	Е				0.75	66.5	E			0.80	54.7	D			
	SB (Kenilworth Avenue)	TR	0.58	32.5	С			0.59	32.0	С				0.58	32.5	С			0.71	35.7	D			
	SB Overall (Kenilworth Avenue)			32.7	С				33.1	С			Pass		32.7	С				36.0	D			Pass
	Overall			26.2	С	666	Α		29.6	С	797	Α	Pass		26.6	С	785	Α		31.6	С	917	Α	Pass

							No Act	ion Alte	rnative									Actio	n Alterr	native				
				AM I	Peak Ho	ur			PM	Peak Ho	our				AM F	Peak Ho	ur			PM F	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
4	MD 201 (Kenilworth Avenue) and	lvy Lane	(Signaliz	zed) ^a																				
	EB (Ivy Lane)	R	0.14	0.2	А			0.18	0.3	А				0.14	0.2	А			0.18	0.3	А			
	EB Overall (Ivy Lane)			0.2	Α				0.3	Α			Pass		0.2	Α				0.3	Α]		Pass
	NB (Kenilworth Avenue)	L	0.45	27.4	С			0.56	23.4	С				0.45	26.0	С			0.56	23.4	С			
	NB (Kenilworth Avenue)	Т	0.45	0.4	А			0.40	0.3	А				0.56	0.5	Α			0.40	0.3	А			
	NB Overall (Kenilworth Avenue)			2.8	Α				3.6	Α			Pass		2.4	Α				3.6	Α			Pass
	SB (Kenilworth Avenue)	Т	0.53	0.7	А			0.60	1.8	Α				0.53	0.7	Α			0.73	3.4	Α			
	SB (Kenilworth Avenue)	R	0.01	0.0	А			0.01	0.3	А				0.01	0.0	А			0.01	0.2	А			
	SB Overall (Kenilworth Avenue)			0.7	Α	1			1.8	Α	1		Pass		0.7	Α				3.4	Α			Pass
	Overall			1.8	Α	652	Α		2.4	Α	906	Α	Pass		1.6	Α	652	Α		3.2	Α	1,084	В	Pass
5	MD 201 (Kenilworth Avenue/Edmo	onston R	oad) and	l Cherryw	ood Lar	ne (Signa	alized)								<u>.</u>									
	EB (Cherrywood Lane)	L	0.86	52.4	D			0.71	42.6	D				0.86	52.4	D			0.71	42.6	D			
	EB (Cherrywood Lane)	R	0.34	38.1	D			0.92	73.7	Е				0.34	38.1	D			0.92	73.7	E			
	EB Overall (Cherrywood Lane)			50.3	D				54.1	D			Pass		50.3	D				54.1	D			Pass
	NB (Kenilworth Avenue)	L	0.88	33.4	С			0.77	24.4	С				0.88	32.2	С			0.86	41.4	D			
	NB (Kenilworth Avenue)	Т	0.55	7.7	А			0.52	8.3	А				0.71	10.0	А			0.52	8.3	А			
	NB Overall (Kenilworth Avenue)			12.1	В				10.6	В			Pass		13.0	В				13.2	В			Pass
	SB (Edmonston Road)	Т	0.69	17.4	В			0.69	17.2	В				0.69	17.4	В			0.89	25.9	С			
	SB (Edmonston Road)	R	0.54	16.1	В			0.48	14.6	В				0.54	16.1	В			0.49	15.6	В			
	SB Overall (Edmonston Road)			17.0	В				16.6	В			Pass		17.0	В				23.9	С			Pass
	Overall			19.5	В	980	Α		21.2	С	1,100	В	Pass		19.2	В	980	Α		25.3	С	1,278	С	Pass
6	MD 201 (Edmonston Road) and S	unnyside	Avenue	(Signaliz	zed) ^a	•			•		•			<u> </u>		•				<u>.</u>	•			
	EB (Sunnyside Avenue)	L	1.32	297.6	F			1.36	261.8	F				2.05	605.5	F			1.36	261.8	F			
	EB (Sunnyside Avenue)	R	0.64	62.0	Е			1.12	127.0	F				0.64	62.0	E			1.17	147.4	F			
	EB Overall (Sunnyside Avenue)			126.7	F				168.8	F			Fail		263.4	F				182.8	F			Fail
	NB (Edmonston Road)	L	1.43	280.0	F			1.24	188.1	F				1.43	280.0	F			1.24	188.1	F			
	NB (Edmonston Road)	TR	0.66	4.8	А			0.90	20.9	С				0.90	15.3	В			0.90	20.9	С			
	NB Overall (Edmonston Road)			110.3	F				67.3	E			Fail		98.0	F				67.3	E			Fail
	SB (Edmonston Road)	Т	1.36	212.8	F			1.17	126.6	F				1.36	212.8	F			1.55	291.0	F			
	SB (Edmonston Road)	R	0.24	14.4	В			0.15	9.9	А				0.24	14.4	В			0.21	10.4	В			
	SB Overall (Edmonston Road)			180.5	F				109.4	F			Fail		180.5	F				249.2	F			Fail
	Overall			141.4	F	1,719	F		106.1	F	1,702	F	Fail		150.0	F	1,779	F		164.0	F	2,025	F	Fail

						I	No Acti	on Alter	native									Actio	n Altern	ative				
				AM F	Peak Ho	ur			РМ	Peak Ho	our				AM F	Peak Ho	ur			PM F	Peak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
7	MD 201 (Edmonston Road) and B	eaver Da	m Road	(TWSC)																				
	WB (Beaver Dam Road)	LR	3.38	1,753.5	F			1.69	739.6	F				18.59	Err	F			0.23	Err	F			
	WB Overall (Beaver Dam Road)			1,753.5	F				739.6	F			Fail		Err	F				Err	F			Fail
	SB (Edmonston Road)	LT	0.06	12.6	В			0.09	14.5	В				0.09	17.3	С			0.09	14.5	В			
	SB Overall (Edmonston Road)			0.2					0.4				Pass		0.3					0.3				Pass
	Overall			22.3		n/a	n/a		8.9		n/a	n/a	Pass		122.6		n/a	n/a		0.5		n/a	n/a	Fail
8	MD 201 (Edmonston Road) and P	owder Mi	ll Road (Signalized	d)				_															
	EB (Powder Mill Road)	L	0.29	58.4	E			0.69	57.3	E				0.29	58.4	E			0.81	72.6	E			
	EB (Powder Mill Road)	Т	0.31	48.2	D			0.75	55.5	E				0.50	52.9	D			0.75	55.5	E			-
	EB (Powder Mill Road)	R	0.00	0.0	0			0.00	0.0	0				0.00	0.0	А			0.00	0.0	А			
	EB Overall (Powder Mill Road)			51.7	D				56.2	E			Fail		54.2	D				62.2	E			Fail
	WB (Powder Mill Road)	L	0.73	71.8	E			0.49	46.7	D				0.91	101.3	F			2.52	755.5	F			
	WB (Powder Mill Road)	Т	0.32	40.6	D			0.27	32.7	С				0.32	40.6	D			0.37	34.8	С			
	WB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	WB Overall (Powder Mill Road)			58.0	E				37.6	D			Fail		74.4	E				514.1	F			Fail
	NB (Edmonston Road)	L	0.92	61.5	E			0.93	65.0	E				0.92	61.5	E			0.93	65.0	Е			
	NB (Edmonston Road)	Т	0.59	20.2	С			0.73	32.8	С				0.59	20.2	С			0.73	32.8	С			
	NB (Edmonston Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	NB Overall (Edmonston Road)			38.4	D			-	46.0	D			Pass		38.4	D				46.0	D			Pass
	SB (Edmonston Road)	L	0.13	39.3	D			0.49	60.5	E				0.31	44.3	D			0.49	60.5	E			-
	SB (Edmonston Road)	TR	0.87	68.8	E			0.84	73.6	E				0.87	68.8	E			0.84	73.6	E			
	SB Overall (Edmonston Road)			67.6	E				71.6	E			Fail		66.6	E				71.6	E			Fail
	Overall			51.7	D	1,080	В		54.7	D	1,225	С	Pass		54.5	D	1,117	В		164.5	F	1,608	F	Fail
9	MD 201 (Edmonston Road) and O	dell Road	I (TWSC)																				
	EB (Odell Road)	LTR	0.29	66.3	F			0.35	63.0	F				0.31	73.1	F			0.37	67.9	F			
	EB Overall (Odell Road)	•		66.3	F				63.0	F			Fail		73.1	F				67.9	F			Fail
	WB (Odell Road)	LT	0.08	48.0	E			0.03	46.0	E				0.09	50.7	F			0.04	48.4	E			
	WB (Odell Road)	R	0.00	13.8	В			0.01	13.3	В				0.00	13.8	В			0.01	13.7	В			
	WB Overall (Odell Road)	1		43.7	Е				32.9	D			Fail		46.1	E				34.5	D			Fail
	NB (Edmonston Road)	LT	0.06	9.5	А			0.04	9.9	А				0.06	9.6	А			0.04	9.9	А			
	NB Overall (Edmonston Road)	1		0.8					0.4				Pass		0.8					0.4				Pass
	SB (Edmonston Road)	LTR	-	0.0	А			0.00	9.2	А				-	0.0	А			0.00	9.3	А			
	SB Overall (Edmonston Road)			0.0					0.0				Pass		0.0					0.0				Pass
	Overall			1.8		n/a	n/a		1.6		n/a	n/a	Pass		1.8		n/a	n/a		1.7		n/a	n/a	Pass

							No Act	ion Alte	rnative									Actio	on Alter	native				
				AM F	Peak Ho	ur			PM	Peak Ho	our				AM F	Peak Ho	ur			PM P	eak Hou	ır		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
10	Powder Mill Road and Poultry Roa	ad (AWSC	C)																					
	EB (Powder Mill Road)	LT	0.25	8.9	А			1.02	59.3	F				1.06	72.8	F			1.92	283.6	F			
	EB Overall (Powder Mill Road)			8.9	Α				59.3	F			Fail		72.8	F				283.6	F			Fail
	WB (Powder Mill Road)	TR	0.51	11.3	В			0.45	11.7	В				1.09	76.1	F			0.89	29.3	D			
	WB Overall (Powder Mill Road)			11.3	В				11.7	В			Pass		76.1	F				29.3	D			Fail
	SB (Poultry Road)	LR	0.00	8.3	А			0.02	9.7	А				0.00	10.3	А			1.92	354.3	F			
	SB Overall (Poultry Road)			0.0	-				9.7	Α		T	Pass		0.0	-				354.3	F			Fail
	Overall			10.6	В	n/a	n/a		45.6	E	n/a	n/a	Fail		74.6	F	n/a	n/a		276.8	F	n/a	n/a	Fail
11	Powder Mill Road and Research R	load (TW	SC)																					
	NB (Research Road)	L	0.06	14.6	В			0.16	24.7	С				0.11	25.1	D			0.30	48.2	E			
	NB Overall (Research Road)			14.6	В				24.7	С		T	Pass		25.1	D				48.2	E			Fail
	Overall			0.4		n/a	n/a		0.7		n/a	n/a	Pass		0.4		n/a	n/a		1.0		n/a	n/a	Pass
12	Powder Mill Road and Springfield	Road (T)	NSC)																					
	EB (Powder Mill Road)	L	0.01	9.2	А			0.02	8.3	А				0.01	11.4	В			0.02	8.3	Α			
	EB Overall (Powder Mill Road)			0.3					0.3				Pass		0.3					0.2				Pass
	SB (Springfield Road)	LR	0.61	31.1	D			1.37	229.8	F				1.20	184.1	F			2.38	693.7	F			
	SB Overall (Springfield Road)			31.1	D				229.8	F		T	Fail		184.1	F				693.7	F			Fail
	Overall			5.6		n/a	n/a		52.9		n/a	n/a	Fail		23.1		n/a	n/a		125.2		n/a	n/a	Fail
13	Powder Mill Road and MD 295 SB	Ramps (TWSC)																					
	WB (Powder Mill Road)	L	0.10	8.5	А			0.21	11.5	В				0.10	8.5	А			0.30	15.2	С			
	WB Overall (Powder Mill Road)			1.7]			3.7				Pass		1.0					5.0				Pass
	SB (MD 295 SB Off-Ramp)	L	1.35	223.1	F			2.87	929.9	F				2.33	668.5	F			4.54	1,718.4	F			
	SB (MD 295 SB Off-Ramp)	TR	0.43	15.1	С			0.21	11.3	В				0.96	70.8	F			0.21	11.3	В			
	SB Overall (MD 295 SB Off-Ramp)			129.6	F				619.4	F			Fail		357.1	F				1,141.5	F			Fail
	Overall			50.5		n/a	n/a		151.7		n/a	n/a	Fail		121.3		n/a	n/a		231.3		n/a	n/a	Fail

							No Act	ion Alte	mative									Actio	n Alterr	ative				
				AM F	Peak Ho	ur			PM I	Peak Ho	our				AM F	Peak Hou	ur			PM P	eak Hou	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
14	Powder Mill Road and MD 295 NB	Ramps (TWSC)																					
	EB (Powder Mill Road)	L	0.15	10.2	В			0.46	14.4	В				0.16	10.5	В			0.57	16.5	С			
	EB Overall (Powder Mill Road)			2.2					4.2				Pass		2.2					5.4				Pass
	NB (MD 295 NB Off-Ramp)	L	0.66	67.9	F			2.59	991.1	F				3.11	1020.3	F			4.22	1860.5	F			
	NB (MD 295 NB Off-Ramp)	TR	0.20	12.4	В			0.14	15.5	С				0.20	12.4	В			0.14	16.3	С			
	NB Overall (MD 295 NB Off-Ramp))		37.2	E				599.3	F			Fail		796.1	F				1119.8	F			Fail
	Overall			5.8		n/a	n/a		38.3		n/a	n/a	Fail		217.2		n/a	n/a		67.0		n/a	n/a	Fail
15	Powder Mill Road and Soil Conse	rvation R	oad (Sig	nalized)	-					-	-			-										
	EB (Powder Mill Road)	Т	0.46	30.5	С			0.74	37.6	D				0.46	30.5	С			0.83	43.5	D			
	EB (Powder Mill Road)	R	0.00	0.0	Α			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	А			
	EB Overall (Powder Mill Road)			30.5	С				37.6	D			Pass		30.5	С				43.5	D			Pass
	WB (Powder Mill Road)	L	0.36	42.2	D			0.41	53.1	D				0.36	42.2	D			0.41	53.1	D			
	WB (Powder Mill Road)	Т	0.51	20.8	С			0.48	22.3	С				0.58	22.3	С			0.48	22.3	С			
	WB Overall (Powder Mill Road)			24.0	С				25.4	С			Pass		24.9	С				25.4	С			Pass
	NB (Soil Conservation Road)	L	0.58	22.5	С			0.84	30.9	С				0.58	22.5	С			0.84	30.9	С			
	NB (Soil Conservation Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	NB (Soil Conservation Road)			22.5	С				30.9	С			Pass		22.5	С				30.9	С			Pass
	Overall			24.7	С	639	А		31.2	С	1001	В	Pass		25.1	С	681	А		33.1	С	1044	В	Pass

Notes:

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

LOS = Level of Service

V/C = Volume-to-Capacity ratio

LTR = left / through / right lanes

LTR/LTR = No-Build/Build with Mitigation

TWSC = Two-way STOP-Controlled unsignalized intersection (TWSC intersections do not have an overall LOS)

AWSC = All-way STOP-Controlled unsignalized intersection

Delay is Measured in Seconds Per Vehicle.

Red cells denote intersections or approaches operating at unacceptable conditions.

^a Highway Capacity Manual 2000 results (Intersections #4 and #6)

This page intentionally left blank.

Page 132 of 876

Intersection Queueing Comparison

SimTraffic[™] was used to calculate the 95th percentile queue lengths. For both the No Action Alternative and the Action Alternative, the SimTraffic[™] simulations have a statistical error of plus or minus 5 error at the 95% confidence interval for the AM peak hour and 5% error for the PM peak hour simulations.

Compared to the No Action Alternative, the Action Alternative would have four new intersections with failing queues during the AM peak hour and no change in the number of intersections with failing queues during the PM peak hour. Under the No Action Alternative, five intersections would have failing queues in the AM peak hour; under the Action Alternative, nine intersections would have failing queues in the AM peak hour. In the PM peak hour, the No Action Alternative would have five intersections with failing queues, compared with five intersection in the PM peak hour under the Action Alternative.

Based on the SimTraffic[™] analysis, the following intersection lane groups would experience failing queue lengths in the Action Alternative.

- MD 201 (Kenilworth Avenue)/I-95 NB Off-Ramp (Intersection #2)
 - Under the No Action Alternative, the I-95 northbound off-ramp westbound right-turning movement would have acceptable queue lengths during the AM peak hour but would have failing queue lengths under the Action Alternative. Mitigation would be required to improve the queues of this turning movement.
- MD 201 (Kenilworth Avenue)/SHA District 3 Driveway/Crescent Road (Intersection #3)
 - The MD 201 (Kenilworth Avenue) northbound right-turning movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length under the No Action Alternative. Mitigation would be required to improve the queues of this turning movement.
- MD 201 (Kenilworth Avenue)/Ivy Lane (Intersection #4)
 - The MD 201 (Kenilworth Avenue) northbound left-turning movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length under the No Action Alternative. Mitigation would be required to improve the queues of this turning movement.
 - The MD 201 (Kenilworth Avenue) northbound through movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length. Mitigation would be required to improve the queues of this turning movement.
- MD 201 (Kenilworth Avenue/Edmonston Road)/Cherrywood Lane (Intersection #5)
 - The Cherrywood Lane eastbound left-turning movement would have a failing queue during the AM peak hour under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
 - The MD 201 (Kenilworth Avenue/Edmonston Road) northbound left-turning movement would have a failing queue during the AM peak hour under the Action Alternative. Under

the No Action Alternative, this lane would have acceptable queue lengths. Mitigation would be required to improve the queues of this turning movement.

- The MD 201 (Kenilworth Avenue/Edmonston Road) northbound through movement would have a failing queue during the AM peak hour under the Action Alternative. Under the No Action Alternative, this lane would have acceptable queue lengths. Mitigation would be required to improve the queues of this turning movement.
- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)
 - The Sunnyside Avenue eastbound right-turning movement would have failing queue lengths during the AM and PM peak hours under both the No Action Alternative and the Action Alternative; however, queueing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
 - The MD 201 (Edmonston Road) northbound left-turning movement would have failing queue lengths during the AM and PM peak hours under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
 - The MD 201 (Edmonston Road) southbound through movement would have failing queues during the AM and PM peak hours under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
 - The MD 201 (Edmonston Road)) southbound right-turning movement would have failing queues during the AM and PM peak hours under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
 - The Powder Mill Road eastbound left-turning movement would have failing queues during the PM peak hour under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
 - The Powder Mill Road eastbound right-turning movement would have failing queues during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative during the AM peak hour, but queuing would not increase by more than 150 feet under the Action Alternative, so no further AM peak hour analysis required. The PM peak hour queue would have an acceptable length under the No Action Alternative, but the failure in the PM peak hour would be unique to the Action Alternative; therefore, PM peak hour mitigation would be required.
 - The Powder Mill Road westbound left-turning movement would have failing queues during the PM peak hour but would have acceptable queues under the No Action Alternative. Mitigation would be required to improve the queues of this turning movement.
 - The Powder Mill Road westbound right-turning movement would have failing queues during the AM and PM peak hours under both the No Action Alternative and the Action

Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.

- The MD 201 (Edmonston Road) northbound left-turning movement would have a failing queue during the PM peak hour under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
- The MD 201 (Edmonston Road) northbound right-turning movement would have a failing queue during the PM peak hour under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.
- The MD 201 (Edmonston Road) southbound left-turning movement would have failing queues during the AM and PM peak hours, whereas queues under the No Action Alternative would have acceptable lengths. Mitigation would be required to improve the queues of this turning movement.
- The MD 201 (Edmonston Road) southbound through right movement would have a failing queue during the AM peak hour under both the No Action Alternative and the Action Alternative; however, queuing would not increase by more than 150 feet under the Action Alternative, so no further analysis is required.
- Powder Mill Road/Poultry Road (Intersection #10)
 - The eastbound left-through movement queues would exceed the available storage during the AM and PM peak hours. The AM peak hour queue in this lane would operate within its storage under the No Action Alternative but would fail in the PM peak hour. The PM peak hour queue under the Action Alternative would increase by more than 150 feet from the No Action Alternative. The queues at this intersection would be improved as part of the design for site access.
 - The westbound through-right movement queue would fail during the AM peak hour.
 Queues in this lane would operate within their storage under the No Action Alternative.
 The queues at this intersection would be improved as part of the design for site access.
- Powder Mill Road/MD 295 (BW Parkway Southbound Off-Ramp) (Intersection #13)
 - The MD 295 (BW Parkway Southbound Off-Ramp) left-turning movement would have failing queues during the AM and PM peak hours under both the No Action Alternative and the Action Alternative, so no further analysis is required.
- Powder Mill Road/MD 295 (BW Parkway Northbound Off-Ramp) (Intersection #14)
 - The MD 295 (BW Parkway Northbound Off-Ramp) left-turning movement would have failing queues during the AM and PM peak hours under both the No Action Alternative and the Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, so no further analysis is required.

The remaining intersections in the study area would have acceptable queue lengths.

The results of the queuing analysis for both signalized and unsignalized intersections under the No Action and Action Alternatives are presented in **Figure 5-27**. The percentile values are expressed in feet, and an average car plus space between the next vehicle requires roughly 25 feet. Appendix H contains the SimTraffic Queuing analysis results.

					No Action	Alternative	Action A	ternative
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
1	MD 201 (Kenilworth Avenue)	and I-95 SE	B Off-Ran	np (Signaliz	zed)			
	I-95 SB Off-Ramp	EB	L	325	60	77	126	72
	I-95 SB Off-Ramp	EB	L	1540	138	309	208	259
	I-95 SB Off-Ramp	EB	R	1540	76	242	-	157
	MD 201 (Kenilworth Avenue)	NB	Т	4600	114	158	139	157
	MD 201 (Kenilworth Avenue)	SB	Т	1400	80	132	95	117
2	MD 201 (Kenilworth Avenue)	and I-95 NB	Off-Ram	np (Signaliz	ed)			
	I-95 NB Off-Ramp	WB	L	400	188	271	201	262
	I-95 NB Off-Ramp	WB	L	1580	233	320	637	310
	I-95 NB Off-Ramp	WB	R	1580	301	254	2040	260
	I-95 NB Off-Ramp	WB	R	300	276	240	372	234
	MD 201 (Kenilworth Avenue)	NB	Т	250	99	122	147	123
	MD 201 (Kenilworth Avenue)	NB	Т	1400	122	162	165	153
	MD 201 (Kenilworth Avenue)	SB	Т	680	181	162	183	169
3	MD 201 (Kenilworth Avenue)	and SHA Di	strict 3/C	Crescent Ro	oad (Signaliz	ed)		
	SHA District 3	EB	LTR	130	31	37	29	35
	Crescent Road	WB	LT	1080	151	180	155	193
	Crescent Road	WB	R	250	68	80	93	84
	MD 201 (Kenilworth Avenue)	NB	L	250	74	58	174	62
	MD 201 (Kenilworth Avenue)	NB	Т	680	165	220	567	219
	MD 201 (Kenilworth Avenue)	NB	R	200	40	91	257	94
	MD 201 (Kenilworth Avenue)	SB	L	300	64	139	61	123
	MD 201 (Kenilworth Avenue)	SB	TR	740	73	77	73	94
4	MD 201 (Kenilworth Avenue)	and Ivy Lan	e (Signa	lized)				
	MD 201 (Kenilworth Avenue)	NB	L	350	77	114	76	113
	MD 201 (Kenilworth Avenue)	NB	L	740	287	144	1069	140
	MD 201 (Kenilworth Avenue)	NB	Т	740	323	-	1122	-
	MD 201 (Kenilworth Avenue)	SB	Т	1120	62	127	62	134

Figure 5-27: Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing

Figure 5-27: Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing (Continued)

					No Action	Alternative	Action A	Iternative
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
5	MD 201 (Kenilworth Avenue	e/Edmonsto	on Road)	and Cherry	wood Lane (Signalized)		
	Cherrywood Lane	EB	L	250	264	192	328	186
	Cherrywood Lane	EB	L	750	616	213	824	208
	Cherrywood Lane	EB	R	750	125	251	145	253
	MD 201 (Kenilworth Avenue)	NB	L	750	623	179	1098	174
	MD 201 (Kenilworth Avenue)	NB	Т	1120	971	157	1603	153
	MD 201 (Edmonston Road)	SB	Т	580	251	235	247	260
	MD 201 (Edmonston Road)	SB	R	250	169	156	166	178
6	MD 201 (Edmonston Road)	and Sunny	side Ave	nue (Signa	lized)			
	Sunnyside Avenue	EB	L	1400	469	1167	1239	1193
	Sunnyside Avenue	EB	R	350	404	402	473	395
	MD 201 (Edmonston Road)	NB	L	450	513	535	534	524
	MD 201 (Edmonston Road)	NB	TR	4160	5641	1417	2329	1322
	MD 201 (Edmonston Road)	SB	Т	1500	1902	2024	1965	1994
	MD 201 (Edmonston Road)	SB	R	250	310	322	307	331
7	MD 201 (Edmonston Road)	and Beave	r Dam Ro	ad (TWSC)		1		1
	Beaver Dam Road	WB	LR	1300	675	584	659	652
	MD 201 (Edmonston Road)	NB	TR	1500	49	26	40	22
	MD 201 (Edmonston Road)	SB	LT	1480	1241	1159	1251	1188
8	MD 201 (Edmonston Road)	and Powde	r Mill Ro	ad (Signaliz	zed)			
	Powder Mill Road	EB	L	250	106	332	94	341
	Powder Mill Road	EB	Т	1430	1156	759	1222	1350
	Powder Mill Road	EB	R	500	704	477	717	705
	Powder Mill Road	WB	L	250	250	129	292	278
	Powder Mill Road	WB	Т	1100	266	215	238	651
	Powder Mill Road	WB	R	40	72	63	58	54
	MD 201 (Edmonston Road)	NB	L	400	361	479	282	471
	MD 201 (Edmonston Road)	NB	Т	1480	368	663	286	666
	MD 201 (Edmonston Road)	NB	R	275	96	329	90	335
	MD 201 (Edmonston Road)	SB	L	275	242	262	329	351
	MD 201 (Edmonston Road)	SB	TR	780	719	441	784	738

Figure 5-27: Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing (Continued)

	Intersection Name/Street Name				No Action	Alternative	Action A	Iternative	
ID		Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	
9	MD 201 (Edmonston Road) and Odell Road (TWSC)								
	Odell Road	EB	LTR	740	78	94	92	79	
	Odell Road	WB	LT	520	40	14	49	16	
	Odell Road	WB	R	50	34	14	34	16	
	MD 201 (Edmonston Road)	NB	LT	760	121	125	118	132	
	MD 201 (Edmonston Road)	SB	LTR	1320	6	40	8	11	
10	Powder Mill Road and Poultry Road (AWSC)								
	Powder Mill Road	EB	LT	240	94	340	420	697	
	Powder Mill Road	WB	TR	1280	108	106	1574	411	
	Poultry Road	SB	LR	420	-	23	-	410	
11	Powder Mill Road and Research Road (TWSC)								
	Powder Mill Road	EB	TR	1280	-	34	-	43	
	Powder Mill Road	WB	TR	950	-	-	58	-	
	Research Road	NB	L	65	39	49	48	48	
12	Powder Mill Road and Springfield Road (TWSC)								
	Powder Mill Road	EB	L	50	16	27	19	24	
	Powder Mill Road	EB	Т	1590	-	3	-	43	
	Powder Mill Road	WB	TR	140	6	-	7	-	
	Springfield Road	SB	LR	4110	83	229	123	542	
13	Powder Mill Road and MD 2	95 SB Ram	ps (TWS	C)					
	Powder Mill Road	EB	TR	140	6	23	2	66	
	Powder Mill Road	WB	L	225	39	79	38	116	
	Powder Mill Road	WB	Т	520	-	-	3	-	
	BW Parkway SB Ramp	SB	L	25	58	56	55	57	
	BW Parkway SB Ramp	SB	TR	1020	196	1086	1001	990	
14	Powder Mill Road and MD 2	Powder Mill Road and MD 295 NB Ramps (TWSC)							
	Powder Mill Road	EB	L	250	61	234	52	246	
	Powder Mill Road	EB	Т	520	-	185	-	270	
	Powder Mill Road	WB	TR	850	13	37	8	35	
	BW Parkway NB Ramp	NB	L	50	60	90	82	89	
	BW Parkway NB Ramp	NB	TR	880	64	753	660	832	

Figure 5-27: Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing (Continued)

	Intersection Name/Street Name				No Action	Alternative	Action Alternative	
ID		Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
15	Powder Mill Road and So							
	Powder Mill Road	EB	Т	850	146	214	142	227
	Powder Mill Road	EB	R	260	32	41	25	46
	Powder Mill Road	WB	L	300	82	66	75	67
	Powder Mill Road	WB	Т	780	180	201	203	207
	Soil Conservation Road	NB	L	6400	194	363	194	353
	Soil Conservation Road	NB	R	475	-	0	-	-

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Entry Control Facility

The BEP facility would include an Entry Control Facility (ECF) to service passenger vehicles and a separate ECF to service trucks. TransModeler[™] Traffic Simulation Software (TransModeler[™]) can model street and highway systems integrated with traffic signals and ECFs and with other common traffic designs found in the study area. Appendix G describes the traffic model preparation, validation procedures, and calibration procedures to ensure the traffic model closely matches the existing traffic conditions.

The ECF or gate is a security checkpoint for all vehicles to pass through to access the BEP facility. Each vehicle must stop at the ECF while BEP security personnel screen the vehicle and occupants before allowing it to proceed. Similar to a tollgate along a highway, the gate could cause a queue, which could spill beyond the existing driveway onto Powder Mill Road.

The gate has four elements: separate lanes for BEP security personnel to process each vehicle as it arrives, barriers separating each lane, a stop line where each vehicle is processed, and a merging area after the processing area. Each component was coded into TransModeler[™] to best represent the conditions each vehicle experiences as it would enter the proposed BEP facility.

Gate processing times are a critical component of the analysis because they determine the delay caused by the vetting process and potential queue spilling onto the external roadways. Processing times were surveyed on October 9, 2019, between 5:30 AM and 6:30 AM at a similar BEP facility in operation in Fort Worth, Texas. The morning hours surveyed represented the morning peak during a shift change. Based on the processing times obtained through the survey, a probability triangle was created to develop a range of vehicle processing times to code into the TransModeler[™] software. These probabilities range from 10% to 90%, fitting a triangular distribution (a continuous probability distribution shaped like a triangle defined by three values: the minimum or 10th percentile value, the maximum or 90th percentile value, and the median or 50th percentile value). All processing times were used to develop the probability distribution. **Figure 5-2**8 contains the triangular probability processing percentiles.

	10th Percentile	15th Percentile	50th Percentile	85th Percentile	90th Percentile
Percentage used in TransModeler™	10%	15%	50%	15%	10%
Passenger Vehicles Processing Times (seconds)	4.1	5.0	11.5	24.6	26.5

Figure 5-28: BEP ECF Triangular Probability Processing Times

During the morning shift change between 6:30 AM and 7:00 AM, 850 passenger vehicles are forecasted to travel through the ECF. TransModeler[™] calculated the average and maximum queue lengths. The average queue represents the average queue that would occur during multiple simulations. The maximum queue represents the worst-case queue that would occur during multiple simulations and reflects a queue that would exceed the 99th percentile queue length, which would occur less than 1% of the time.

The Project Team (A/E) evaluated four scenarios and included two, three, four, and five lanes, each with a manned gate. Based on the TransModeler[™] results for average queue lengths, all four scenarios would generate a queue less than the length of the driveway. The results for the maximum queue lengths would generate a queue that exceeds the driveway length for the scenarios with two or three lanes. Four or five lanes under the maximum queue assessment would generate a queue less than the length of the driveway. Because it is best to plan for emergency situations, the study recommends five lanes in case one or more lanes must be shut down. **Figure 5-29** contains the AM peak hour gate operations summary based on the TransModeler[™] calibrated model results.

Vehicle Type	Number of Lanes	Driveway Length (feet)	Average Queue (Feet/vehicles)	Maximum Queue (Feet/vehicles)	Vehicle Demand (vehicles)	Vehicles Processed (vehicles)
	2 Lanes	1,800	1,221/84	4,366/218	850	632
Passenger	3 Lanes		671/47	3,007/166		664
Vehicles	4 Lanes		525/52	1,360/52		798
	5 Lanes		139/13	258/25		825

Figure 5-29: BEP AM Peak Hour Entry Control Facility Results

D Other Travel Modes

Pedestrian Network

The BARC Master Plan does not prioritize pedestrian connectivity because of the predominately agrarian and rural characteristics of the study area. The plan focuses primarily on vehicle-oriented internal circulation. Basic sidewalk accommodations and pedestrian connections would not be present under this alternative.

Under the Action Alternative, no pedestrian improvements are proposed due to the agricultural land uses surrounding the study area.

Under the No Action Alternative, there would be no measurable impacts on the pedestrian network in the study area, given the limited pedestrian facilities along Edmonston Road and because no pedestrian improvements are proposed. Under the Action Alternative, there would be no measurable impacts on the pedestrian network in the study area given the proposed site driveway would only serve vehicles and possibly bicycles. During construction, there would be no measurable impacts on the immediate pedestrian network adjacent to the proposed site because there are no pedestrian facilities in the vicinity of the proposed site.

Bicycle Network

Under the No Action Alternative, the Prince George's County Bicycle Master Plan (included in the *Approved Countywide Master Plan of Transportation* [PGC PD 2009]) recommends many bicycle facilities within the bicycle study area, and GIS data from the Prince George's County Planning Department also documents additional proposed bicycle facilities (PGC PD 2013). These

recommendations include shared bicycle lanes and multiuse paths along Kenilworth Avenue, Sunnyside Avenue, and local residential streets. The Prince George's Bikeways and Trails map shows planned bicycle lanes along Odell Road, Powder Mill Road, and Beaver Dam Road. A shared roadway is planned for Poultry Road. Shared roadways, as noted in the figures, are roadways with signed bicycle route designations or shared lane arrow pavement markings (sharrows) but not actual marked bicycle lanes. M-NCPPC recommends shared roadways on many local or residential streets in the study area, as shown on **Figure 5-30**. No dated implementation plan is included in the Master Plan; therefore, it is not clear whether any of these recommendations would be implemented by 2029. These improvements are shown as "proposed" in **Figure 5-30**.

Figure 5-30: Prince George's County Master Plan of Transportation Bikeways and Trails

Under the Action Alternative, the bicycle facilities described above would be incorporated into the study area regardless of the new facility. No changes are planned to the bicycle network beyond the planned improvements by Prince George's County and beyond the proposed site. If the County and USDA agree to implement a bicycle facility along Powder Mill Road, it is assumed that BEP would connect the Powder Mill Road bicycle facility to the BEP site via bicycle lanes along the site driveway to encourage the use of bicycles to commute to the BEP facility.

Under the No Action Alternative, impacts on the bicycle network within the study area would be direct, long term, and beneficial if the county decides to implement the planned bicycle facilities along Powder Mill, Beaver Dam, Odell and Edmonston Roads to form an interconnected bicycle network through BARC. During the construction of the bicycle network, impacts on transit and general traffic could be direct, short term, and adverse because of lane closures. Under the Action Alternative, impacts to the bicycle network within the study area would also be direct, long term, and beneficial if the county decides to implement the planned bicycle facilities along Powder Mill Road, because a bicycle connection would be provided to the proposed site. During construction, impacts on the immediate bicycle network adjacent to the proposed site would be direct, short term, and adverse because of bicycle lane closures along Powder Mill Road while the proposed site driveway is under construction. If the county does not implement the planned bicycle facilities along Powder Mill Road, there would be no measurable impact on the bicycle network in the study area under either alternative.

Public Transit

Under the No Action Alternative, changes to local bus services are expected to be ongoing as a result of WMATA initiatives, including the Metrobus Priority Corridor Network, Service Evaluation Studies, and the *Momentum – The Next Generation of Metro (Strategic Plan 2013–2025)* (WMATA 2014). An example of an improvement is the Priority Corridor Network-recommended addition of running ways, signal priorities, and bus-only lanes or queue jumpers to facilitate more efficient bus service. Further, the Momentum Strategic Plan recommends offering more eight-car trains during peak periods, which would increase the system's ability to move more passengers. These types of changes would directly affect Metrobus and Metrorail routes that currently serve or are in the vicinity of the study area (DDOT 2010; WMATA n.d.).

The No Action Alternative includes development within the study area; therefore, a moderate increase in transit trips from the area is anticipated from annual background growth and the four planned developments. Office and residential developments would likely increase rail ridership to and from the Greenbelt Metro Station during morning peak periods, with the reverse effect during afternoon peak periods, and increase local bus ridership by 2029. The USDA-operated bus shuttles are anticipated to increase service between the Greenbelt Metro Station and the GWCC to accommodate the proposed addition of employees under the No Action Alternative. Carsharing options may change over time, depending on decisions made by the individual vendors.

Under the Action Alternative, the development would generate new transit trips from the Greenbelt Metro Station and Route 87 along Powder Mill Road. New WMATA bus stops are anticipated to be added to Route 87 near the proposed driveway along Powder Mill Road to serve the new BEP facility. In addition, the USDA shuttle is also expected to serve the BEP facility and offer frequent service between the facility and the Greenbelt Metro Station. There would be no other change in levels of service or operation hours regarding transit beyond those described under the No Action Alternative. Future users arriving at the BEP site by transit would arrive by Metrobus or USDA shuttle. Transit ridership would increase imperceptibly based on the trips dispersed among several transit routes. This
could result in minimal added delays to bus Route 87 from time lost from boarding and alighting; however, the operators will most likely adjust the Route 87 routes, scheduling, and stop locations periodically (e.g., WMATA's Better Bus Program).

Parking

Under the No Action Alternative, parking would be primarily limited to BARC service vehicles and employees. Several surface parking lots would continue to serve BARC office buildings and maintenance facilities. There would be no changes to on-street parking on Powder Mill Road.

Under the Action Alternative, two parking ratios are recommended to provide adequate parking for BEP employees depending on the staff type (i.e., administrative versus production). All production staff would follow a 1:1 parking ratio, while all administrative staff would follow a 1:2 parking ratio as recommended by NCPC. The 1:1 ratio is primarily based on the lack of transit availability for the production shift. To arrive in time for the daytime shift, the production shift workers must board a 6:00 AM USDA shuttle bus at the Greenbelt Metro Station. Only the first Green or Yellow Line train on weekdays is scheduled to arrive before 6 AM (5:51 and 5:53 AM) at the Greenbelt Metro Station. Additional time must also be allocated for employees to pass through security. This transit constraint justifies the 1:1 ratio for production workers only. A surface parking lot would be provided for BEP employees with additional parking spaces for visitors that are not included in the ratios. There would be no changes to on-street parking on Powder Mill Road.

Under the No Action Alternative, there would be no measurable impacts to parking in the study area, given that there is currently no parking along Powder Mill Road and because no parking is being proposed. Under the Action Alternative, there would be direct, long term, and beneficial effects if the facility builds a surface parking lot to accommodate BEP employees.

Truck Routes

The No Action Alternative, with the addition of four planned developments, is expected to generate truck routes pertinent to each of those developments. Specific truck types and routes for the planned developments for the No Action Alternative are not known but would be expected to follow existing truck restrictions such as those in effect for BW Parkway. Under the Action Alternative, trucks (e.g., delivery trucks and moving trucks) would enter and exit the site from Poultry Road via Powder Mill Road. To limit the impact of the trucks and prevent their travel on the BW Parkway, collector roads, or local roads trucks should be routed by way of Powder Mill Road, Edmonston Road/Kenilworth Avenue, and the Capital Beltway.

Construction Impacts

Each phase of construction at the site (e.g., demolition and site preparation, foundation, frame assembly, interior construction, and landscaping) is expected to generate temporary impacts for the duration of the activity leading to site build out and occupation. The adequate provision of temporary parking for construction workers would limit any off-site impacts from illegal parking. Another expected impact on the public network is the presence of construction-related trucks on Powder Mill Road.

Parking Impacts

Construction of the proposed BEP production facility site would require a temporary parking area for construction workers and trucks. Construction parking would be limited to sites within the BEP production facility construction site and laydown areas. Laydown areas would be purposed for the storage of construction equipment and materials and would be necessary for the demolition and new construction activities on the site. The laydown areas could also serve as a parking location for contractor field offices, contractor management staff, on-site government representatives, and visitors. Construction laydown areas would be located near or at the construction sites to eliminate the need for any additional traffic control treatments and may either be temporary or used during the entire construction duration, depending on construction needs. Construction workers may also be encouraged to travel to the construction site by means other than a private vehicle to minimize impacts on the public roadway network. Pursuing an arrangement for USDA shuttles to drop-off construction workers at the site or promoting carpooling and WMATA's Metrobus Route 87 should be explored to minimize vehicular impacts and provide a means of transportation for workers who do not drive.

The number of trips to the BEP production facility site may temporarily increase from construction worker trips during the construction period. Minimizing the impacts of these trips on the network may be achieved by establishing the hours of construction activity to occur outside peak periods of the adjacent street.

Construction Truck Impact

Short-term impacts on traffic from Poultry Road at Powder Mill Road would result from trucks (e.g. dump trucks, cement mixer trucks, and other delivery trucks) as they deliver construction equipment, materials, and refuse to and from the BEP site. Dump trucks would be used to remove debris from the construction site during the demolition of the houses that currently occupy the site and during new construction. Cement mixer trucks would deliver cement for foundation and support structures, and additional trucks would deliver building materials for framing the interior and exterior walls and for installing flooring.

Based on a study conducted by the U.S. Environmental Protection Agency to develop average buildingrelated construction and demolition debris estimates, demolition of a non-residential building would create 155 pounds of waste material per square foot of construction, and construction of a new nonresidential building would generate 4 pounds of waste per square foot of construction. Waste refers to the material produced from the packaging covering the construction materials and extra raw materials such as wood, drywall, flooring material, roofing material, nails, screws, and any other leftover construction material (U.S. Environmental Protection Agency 1998). To accommodate the waste material generated by the construction, it is assumed that an empty 14-ton dump truck would need to enter the construction site via Poultry Road at Powder Mill Road. Once the truck is filled with waste, it would exit the construction site via Poultry Road at Powder Mill Road. Trucks would be directed not to use Odell Road, which is a residential street.

Constructing a new non-residential building is assumed to generate 155 pounds of construction material per square foot of new construction, including the foundation, walls, floors, and garage. It is also assumed that construction material would require a full 16-ton truck to enter the construction site via Poultry Road at Powder Mill Road. Once the material is offloaded, the truck would exit the construction site via Poultry Road at Powder Mill Road. These trucks should also be directed not to use Odell Road, which is a residential street.

Construction projects generally have peak months when most construction work could occur, resulting in several months when the maximum daily truck trips would occur each weekday morning. To avoid blocking external roadways, the construction contractor would create a construction laydown area. Given the laydown area size, the construction contractor would establish a schedule for cement trucks that may result in truck arrivals several times a day rather than all at once during the AM peak hour. The same process may occur for trucks carrying other construction materials or dump trucks lined up to haul construction waste.

In lieu of a construction plan and to estimate the impact of the trucks, the following is a conservative analysis of a peak construction scenario. The scenario incorporates the U.S. Environmental Protection Agency-based construction truck estimates using the approximated size of the buildings to estimate the total number of construction trucks required to complete the project and to estimate the daily truck volume by assuming a 250-day total construction project. This analysis creates a conservative truck estimate that would require enough room to store the trucks in the laydown areas. **Figure 5-31** contains the construction truck generation summary.

Based on the average amount of material per square foot of construction and the proposed building gross square feet, an estimated 77,500 tons of material would be transported through Poultry Road, resulting in a total of 4,844 trucks during the construction period. In addition, 143 trucks would transport 9,208 tons of waste from the site. Total truck trips through Poultry Road would be 5,502 and would include empty 14-ton dump trucks and full 16-ton trucks.

Building	Building SF	Average Amount of Material (pounds/SF)	Tons	Truck Size	Total Trucks
New BEP Production Facility Material ^a	1,000,000	155.00	77,500	16-ton heavy truck	4,844
New BEP Production Facility Debris (Wastage) ^b	1,000,000	4.00	2,000	14-ton dump truck	143
Demolish Existing Buildings ^b	93,000	155.00	7,208	14-ton dump truck	515
Total Per Dav			86.708		5.502

Figure 5-31: Construction Truck Generation Summary

^a Trucks would enter the site full of construction materials and exit the site empty.

^b Trucks would enter the site empty and exit the site full of waste material.

Driveway Locational Plan

The BEP site driveway would be relocated approximately 80 feet southwest of the existing Animal Husbandry Drive intersection with Powder Mill Road, which is southwest of the current Poultry Road intersection. This relocation is proposed because of the curvature of Powder Mill Road and the presence of a bridge 200-feet southwest of Poultry Road that crosses a tributary of Beaver Dam Creek. The section of Powder Mill Road near Animal Husbandry Drive is a more tangential roadway section, and its location is more accommodating of proposed turning lanes and merge areas. The position of the proposed driveway would also accommodate the ECF and the adequate storage of vehicles entering the site. As noted previously, because it is best to plan for emergency situations, the study recommends five lanes at the entry gate in case one or more lanes must be shut down.

6. Mitigation Strategies

A Identification of Mitigation Strategies

The Project Team (A/E) determined the impacts of the Action Alternative based on CLV and HCM metrics. As previously noted, acceptable operation of a signalized intersection based on the HCM 6th Edition method is LOS D or better, while acceptable or passing operation of a signalized intersection for the CLV method is LOS C or better. Instances where an intersection would fail the CLV or HCM standard under the No Action Alternative and whose condition would worsen under the Action Alternative were targeted for mitigation. Intersections targeted for mitigation also encompassed those that would operate acceptably under the No Action Alternative, but unacceptably during the Action Alternative, based on the LOS or delay criteria as applicable to signalized or unsignalized intersections. M-NCPPC requires mitigation for unsignalized intersections operating with at least one movement on the minor street exceeding 50 seconds of delay, having more than 100 vehicles on the minor street approaches during the peak hour, and whose CLV exceeds 1,150. Intersections with queues exceeding their available storage are considered failing, but mitigation for queuing is only targeted if those intersections also would fail based on either CLV or HCM metrics.

Intersections with queues exceeding their available storage are considered failing, but mitigation for queuing is only targeted if those intersections are also failing based on either CLV or HCM metrics.

Recommended Mitigation

Figure 6-1 presents a summary of the study intersections, indications of whether they would pass the CLV, HCM, and queue tests in the Action Alternative, and if mitigation would be required as a result. A map format depicting the locations of the intersections to be mitigated is shown as **Figure 6-2**.

The intersections on Kenilworth Avenue/Edmonston Road (MD 201) between the Beltway and Cherrywood Lane (Intersections #2, #3, #4, and #5), while operating with failing queues under the Action Alternative, are substantially affected by a lane drop on MD 201 north of Cherrywood Lane. However, mitigation strategies for those intersections were not included as part of this TIS. To address the effect of the lane drop on queueing, geometric changes to MD 201 between Sunnyside Avenue and Cherrywood could remove the lane drop and improve queues; however, MD 201 crosses Beaverdam Creek, which is considered an area of critical concern as a Tier II stream. This presents a key environmental constraint. In the sensitivity analysis that was prepared as an addendum to this TIS in response to agency comments, additional queuing analyses indicated that queues would be accommodated as a result of the mitigation strategies presented in this TIS. That sensitivity analysis is provided as Appendix I.

Therefore, the following study intersections were studied for mitigation strategies for the purpose of reducing the impact on the transportation system caused by the Action Alternative:

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
- Powder Mill Road/Springfield Road (Intersection #12)
- Powder Mill Road/MD 295 (BW Parkway) southbound ramps (Intersection #13)

• Powder Mill Road/MD 295 (BW Parkway) northbound ramps (Intersection #14)

Even though the intersections of MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7), MD 201 (Edmonston Road)/Odell Road (Intersection #9), and Powder Mill Road/Research Road (Intersection #11) would fail based on the HCM metric, each of these intersections would have minor approach peak hour volumes that are less than 100 vehicles. Therefore, mitigation is not required.

The intersection of MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7), while not requiring mitigation, was nonetheless considered for improvements based on potential gap acceptance issues for vehicles attempting southbound left turns from Edmonston Road onto eastbound Beaver Dam Road.

The intersection of Powder Mill Road/Poultry Road (Intersection #10) would operate as the site driveway, and although it would fail the HCM metric and would have more than 100 vehicles on its minor approach, its operations would improve as part of the site design process and not as a mitigation measure.

ID	Intersection	CLV	НСМ	Queue	Mitigation Needed	Reason for No Mitigation
1	MD 201/ I-95 SB Off-Ramp	Pass	Pass	Pass	No	CLV and HCM pass
2	MD 201/I-95 NB Off-Ramp	Pass	Pass	Fail	\checkmark	
3	MD 201/ SHA District 3/Crescent Road	Pass	Pass	Fail	\checkmark	
4	MD 201/Ivy Lane	Pass	Pass	Fail	\checkmark	
5	MD 201/Edmonston Road)/Cherrywood Lane	Pass	Pass	Fail	~	
6	MD 201/Sunnyside Avenue	Fail	Fail	Fail	\checkmark	-
7	MD 201/Beaver Dam Road	n/a	Fail	Fail	No	Fewer than 100 vehicles on Beaver Dam Road
8	MD 201/Powder Mill Road	Fail	Fail	Fail	\checkmark	-
9	MD 201/Odell Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Odell Road
10	Powder Mill Road/Poultry Road	n/a	Fail	Fail	No	This will be improved through site design
11	Powder Mill Road/Research Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Research Road
12	Powder Mill Road/Springfield Road	n/a	Fail	Pass	\checkmark	-
13	Powder Mill Road/MD 295 SB Ramps	n/a	Fail	Fail	\checkmark	-
14	Powder Mill Road/MD 295 NB Ramps	n/a	Fail	Fail	\checkmark	-
15	Powder Mill Road/Soil Conservation Road	Pass	Pass	Pass	No	CLV and HCM pass

Figure 6-1: Action Alternative Intersection Mitigation Requirement Summary

Figure 6-2: Action Alternative Intersection Mitigation Map

The mitigation recommendations for each intersection were selected through an iterative process of testing a range of improvement methods that were either rejected or incorporated into the recommendation, based on their ability to improve intersection operations and limit the impact on sensitive environments. Wetland buffer zones, covering a distance of 25 feet with respect to the wetlands surrounding Indian Creek south of Powder Mill Road and west of Edmonston Road, were reviewed to determine if geometric changes to roadways would encroach the buffers (M-NCPPC n.d.b). Examples of strategies that were tested included:

- Revisions to signal control types, timings, and phasings
- Signalizing or installing roundabouts to unsignalized intersections
- Revising existing lane geometry within the existing right of way
- Adding new turn lanes or through lanes or extending existing turning lane storage bays by assuming additional right of way

As listed below, the Project Team (A/E) selected the recommended mitigation strategies for each intersection as would improve traffic operations for those intersections, resulting in either a passing LOS (based on HCM and CLV) or, if failing, would improve operations to better than under the No Action Alternative. Intersections targeted for mitigation would also result in vehicle queues that are within their available storage capacity or, if beyond their storage capacity, would be no longer than 150 feet more than queues measured for the No Action Alternative. Acceptable increases in queueing are not explicitly cited in M-NCPPC'S Transportation Review Guidelines but were agreed to as part of the Transportation Scoping Agreement in Appendix A. The suggested 150-foot queue increase is based on District Department of Transportation Comprehensive Review Requirements.

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)
 - Add a second southbound approach through lane that extends approximately 1,500 feet to the upstream MD 201 (Edmonston Road)/Beaver Dam Road intersection.
 - Add a second southbound receiving lane that extends approximately 900 feet south of the intersection.
 - Add a second northbound approach through lane that extends approximately 900 feet south of the intersection.
 - Add a second northbound receiving lane that extends approximately 1,500 feet to the upstream MD 201 (Edmonston Road)/Beaver Dam Road intersection.
 - Widen pavement on Edmonston Road in an eastward direction to avoid impacts on existing residences. The existing pavement marking the southbound through lane would be considered the westernmost extent of the roadway as it extends to Beaver Dam Road, and the easement or right of way acquisition for the mitigation's resultant four-lane section would be toward the east within jurisdiction of USDA.
 - Change the traffic signal control type from semi-actuated uncoordinated to actuatedcoordinated with a 100-second cycle length (to match the cycle lengths along MD 201 between the Beltway and Cherrywood Lane) and optimized timing splits.

- Resurface and then restripe the roadway to permit the proposed lane geometry after the USDA property easements or right of way acquisition.
- Figure 6-3 presents a conceptual rendering of these improvements.
- MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7)
 - Prohibit southbound left-turn movements into Beaver Dam Road during peak periods with posted signs to prevent safety issues associated with drivers waiting for acceptable gaps in approaching northbound MD 201 traffic. In the traffic analysis of Section 6.B, vehicles inbound for Beaver Dam Road originating upstream from the intersection with Powder Mill Road would be rerouted to continue eastbound on Powder Mill Road and turn right via Research Road to reach Beaver Dam Road.
 - Add a second northbound approach through lane extending approximately 1,500 feet to the upstream MD 201 (Edmonston Road)/Sunnyside Road intersection.
 - Add a second northbound receiving lane that extends approximately 1,200 feet to the taper of the downstream northbound right-turn lane at the MD 201 (Edmonston Road)/Powder Mill Road intersection.
 - Add a second southbound approach lane that extends approximately 1,000 feet to the upstream merge point.
 - Add a second southbound receiving lane that extends approximately 1,500 feet to the downstream MD 201 (Edmonston Road)/Sunnyside Avenue intersection.
 - Widen pavement on Edmonston Road in an eastward direction to avoid impacts on existing residences. The existing pavement marking the southbound through lane would be considered the westernmost extent of the roadway as it extends to Powder Mill Road, and the right of way acquisition for the mitigation's resultant four-lane section would be towards the east within jurisdiction of USDA.
 - Resurface and then restripe the roadway to permit the proposed lane geometry after the USDA property easements or right of way acquisition.
 - **Figure 6-4** presents a conceptual rendering of these improvements.
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
 - Add a second eastbound Powder Mill Road through lane extending approximately 600 feet. The existing pavement marking the eastbound right-turn lane of Powder Mill Road would be considered the southernmost extent of the roadway because of the proximity to the adjacent wetland buffer zone; and the right of way acquisition to permit a second eastbound through lane on Powder Mill Road would be towards the north. Approximately 0.04 acre of private property along the north side of Powder Mill Road would be required for acquisition. This improvement could be adjusted depending on future wetland delineation efforts during the design phase. Additionally, this improvement may need adjustment depending on restrictive easements on the northwest corner of the intersection, previously referenced in the Site Analysis and mapped through Figure 4-5.

- Add a second westbound left-turn lane from Powder Mill Road onto southbound Edmonston Road with both left-turn lanes providing approximately 500 feet of storage.
- Extend the northbound right-turn lane so that it is continuous until the MD 201 (Edmonston Road)/Beaver Dam Road intersection.
- Resurface and then restripe the roadway to permit the proposed lane geometry after the USDA and private property easements or right of way acquisition.
- o Convert eastbound left-turn and westbound left-turn phases to protected.
- Change the traffic signal control type from pretimed to actuated-uncoordinated with a 100-second cycle length (to match the cycle lengths along MD 201 between the Beltway and Cherrywood Lane) and optimized timing splits.
- Figure 6-5 presents a conceptual rendering of these improvements.
- Powder Mill Road/Springfield Road (Intersection #12)
 - Install a signal and set the control type to actuated-coordinated with a 100-second cycle length.
 - Figure 6-6 presents a conceptual rendering of these improvements.
- Powder Mill Road/MD 295 (BW Parkway) southbound ramps (Intersection #13)
 - Install a signal and set the control type to actuated-coordinated with a 100-second cycle length.
 - Convert the existing eastbound shared through-right lane on Powder Mill Road to an exclusive through lane.
 - Add new pavement by using NPS land along the south side of Powder Mill Road, add a separate eastbound right-turn lane that extends to the upstream Powder Mill Road/Springfield Road intersection.
 - Resurface and then restripe the roadway to permit the proposed lane geometry after the USDA and NPS property easements.
 - Extend the storage length of the southbound left-turn lane of the BW Parkway southbound ramp to 300 feet within the existing pavement right of way.
 - Figure 6-6 presents a conceptual rendering of these improvements.
- Powder Mill Road/MD 295 (BW Parkway) Northbound Ramps (Intersection #14)
 - Install a signal and set the control type to actuated-coordinated with a 100-second cycle length.
 - Convert the existing westbound shared through-right lane on Powder Mill Road to an exclusive through lane.

- Add new pavement by using NPS land along the north side of Powder Mill Road, add a separate westbound right-turn lane that extends approximately 100 feet.
- Resurface and then restripe the roadway to permit the proposed lane geometry after the USDA and NPS property easements.
- Extend the storage length of the northbound left-turn lane of the BW Parkway northbound ramp to 300 feet within the existing pavement right of way.
- **Figure 6-6** presents a conceptual rendering of these improvements.

With respect to the three intersections along Powder Mill Road that include Springfield Road (Intersection #12) and the BW Parkway ramps (Intersections #13 and #14), the mitigation analysis also tested the possibility of implementing roundabouts for each intersection; however, after review, roundabouts were rejected from final consideration. To achieve acceptable HCM standards for the BW Parkway ramp intersections with roundabouts, a four-lane section of Powder Mill Road was determined to be necessary. In contrast to the signal recommendation, a roundabout would require a comparatively larger right of way and the four-lane section would necessitate a reconstruction of the Powder Mill Road underpass and the BW Parkway bridge that crosses Powder Mill Road. Because the Powder Mill Road/Springfield Road intersection would also require mitigation, maintaining its condition as a TWSC intersection was not feasible. For the roundabouts at the BW Parkway ramps to be effective and to achieve mitigation for the Powder Mill Road/Springfield Road, the Powder Mill Road/Springfield Road intersection would also need to be designed as a roundabout. However, implementing a system of three consecutive roundabout intersections, while promoting the continuous flow of traffic exiting Springfield Road and the BW Parkway ramps, would slow the eastbound approach traffic from Powder Mill Road. This slowdown would result in eastbound queuing extending approximately one-half mile. When appraising the operational benefits of the roundabout system in terms of the amount of right of way dedication required, this analysis discarded roundabouts from consideration at those intersections. Therefore, to achieve acceptable HCM standards, the recommendation for a system of three signalized intersections would be the least disruptive in terms of right of way acquisition and overall operational impacts.

Figure 6-3: MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) Conceptual Rendering

Figure 6-4: MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7) Conceptual Rendering

Figure 6-5: MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) Conceptual Rendering

Figure 6-6: Powder Mill Road/MD 295 (BW Parkway)/Springfield Road (Intersections #12/13/14) Conceptual Rendering

BEP Driveway Improvements

In anticipation of capacity constraints at the proposed BEP site driveway location on Poultry Road at the Powder Mill Road intersection, assuming continuation of the all-way stop control (AWSC) under the Action Alternative, the driveway should be designed to accommodate future traffic resulting from the proposed site. The redesigned driveway should satisfy the M-NCPPC acceptability standards in terms of HCM and CLV. This section describes the recommended driveway design—which pertains to signalization of the intersection—and discusses why the considered alternative of implementing a roundabout was rejected from recommendation. Because of the curvature of Powder Mill Road at the current location of Poultry Road and in anticipation of proposed turning lanes as well as merge areas, the driveway would be relocated to the southwest to more tangential sections of Powder Mill Road. This relocation is also recommended because of an existing bridge on Powder Mill Road 200 feet southwest of the intersection with Poultry Road that crosses a tributary of Beaver Dam Creek. The total right of way requirements for the recommended driveway alternative are not expected to encroach that existing bridge. The recommended design for the signalization of the BEP Driveway would include

- Locating the intersection of the BEP driveway along Powder Mill Road approximately 80 feet southwest of the existing Animal Husbandry Drive intersection with Powder Mill Road.
- Designing the driveway to permit two southbound, outbound lanes (an exclusive right-turn lane and an exclusive left-turn lane) as well as two northbound, inbound lanes.
- Creating an exclusive eastbound left-turn lane on Powder Mill Road (extending approximately 200 feet) and an exclusive westbound left-turn lane on Powder Mill Road (extending approximately 200 feet) by using USDA land to create the additional pavement area.
- Installing a signal and setting the control type to actuated-uncoordinated with a 100-second cycle length.
- Setting the phasing of the eastbound left-turn lane to permitted-protected.
- Providing a pedestrian crossing phase for the southbound approach of the BEP driveway.
- Setting the traffic signal during hours outside BEP shift changes to operate with a flashing yellow light along Powder Mill Road and a flashing red light on the BEP driveway approach.

Signalization with actuated control would ensure that each approach receives an adequate duration of green time that is responsive to detectors tracking the traffic demand. The ability to provide a pedestrian crossing phase would also act as a tool so that pedestrians could safely cross the intersection. Signalization disadvantages approaches (especially minor streets) with less traffic demand and could result in delays and queuing for those same approaches.

In contrast to signalization, a yield-controlled roundabout alternative was also tested for the site driveway design. Advantages of roundabouts include their promotion of the continuous flow of traffic (especially for minor street approaches), vehicular safety, and traffic calming from their limitation of travel speeds. Roundabouts also reduce the number of vehicular conflict points and severity of crashes. However, this continuous flow of traffic is not safe for pedestrians who attempt to cross the roundabout. In addition, heavy vehicles such as buses require wider turn radii than passenger cars, and the continuous flow of minor street traffic can inadvertently result in queuing along major streets that carry platooning traffic. While the proposed driveway could be designed with either signalization or a roundabout that would result in an intersection that meets the acceptability standards based on HCM

and CLV metrics, signalization is the recommended design in this case. The key reasons for rejecting a roundabout and recommending a signal include the following:

- The location and design of a roundabout would require more USDA land than a signal would because of the need to provide areas for bypass lanes to merge with lanes exiting the roundabout and a bypass lane on eastbound Powder Mill Road. Bypass lanes on each approach were determined to be a necessary component of achieving acceptable HCM standards for the roundabout. The bypass lane would eliminate the yield-control for eastbound traffic that would contribute to delays.
- For a roundabout to be implemented so that all approaches and merge areas are on tangential sections, the roundabout would need to be approximately 500 feet west of the existing Sheep Road intersection with Powder Mill Road. The distance of the roundabout to the site would require more USDA land to extend the driveway to the ECF.
- The continuous flow of traffic, especially with respect to providing bypass lanes, would present a hazard to pedestrians attempting to cross Powder Mill Road at the roundabout.
- A signal could be timed to operate with flashing yellow and red lights outside shift changes to effectively resume the continuous flow of traffic on Powder Mill Road. The permanence of a roundabout would slow vehicles on Powder Mill Road during other peak times that do not overlap with those of the BEP site.

A signal, therefore, provides a design alternative that is tailored to the traffic demands throughout different hours and days of the week. The establishment of a pedestrian crossing phase further reduces the chance of a crash involving pedestrians. **Figure 6-7** approximates that amounted of impervious surface that would be added at each of the intersections to implement the necessary mitigation, while **Figure 6-8** presents a conceptual rendering of the BEP driveway improvements (Intersection #10). Lastly, **Figure 6-9** presents the lane geometry and intersection controls with the proposed mitigation and improvement measures for all affected study intersections.

ID	Intersection	Aggregate Impervious Surface Created (estimated in square feet)
6	MD 201 (Edmonston) and Sunnyside	90,100
7	MD 201 (Edmonston) and Beaver Dam	65,200
8	MD 201 (Edmonston) and Powder Mill	97,100
10	Powder Mill and Poultry (BEP Driveway)	77,100
12, 13, 14	Powder Mill/Springfield/BW Parkway Total	11,700
12	Powder Mill and Springfield	No new pavement
13	Powder Mill and BW Parkway Southbound	5,400
14	Powder Mill and BW Parkway Northbound	6,300
	Total Improvements	341,200

Figure 6-7: Estimated Impervious Surface Created through Mitigation Strategies

Figure 6-8: Proposed BEP Driveway Conceptual Rendering (Intersection #10)

Figure 6-9A: Action Alternative with Mitigation Lane Geometry – Map 1

Figure 6-9B: Action Alternative with Mitigation Lane Geometry – Map 2

B Traffic Analysis

The forecasts generated for the Action Alternative were considered to assess the operations analysis of the Action Alternative with Mitigation Conditions. However, an adjustment to these forecasts was made to account for the proposed restriction of southbound left turns from Edmonston Road onto Beaver Dam Road during peak periods. Those vehicle trips were reassigned through the network by removing associated trips from the southbound left-turn movement of Edmonston Road at Beaver Dam Road. The 23 AM peak hour and 32 PM peak hour southbound left turns that were removed were then reassigned at the MD 201 (Edmonston Road)/Powder Mill Road) intersection, which is upstream from Beaver Dam Road. Based on the proportionality of existing turning movement counts between the eastbound right-turn lane of Powder Mill Road and the southbound through movement of Edmonston Road, 12 AM peak hour and 14 PM peak hour trips were removed from the eastbound right-turn movement of Powder Mill Road and reassigned to the eastbound through movement of Powder Mill Road; whereas 11 AM peak hour and 18 PM peak hour trips were removed from the southbound through movement of Edmonston Road and reassigned to the southbound left-turn movement of Edmonston Road. The 23 AM peak hour and 32 PM peak hour trips are assumed to continue eastbound Powder Mill Road and ultimately complete a right turn into Research Road. The resultant forecasts were applied in the Synchro[™] and CLV-based Excel worksheet analyses.

The CLV LOS grades for signalized intersections under the Action Alternative with Mitigation are depicted in **Figure 6-10** for AM and PM peak hours. The overall signalized intersection LOS grades and worst unsignalized lane group LOS grades are depicted in **Figure 6-11** for AM and PM peak hours. **Figure 6-12** shows the results of the LOS capacity analysis and the intersection vehicle delay for the Action Alternative with Mitigation during the AM and PM peak hours for the affected intersections.

SimTraffic[™] was used to calculate the 95th percentile queue lengths to further verify the effectiveness of the mitigation measures. The SimTraffic[™] simulations have a statistical error of plus or minus 5% at the 95% confidence interval for the AM peak hour and 5% error for the PM peak hour simulations.

The queuing results of the No Action Alternative compared to the Action Alternative with Mitigation Conditions for the mitigated intersections are presented in **Figure 6-13**. The 95th percentile values are expressed in feet; an average car plus space between the next vehicle requires roughly 25 feet.

The sections that follow **Figure 6-13** discuss the mitigation impacts based on HCM, CLV, and queuing for each affected intersection.

Figure 6-10: Action Alternative with Mitigation Traffic Operations Summary – CLV Method

Figure 6-11: Action Alternative with Mitigation Traffic Operations Summary – HCM Method

This page intentionally left blank.

Figure 6-12: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations

				No Action Alternative							Action Alternative with Mitigation														
				AM F	Peak Ho	our			PM	Peak H	our				AM	Peak Ho	our			PM I	Peak Ho	our			
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	Mitigated?
6	MD 201 (Edmonston Road) and S	Sunnysid	le Avenı	ue (Signa	lized) ^a			•						•											
	EB (Sunnyside Avenue)	L	1.32	297.6	F			1.36	261.8	F	1			1.17	167.1	F			1.26	189.2	F				
	EB (Sunnyside Avenue)	R	0.64	62.0	Е			1.12	127.0	F				0.51	20.0	С			1.03	72.6	Е				
	EB Overall (Sunnyside Avenue)			126.7	F				168.8	F			Fail		74.5	E				108.7	F			Fail	
	NB (Edmonston Road)	L	1.43	280.0	F			1.24	188.1	F				1.14	93.2	F			1.09	86.6	F				
	NB (Edmonston Road)	TR	0.66	4.8	А			0.90	20.9	С				0.55	1.1	А			0.51	1.9	Α				
	NB Overall (Edmonston Road)			110.3	F				67.3	Е			Fail		29.9	С				25.4	С			Pass	
	SB (Edmonston Road)	Т	1.36	212.8	F			1.17	126.6	F				1.04	67.3	Е			1.00	52.7	D				
	SB (Edmonston Road)	R	0.24	14.4	В			0.15	9.9	А				0.25	13.5	В			0.21	10.2	В				
	SB Overall (Edmonston Road)			180.5	F				109.4	F			Fail		58.5	E				46.4	D			Fail	
	Overall			141.4	F	1,719	F		106.1	F	1,702	F	Fail		46.2	D	1,299	С		52.2	D	1,431	D	Fail	Yes
7	MD 201 (Edmonston Road) and E	Beaver D	am Roa	d (TWSC)				•						•											
	WB (Beaver Dam Road)	LR	3.38	1,753.5	F			1.69	739.6	F				1.20	420.3	F			0.80	227.8	F				
	WB Overall (Beaver Dam Road)			1,753.5	F				739.6	F			Fail		420.3	F				227.8	F			Fail	
	SB (Edmonston Road)	LT	0.06	12.6	В			0.09	14.5	В				-	-	-			-	-	-				
	SB Overall (Edmonston Road)			0.2					0.4				Pass		0.0					0.0				Pass	
	Overall			22.3		n/a	n/a		8.9		n/a	n/a	Pass		4.6		n/a	n/a		2.4		n/a	n/a	Pass	n/a
8	MD 201 (Edmonston Road) and P	owder N	Iill Road	l (Signaliz	zed)																				
	EB (Powder Mill Road)	L	0.29	58.4	E			0.69	57.3	E				0.78	52.3	D			0.92	71.5	Е				
	EB (Powder Mill Road)	Т	0.31	48.2	D			0.75	55.5	E				0.63	37.7	D			0.81	49.9	D				
	EB (Powder Mill Road)	R	0.00	0.0	0			0.00	0.0	0				0.00	0.0	А			0.00	0.0	А				
	EB Overall (Powder Mill Road)			51.7	D				56.2	E			Fail		41.0	D				58.3	E			Fail	
	WB (Powder Mill Road)	L	0.73	71.8	E			0.49	46.7	D				0.75	46.7	D			0.93	62.3	Е				
	WB (Powder Mill Road)	Т	0.32	40.6	D			0.27	32.7	С				0.68	37.5	D			0.97	88.9	F				
	WB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	Α				0.00	0.0	А			0.00	0.0	Α				
	WB Overall (Powder Mill Road)			58.0	E				37.6	D			Fail		42.6	D				71.2	E			Fail	
	NB (Edmonston Road)	L	0.92	61.5	E			0.93	65.0	E				0.93	38.5	D			0.99	63.4	E				
	NB (Edmonston Road)	Т	0.59	20.2	С			0.73	32.8	С				0.59	11.6	В			0.77	25.8	С				
	NB (Edmonston Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А				
	NB Overall (Edmonston Road)			38.4	D				46.0	D			Pass		23.4	С				41.3	D			Pass	
	SB (Edmonston Road)	L	0.13	39.3	D			0.49	60.5	E				0.30	24.4	С			0.60	49.0	D				
	SB (Edmonston Road)	TR	0.87	68.8	E			0.84	73.6	Е				0.82	39.4	D			0.84	53.4	D				
	SB Overall (Edmonston Road)			67.6	E				71.6	E			Fail		37.8	D				52.4	D			Pass	
	Overall			51.7	D	1,080	В		54.7	D	1,225	С	Pass		32.8	С	987	Α		54.3	D	1,248	С	Pass	Yes

Figure 6-12: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (Continued)

				No Action Alternative										Actio	n Alter	native v	vith Mitio	gation							
				AM F	Peak Ho	our			PM I	Peak H	our				AM	Peak H	our			PM	Peak H	our			
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	Mitigated?
10	Powder Mill Road and Poultry Ro	oad (AWS	SC in No	Action A	Alternat	ive; Sig	gnalize	d in Act	ion Alte	rnative	with M	itigatio	n)	-		-	-		-						
	EB (Powder Mill Road)	LT	0.25	8.9	А	ļ		1.02	59.3	F				n/a	n/a	n/a			n/a	n/a	n/a				
	EB (Powder Mill Road)	L	n/a	n/a	n/a			n/a	n/a	n/a				0.74	6.4	Α			0.02	14.0	В				
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.15	0.6	Α			0.92	31.5	С				
	EB Overall (Powder Mill Road)			8.9	Α				59.3	F			Fail		4.7	Α				31.3	С			Pass	
	WB (Powder Mill Road)	TR	0.51	11.3	В			0.45	11.7	В				n/a	n/a	n/a			n/a	n/a	n/a				
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.60	9.0	Α			0.43	20.1	С				
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.67	9.8	А			0.01	16.3	В				
	WB Overall (Powder Mill Road)			11.3	В				11.7	В			Pass		9.4	Α				20.0	С			Pass	
	SB (Poultry Road)	LR	0.00	8.3	А			0.02	9.7	А				n/a	n/a	n/a			n/a	n/a	n/a				
	SB (Poultry Road)	L	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	А			0.67	28.1	С				
	SB (Poultry Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	А			0.98	62.1	Е				
	SB Overall (Poultry Road)			0.0	-				9.7	Α			Pass		0.0	-				47.3	D			Pass	
	Overall			10.6	В	n/a	n/a		45.6	E	n/a	n/a	Fail		7.2	Α	868	Α		36.8	D	1,250	С	Pass	Yes
12	Powder Mill Road and Springfiel	d Road (1	FWSC in	No Actio	on Altei	rnative;	Signa	lized in	Action A	Alternat	tive wit	h Mitig	ation)						-						
	EB (Powder Mill Road)	L	0.01	9.2	А			0.02	8.3	А				0.02	4.3	Α			0.04	6.5	А				
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.18	4.0	Α			0.81	16.5	В				
	EB Overall (Powder Mill Road)			0.3					0.3				Pass		4.0	Α				16.3	В			Pass	
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	А			0.00	0.0	А				
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.98	16.3	В			0.43	5.4	А				
	WB Overall (Powder Mill Road)			n/a	n/a				n/a	n/a					16.3	В				5.4	Α			Pass	
	SB (Springfield Road)	LR	0.61	31.1	D			1.37	229.8	F				0.87	68.8	Е			1.00	89.3	F				
	SB Overall (Springfield Road)			31.1	D				229.8	F			Fail		68.8	E				89.3	F			Fail	
	Overall			5.6		n/a	n/a		52.9		n/a	n/a	Fail		21.1	С	1,059	В		26.8	С	1,270	С	Pass	Yes

Figure 6-12: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (Continued)

	No Action						ion Alte	rnative					Action Alternative with Mitigation												
				AM F	Peak Ho	ur			PM F	Peak Ho	our				AM	Peak Ho	our			PM	Peak H	our			
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	Mitigated?
13	Powder Mill Road and MD 295 SE	B Ramps	(TWSC	in No Ac	tion Alt	ernativ	e; Sign	alized i	n Action	Altern	ative w	ith Miti	gation)						-		-			_	_
	EB (Powder Mill Road)	Т	0.00	0.0	0			0.00	0.0	0				0.28	7.9	А			0.84	3.2	А				
	EB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.16	7.3	А			0.48	0.7	Α				
	EB Overall (Powder Mill Road)			0.0					0.0				Pass		7.7	Α				2.4	Α			Pass	
	WB (Powder Mill Road)	L	0.10	8.5	А			0.21	11.5	В				0.18	8.3	А			0.39	7.0	А				
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.69	2.3	А			0.24	0.4	А				
	WB Overall (Powder Mill Road)			1.7					3.7				Pass		3.0	Α				2.6	Α			Pass	
	SB (MD 295 SB Off-Ramp)	L	1.35	223.1	F			2.87	929.9	F				0.77	43.4	D			0.88	56.3	Е				
	SB (MD 295 SB Off-Ramp)	TR	0.43	15.1	С			0.21	11.3	В				0.94	67.4	E			0.50	37.3	D				
	SB Overall (MD 295 SB Off-Ramp)		129.6	F				619.4	F			Fail		55.9	E				49.9	D			Fail	
	Overall			50.5		n/a	n/a		151.7		n/a	n/a	Fail		21.8	С	899	Α		12.0	В	1,150	В	Pass	Yes
14	Powder Mill Road and MD 295 NB	B Ramps	(TWSC	in No Ac	tion Alt	ernativ	e; Sign	alized i	n Action	Altern	ative w	ith Miti	gation)												
	EB (Powder Mill Road)	L	0.15	10.2	В			0.46	14.4	В				0.27	21.9	С			0.77	16.0	В				
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.40	0.8	А			0.53	0.5	А				
	EB Overall (Powder Mill Road)			2.2					4.2				Pass		5.3	Α				5.5	Α			Pass	
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.63	27.3	С			0.28	4.7	Α				
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.59	26.8	С			0.51	7.0	А				
	WB Overall (Powder Mill Road)			n/a	n/a				n/a	n/a			Pass		27.1	С				6.1	Α			Pass	
	NB (MD 295 NB Off-Ramp)	L	0.66	67.9	F			2.59	991.1	F				0.89	46.1	D			1.11	188.6	F				
	NB (MD 295 NB Off-Ramp)	TR	0.20	12.4	В			0.14	15.5	С				0.28	29.9	С			0.84	107.0	F				
	NB Overall (MD 295 NB Off-Ramp	o)		37.2	E				599.3	F			Fail		42.5	D				155.7	F			Pass	
	Overall			5.8		n/a	n/a		38.3		n/a	n/a	Fail		24.8	С	572	Α		14.4	В	956	Α	Pass	Yes

Notes:

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

LOS = Level of Service

V/C = Volume-to-Capacity ratio

LTR = left / through / right lanes

LTR/LTR = No-Build/Build with Mitigation

TWSC = Two-way STOP-Controlled unsignalized intersection (TWSC intersections do not have an overall LOS)

AWSC = All-way STOP-Controlled unsignalized intersection

Delay is Measured in Seconds Per Vehicle.

Red cells denote intersections or approaches operating at unacceptable conditions.

a Highway Capacity Manual 2000 results (Intersection #6)

Figure 6-13: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and PM Peak Hour Queuing

				Turning Bay/Link	No Action	Alternative	Action A	Iternative	Action Alternativ	ve with Mitigation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
6	MD 201 (Edmonston Road) and Sunr	nyside Avenue	(Signalize	d)						
	Sunnyside Avenue	EB	L	1400/1400	469	1167	1239	1193	288	1235
	Sunnyside Avenue	EB	R	350/350	404	402	473	395	222	456
	MD 201 (Edmonston Road)	NB	L	450/450	513	535	534	524	436	518
	MD 201 (Edmonston Road)	NB	Т	-/900	0	0	0	0	281	549
	MD 201 (Edmonston Road)	NB	TR	4160/4160	5641	1417	2329	1322	886	415
	MD 201 (Edmonston Road)	SB	Т	1500/1500	1902	2024	1965	1994	728	1978
	MD 201 (Edmonston Road)	SB	R	250/250	310	322	307	331	347	376
7	MD 201 (Edmonston Road) and Beav	ver Dam Road	(TWSC)							
	Beaver Dam Road	WB	LR	1300/1300	675	584	659	652	64	283
	MD 201 (Edmonston Road)	NB	TR	1500/1500	49	26	40	22	6	2
	MD 201 (Edmonston Road)	SB	LT/T	1480/1480	1241	1159	1251	1188	0	802
8	MD 201 (Edmonston Road) and Powe	der Mill Road (Signalized)							
	Powder Mill Road	EB	L	250/250	106	332	94	341	86	287
	Powder Mill Road	EB	Т	1430/1430	1156	759	1222	1350	147	279
	Powder Mill Road	EB	Т	-/600	0	0	0	0	104	200
	Powder Mill Road	EB	R	500/500	704	477	717	705	82	109
	Powder Mill Road	WB	L	250/500	250	129	292	278	105	310
	Powder Mill Road	WB	Т	1100/1440	266	215	238	651	176	513
	Powder Mill Road	WB	R	40/40	72	63	58	54	58	84
	MD 201 (Edmonston Road)	NB	L	400/400	361	479	282	471	261	386
	MD 201 (Edmonston Road)	NB	Т	1480/1480	368	663	286	666	240	424
	MD 201 (Edmonston Road)	NB	R	275/1480	96	329	90	335	0	29
	MD 201 (Edmonston Road)	SB	L	275/275	242	262	329	351	133	223
	MD 201 (Edmonston Road)	SB	TR	780/780	719	441	784	738	0	287

Figure 6-13: Comparison of No Action Alternative with Action Alternative with Mitigation Intersection AM and PM Peak Hour Queuing (Continued)

				Turning Bay/Link	No Action	Alternative	Action A	Iternative	Action Alternativ	e with Mitigation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
10	Powder Mill Road and Poultry Road (A	WSC) ^a								
	Powder Mill Road	EB	LT/L	-/200	0	0	0	0	136	29
	Powder Mill Road	EB	Т	240/3250	94	340	420	697	0	441
	Powder Mill Road	WB	TR/T	1280/1280	108	106	1574	411	144	178
	Powder Mill Road	WB	R	-/200	0	0	0	0	115	17
	Poultry Road	SB	LR/L	420/600	0	23	0	410	0	252
	Poultry Road	SB	-/R	-/600	0	0	0	0	0	156
12	Powder Mill Road and Springfield Roa	d (TWSC) ^a			1			1		
	Powder Mill Road	EB	L	50/50	16	27	19	24	18	42
	Powder Mill Road	EB	Т	1590/1590	0	3	0	43	91	873
	Powder Mill Road	WB	TR	140/140	6	0	7	0	184	110
	Springfield Road	SB	LR	4110/4110	83	229	123	542	174	580
13	Powder Mill Road and MD 295 SB Ram	ips (TWSC)ª								
	Powder Mill Road	EB	TR/T	140/140	6	23	2	66	154	175
	Powder Mill Road	EB	-/R	-/140	0	0	0	0	74	96
	Powder Mill Road	WB	L	225/225	39	79	38	116	59	123
	Powder Mill Road	WB	Т	520/520	0	0	3	0	151	99
	BW Parkway SB Ramp	SB	L	25/300	58	56	55	57	236	274
	BW Parkway SB Ramp	SB	TR	1020/1020	196	1086	1001	990	169	104
14	Powder Mill Road and MD 295 NB Ram	nps (TWSC) ^a								
	Powder Mill Road	EB	L	250/250	61	234	52	246	133	212
	Powder Mill Road	EB	Т	520/520	0	185	0	270	262	201
	Powder Mill Road	WB	TR/T	850/850	13	37	8	35	209	112
	Powder Mill Road	WB	R	-/100	0	0	0	0	139	118
	BW Parkway NB Ramp	NB	L	50/300	60	90	82	89	292	130
	BW Parkway NB Ramp	NB	TR	880/880	64	753	660	832	127	51

Notes:

a This intersection would operate with a signal control with mitigation

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

This page intentionally left blank.

Page 174 of 876

MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)

Figure 6-14 presents the summary of the mitigation impact on the MD 201 (Edmonston Road)/Sunnyside Avenue intersection, according to HCM and CLV capacity metrics. Based on both HCM and CLV methods, operations would improve to better than under the No Action Alternative during the AM and PM peak hours. The intersection would operate at an overall acceptable LOS D according to HCM metrics and an acceptable CLV of 1,299 (LOS C) during the AM peak hour. While the PM peak hour would have a CLV of 1,431 (LOS D), which is considered failing according to CLV metrics, this would represent a substantial improvement compared with the No Action Alternative. The intersection would therefore be mitigated according to the HCM and CLV methods.

	HCM Delay	y and LOS	CLV and	CLV LOS
	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
No Action Alternative	141.4/F	106.1/F	1,719/F	1,702/F
Action Alternative	150.0/F	164.0/F	1,779/F	2,025/F
Action Alternative with Mitigation	46.2/D	52.2/D	1,299/C	1,431/D

Figure 6-14: MD 201	(Edmonston	Road)/Sunnyside	Avenue HCM and	CLV Mitigation	Summary
---------------------	------------	-----------------	----------------	-----------------------	---------

Notes: HCM delays are presented in units of seconds per vehicle

Under the Action Alternative, failing queues would occur for the eastbound right-turn lane of Sunnyside Avenue, the northbound left-turn lane of Edmonston Road, the southbound through movement of Edmonston Road, and the southbound right-turn lane of Edmonston Road. Successful mitigation of queuing is achieved when the queues are adequately stored or when the differential of a failing queue length is less than 150 feet compared to that under the No Action Alternative. Figure 6-15 compares the mitigation impact on the failing queues at the MD 201 (Edmonston Road)/Sunnyside Avenue intersection. The results show that mitigation would result in the adequate storage of the AM peak hour queues for the eastbound right-turn lane of Sunnyside Avenue, the northbound shared through-right lane of Edmonston Road, and the southbound through movement of Edmonston Road compared with the No Action Alternative. Where failing queues would continue with mitigation, queues under mitigation would improve relative to the No Action Alternative for the northbound left-turn of Edmonston Road during the AM and PM peak hours and the southbound through movement of Edmonston Road during the PM peak hour. Queues that would fail with mitigation, but otherwise increase by less than 150 feet relative to the No Action Alternative, include the eastbound right of Sunnyside Avenue during the PM peak hour and the southbound right-turn lane of Edmonston Road during the AM and PM peak hours. All other turning movements would have adequate accommodation for their queues. In conclusion, the recommended improvements would mitigate the 95th percentile queues.

Figure 6-15: MD 201 (Edmonston Road)/Sunnyside Avenue Queuing Mitigation Summary

				Turning Bay/Link Length	No Action	Alternative	Action A with Mi	Iternative tigation
ID	Intersection Name/Street Name	Direction	Lane Group	(feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
6	MD 201 (Edmonston Ro	oad) and Su	nnyside	Avenue (Sign	alized)			
	Sunnyside Avenue	EB	L	1400/1400	469	1167	288	1235
	Sunnyside Avenue	EB	R	350/350	404	402	222	456
	MD 201 (Edmonston Road)	NB	L	450/450	513	535	436	518
	MD 201 (Edmonston Road)	NB	Т	-/900	0	0	281	549
	MD 201 (Edmonston Road)	NB	TR	4160/4160	5641	1417	886	415
	MD 201 (Edmonston Road)	SB	Т	1500/1500	1902	2024	728	1978
	MD 201 (Edmonston Road)	SB	R	250/250	310	322	347	376

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7)

Figure 6-16 shows the improvement impact on the westbound approach of the MD 201 (Edmonston Road)/Beaver Dam Road intersection according to the HCM capacity metric. As previously mentioned, although this intersection is not required to undergo mitigation because it would operate acceptably under the Action Alternative, this study recommends prohibiting southbound left turns from Edmonston Road onto eastbound Beaver Dam Road because of potential gap acceptance issues with respect to northbound queuing. The restriction would reduce westbound delays on Beaver Dam Road compared with the No Action Alternative. **Figure 6-16** Westbound Beaver Dam Road at MD 201 (Edmonston Road) provides a summary of HCM-based mitigation efforts.

	HCM Dela	y and LOS
	AM Peak Hour	PM Peak Hour
No Action Alternative	1,753.5/F	739.6/F
Action Alternative	Err/F	Err/F
Action Alternative with Mitigation	420.3/F	227.8/F

Figure 6-16: Westbound Beaver Dam Road at MD 201 (Edmonston Road) HCM Mitigation Summary

Notes: HCM delays are presented in units of seconds per vehicle

MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)

Figure 6-17 shows the mitigation impact on the MD 201 (Edmonston Road)/Powder Mill Road intersection according to HCM and CLV capacity metrics. Intersection operations would improve to better than under the No Action Alternative during the AM and PM peak hours based on the HCM method and would continue operating within acceptable CLV standards. According to HCM metrics, the intersection would operate at an overall acceptable LOS C during the AM peak hour and LOS D during the PM peak hour. Based on CLV methods, it would operate at an acceptable CLV of 987 (LOS A) during the AM peak hour and an acceptable CLV of 1,248 (LOS C) during the PM peak hour. The intersection would be therefore mitigated according to the HCM and CLV methods.

	HCM Delay and LOS		CLV and CLV LOS	
	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
No Action Alternative	51.7/D	54.7/D	1,080/B	1,225/C
Action Alternative	54.5/D	164.5/F	1,117/B	1,608/F
Action Alternative with Mitigation	32.8/C	54.3/D	987/A	1,248/C

Figure 6-17: MD 201 (Edmonston Road)/Powder Mill Road HCM and CLV Mitigation Summary

Notes: HCM delays are presented in units of seconds per vehicle

Under the Action Alternative, failing queues would occur for the eastbound left- and right-turn lanes of Powder Mill Road, the westbound left- and right-turn lanes of Powder Mill Road, the northbound leftand right-turn lanes of Edmonston Road, the southbound left-turn lane of Edmonston Road, and the southbound shared through-right lane of Edmonston Road. Successful mitigation of queuing is achieved when the queues are adequately stored or when the differential of a failing queue length is less than 150 feet compared to that the queue under the No Action Alternative. Figure 6-18 compares the mitigation impact on the failing queues at MD 201 (Edmonston Road)/Powder Mill Road intersection. The results show that mitigation would result in the adequate storage of the AM peak hour queues for each turning movement except for the westbound right-turn lane, where the queue length would be 58 feet with mitigation but would be 14 feet shorter compared to the queue under the No Action Alternative. In addition, storage would be adequate for all turning movements of the intersection during the PM peak hour, except for the eastbound left-turn lane and the westbound right-turn lane. However, the eastbound left-turn lane queue would be 287 feet, a reduction compared to the queue under the No Action Alternative. In addition, the westbound right-turn lane would have a queue of 84 feet, or only 21 feet longer than under the No Action Alternative. Whereas the westbound right-turn lane storage is only 40 feet, the proximity of the westbound right-turn lane to the BARC entrance sign on the north side of Powder Mill Road limits the ability to extend the turn lane farther. The increase in queue under the Action Alternative with mitigation measures would be less than 150 feet compared with the queue during the No Action Alternative. Thus, the intersection's queues would be mitigated.

	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet) No Action and Action/ Mitigation	No Action Alternative		Action Alternative with Mitigation	
ID					AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
8	MD 201 (Edmonston Road) and Powder Mill Road (Signalized)							
	Powder Mill Road	EB	L	250/250	106	332	86	287
	Powder Mill Road	EB	Т	1430/1430	1156	759	147	279
	Powder Mill Road	EB	Т	-/600	0	0	104	200
	Powder Mill Road	EB	R	500/500	704	477	82	109
	Powder Mill Road	WB	L	250/500	250	129	105	310
	Powder Mill Road	WB	Т	1100/1440	266	215	176	513
	Powder Mill Road	WB	R	40/40	72	63	58	84
	MD 201 (Edmonston Road)	NB	L	400/400	361	479	261	386
	MD 201 (Edmonston Road)	NB	Т	1480/1480	368	663	240	424
	MD 201 (Edmonston Road)	NB	R	275/1480	96	329	0	29
	MD 201 (Edmonston Road)	SB	L	275/275	242	262	133	223
	MD 201 (Edmonston Road)	SB	TR	780/780	719	441	0	287

Figure 6-18: MD 201 (Edmonston Road)/Powder Mill Road Queuing Mitigation Summary

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Powder Mill Road/Poultry Road (BEP Driveway) (Intersection #10)

As discussed in Section 6-A, the recommended design of the BEP driveway intersection is for signalization of that intersection with actuated-uncoordinated control, a 100-second cycle length, an exclusive eastbound left turn lane, an exclusive westbound right turn lane, two outbound lanes from the driveway, and two inbound lanes into the driveway.

Figure 6-19 presents the summary of the design impact on this intersection according to HCM and CLV capacity metrics. The intersection is currently controlled by an all-way stop and, assuming no modifications to the site access, would operate at a failing LOS F under the Action Alternative. However, designing the driveway intersection as a signal, as previously discussed, would improve the intersection operations to better than the No Action Alternative during the AM and PM peak hours based on the HCM method. Specifically, under the mitigation scenario, the driveway would operate at an overall LOS A during the AM peak hour and LOS D During the PM peak hour based on HCM methods. The CLV method indicates that these design strategies would also result in the intersection operating with a CLV of 868 (LOS A) during the AM peak hour and 1,250 (LOS C) during the PM peak hour. Thus, the signal recommendation satisfies the standards of acceptability according to HCM and CLV methods.

	HCM Delay and LOS		CLV and CLV LOS	
	AM Peak Hour	PM Peak Hour	AM Peak Hour	PM Peak Hour
No Action Alternative	10.6/B	45.6/E	n/a	n/a
Action Alternative	74.6/F	276.8/F	n/a	n/a
Action Alternative with Mitigation	7.2/A	36.8/D	868/A	1,250/C

Figure 6-19: Powder Mill Road/Poultry Road (BEP Driveway) HCM and CLV Mitigation Summary

Notes: HCM delays are presented in units of seconds per vehicle

The impact of the recommended signalization of the BEP driveway on the turning movements is presented in **Figure 6-20**. Under the Action Alternative with Mitigation, 95th percentile queues are demonstrated to be within their available storages. Therefore, no further improvements to queueing are necessary.
Figure 6-20: Powder Mill I	Road/Poultry Road	(BEP Driveway)	Queuing Mitigation Sul	mmary
3		1	J J J	

	Intersection Name/Street Name	Direction		Turning Bay/Link	No Action Alternative		Action Alternative with Mitigation	
ID			Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
10	Powder Mill Road and	Poultry R	oad (BEF	P Driveway) (A	WSC) ^a			
	Powder Mill Road	EB	LT/L	-/200	0	0	136	29
	Powder Mill Road	EB	Т	240/3250	94	340	0	441
	Powder Mill Road	WB	TR/T	1280/1280	108	106	144	178
	Powder Mill Road	WB	R	-/200	0	0	115	17
	Poultry Road	SB	LR/L	420/600	0	23	0	252
	Poultry Road	SB	-/R	-/600	0	0	0	156

Notes:

a This intersection would operate with a signal control with mitigation

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Powder Mill Road/Springfield Road (Intersection #12)

The effects of mitigation for Powder Mill Road/Springfield Road are shown on **Figure 6-21** based on HCM and CLV capacity metrics. The table presents the mitigation impact on the southbound approach of Springfield Road, whose failure under the Action Alternative triggered the need for mitigation; the table also summarizes the overall intersection operations. Because the intersection is recommended for signalization, the benchmark for acceptable operations under the Action Alternative with Mitigation is based on the overall intersection function and not on the approach that originally failed. The intersection would operate within overall acceptable HCM and CLV standard; therefore, the intersection would be mitigated.

	HCM Delay and LOS		CLV and CLV LOS		
	AM Peak PM Peak Hour Hour		AM Peak Hour	PM Peak Hour	
Southbound Springfield Road					
No Action Alternative	31.1/D	229.8/F	n/a	n/a	
Action Alternative	184.1/F	693.7/F	n/a	n/a	
Action Alternative with Mitigation	68.8/E	89.3/F	n/a	n/a	
Overall Intersection					
No Action Alternative	5.6	52.9	n/a	n/a	
Action Alternative	23.1	125.2	n/a	n/a	
Action Alternative with Mitigation	21.1/C	26.8/C	1,059/B	1,270/C	

Figure 6-21: Powder Mill Road/Springfield Road HCM and CLV Mitigation Su	ımmary
--	--------

Notes: HCM delays are presented in units of seconds per vehicle

The 95th percentile queues of the Powder Mill Road/Springfield Road intersection are shown in Figure 6-22 and indicate that gueues would be in the available storages with under the No Action Alternative and the Action Alternative. Most turning movement queues would be within their available storage under the Action Alternative with Mitigation, however the westbound shared through-right lane of Powder Mill Road would have an AM Peak hour queue of 184 feet that exceeds the distance to the upstream intersection with the BW Parkway Southbound Ramps (Intersection #13). This is an expected impact of signalization, since Powder Mill Road would operate at free flow under the No Action Alternative and the Action Alternative, but signalization would inevitably result in gueuing on Powder Mill Road because signalization guarantees protected phasing for Springfield Road that stops eastbound and westbound traffic. Because of spacing constraints and sensitivity to preservation of the natural visibility within NPS right of way, no geometric improvements are identified or recommended to adequately mitigate the through-moving queues. For instance, restriping the westbound shared through-right lane to an exclusive through lane and building new pavement within NPS right of way to stripe a separate westbound right turn lane up to the BW Parkway Southbound Ramps intersection was evaluated for its potential to improve westbound through queues. However, through-moving queues would have continued to exceed their available storage and the additional pavement would not have been suitable in the interest of preserving forested area on the north side of Powder Mill Road. In conclusion, queuing that would be experienced at this intersection are mitigated to the extent reasonable given the physical constraints of this location.

Figure 6-22: Powder Mill Road/Springfield Road Queueing Mitigation Summary

				Turning Bay/Link	No Action	Alternative	Action A with Mi	Iternative tigation
ID	Intersection Name/Street Name	Direction	Lane Group	(feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
12	Powder Mill Road a	nd Springfi	eld Road	(TWSC) ^a				
	Powder Mill Road	EB	L	50/50	16	27	18	42
	Powder Mill Road	EB	Т	1590/1590	0	3	91	873
	Powder Mill Road	WB	TR	140/140	6	0	184	110
	Springfield Road	SB	LR	4110/4110	83	229	174	580

Notes:

a This intersection would operate with a signal control with mitigation

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Powder Mill Road/BW Parkway Southbound Ramps (Intersection #13)

The mitigation impact for the Powder Mill Road/BW Parkway southbound ramps is shown on **Figure 6-23** based on HCM and CLV capacity metrics. The table presents the mitigation impact on the southbound approach of the BW Parkway southbound ramp, whose failure under the Action Alternative triggered the need for mitigation; the table also summarizes the overall intersection operations. Because the signalization is recommended for the intersection, the benchmark for acceptable operations under the Action Alternative with Mitigation is based on the overall intersection function and not on the approach that originally failed. The intersection would operate within overall acceptable HCM and CLV standards; therefore, the intersection would be mitigated.

	HCM Delay and LOS		CLV and	CLV LOS							
	AM Peak Hour Hour		AM Peak Hour	PM Peak Hour							
Southbound BW Parkway Southbou	Southbound BW Parkway Southbound Ramps										
No Action Alternative	129.6/F	619.4/F	n/a	n/a							
Action Alternative	357.1/F	357.1/F 1,141.5/F n		n/a							
Action Alternative with Mitigation	55.9/E	49.9/D	n/a	n/a							
Overall Intersection											
No Action Alternative	50.5	151.7	n/a	n/a							
Action Alternative	121.3	231.3	n/a	n/a							
Action Alternative with Mitigation	21.8/C	12.0/B	899/A	1,150/B							

Figure 6 22, Devider Mill Deed/DM/ Devin	·· Couthbarred Domana UCM	and CIV Mitting tions Company
FIGURE 6-7.5: POWDER WIII ROAD/BW PARKWA	v southdound ramps HUW a	and CLV Mitidation Summarv
ingulo o zol i olluoi mini itoudi zili i diltitu		

Notes:

HCM delays are presented in units of seconds per vehicle

The 95th percentile queues of the Powder Mill Road/BW Parkway southbound ramps intersection are shown in Figure 6-24. Queues would be in the available storage requirements under the No Action and Action Alternatives, except for the southbound left-turn lane of the BW Parkway southbound ramp. The recommendation for mitigation of the southbound left-turn lane includes extending the lane to 300 feet by restriping within the existing pavement right of way. This change would provide an adequate improvement. Except for the eastbound through movement of Powder Mill Road, queues under the Action Alternative with Mitigation would be within their available storage. Specifically, the eastbound through-moving queues would be 154 feet during the AM peak hour and 175 feet during the PM peak hour, or approximately the distance to the upstream intersection with Springfield Road (Intersection #12). This is an expected impact of signalization. Powder Mill Road would operate at free flow under the No Action and Action Alternatives, but signalization would inevitably result in queuing on Powder Mill Road because signalization guarantees protected phasing for the BW Parkway southbound ramp that stops eastbound and westbound traffic. Because of intersection spacing constraints and the limited right of way of the Powder Mill Road underpass of the BW Parkway, no geometric improvements have been identified to adequately mitigate the through-moving queues. In conclusion, queuing impacts at this intersection would be mitigated to the extent reasonable given the physical constraints of this location.

Figure 6-24:	Powder Mill I	Road/BW Parkwa	v Southbound	Ramps	Queuing	Mitigation	Summary
J · · · ·							

	Intersection Name/Street Name			Turning Bay/Link Length oup (feet) No Action and Action/ Mitigation	No Action Alternative		Action Alternative with Mitigation	
ID		Direction	Lane Group		AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
13	Powder Mill Road and	MD 295 SB	Ramps (1	ſWSC)a				
	Powder Mill Road	EB	TR/T	140/140	6	23	154	175
	Powder Mill Road	EB	-/R	-/140	0	0	74	96
	Powder Mill Road	WB	L	225/225	39	79	59	123
	Powder Mill Road	WB	Т	520/520	0	0	151	99
	BW Parkway SB Ramp	SB	L	25/300	58	56	236	274
	BW Parkway SB Ramp	SB	TR	1020/1020	196	1086	169	104

Notes:

a This intersection would operate with a signal control with mitigation

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Powder Mill Road/BW Parkway Northbound Ramps (Intersection #14)

The mitigation impact for Powder Mill Road/BW Parkway northbound ramps is shown on **Figure 6-25** based on HCM and CLV capacity metrics. The table presents the mitigation impact on the northbound approach of the BW Parkway northbound ramp, whose failure under the Action Alternative triggered the need for mitigation; the table also summarizes the overall intersection operations. Because the intersection is recommended for signalization, the benchmark for acceptable operations under the Action Alternative with Mitigation is based on the overall intersection function and not on the approach that originally failed. The intersection would operate within overall acceptable HCM and CLV standards; therefore, the intersection would be mitigated.

	HCM Dela	y and LOS	CLV and CLV LOS							
	AM Peak PM Peak Hour Hour		AM Peak Hour	PM Peak Hour						
Northbound BW Parkway Northbound Ramps										
No Action Alternative	37.2/E	599.3/F	n/a	n/a						
Action Alternative	796.1/F	1,119.8/F	n/a	n/a						
Action Alternative with Mitigation	42.5/D	155.7/F	n/a	n/a						
Overall Intersection										
No Action Alternative	5.8	38.3	n/a	n/a						
Action Alternative	217.2	67.0	n/a	n/a						
Action Alternative with Mitigation	24.8/C	14.4/B	572/A	956/A						

Figure 6 25, Develor Will Deed/DM/ Develor	ave Marthharmod Damana	NOM and OLV Mitimatia	
FIGURE 0-25: POWGER WIIII ROAD/BW PARKWA	av Northdound Rambs	S MUM and ULV MITIDATIO	on Summarv
· · · · · · · · · · · · · · · · · · ·			

Notes: HCM delays are presented in units of seconds per vehicle

The 95th percentile queues of the Powder Mill Road/BW Parkway northbound ramps intersection are shown in **Figure 6-26**. Queues would be in the available storage requirements under the No Action and Action Alternatives, except for the northbound left-turn lane of the BW Parkway southbound ramp. The recommendation for mitigation of the northbound left-turn lane includes extending the lane to 300 feet by restriping within the existing pavement right of way, which would provide adequate improvement.

These 95th percentile queues also indicate that queues would be in the available storages under the No Action Alternative and the Action Alternative, except for the northbound left-turn lane of the BW Parkway Southbound Ramp. The recommendation for mitigation of the northbound left-turn lane includes extending the lane to 300 feet, by restriping within the existing pavement right of way, which is demonstrated to be an adequate improvement.

Except for the westbound right-turn movement of Powder Mill Road, queues under the Action Alternative with Mitigation would be within their available storage. The westbound right-turn lane would have a full-lane storage length of 100 feet. Whereas the AM peak hour queue length is estimated as 139 feet and the PM peak hour queue length is estimated at 118 feet—exceeding 100 feet—this intersection faces severe limitations, due to its proximity to the bridge between it and the Powder Mill Road/Soil Conservation Road intersection. This bridge between the two intersections spans a tributary of Beaverdam Creek, which constrains the ability to extend the turn lane beyond 100 feet. In addition, the queue of the westbound through lane would be 209 feet in the AM peak hour and 112 feet in the

PM peak hour, compared to a distance of 850 feet to the upstream intersection with Soil Conservation Road (Intersection #15), indicating that there is sufficient storage within the overall westbound approach to accommodate westbound vehicles of either turning movement.

				Turning Bay/Link	No Action /	Alternative	Action Alternative with Mitigation	
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
14	Powder Mill Roa	ad and MD 29	95 NB Ram	ps (TWSC) ^a				
	Powder Mill Road	EB	L	250/250	61	234	133	212
	Powder Mill Road	EB	Т	520/520	0	185	262	201
	Powder Mill Road	WB	TR/T	850/850	13	37	209	112
	Powder Mill Road	WB	R	-/100	0	0	139	118
	BW Parkway NB Ramp	NB	L	50/300	60	90	292	130
	BW Parkway NB Ramp	NB	TR	880/880	64	753	127	51

Figure 6-26:	Powder Mill	Road/BW I	Parkwav	Northbound	Ramps	Queuina	Mitigation	Summarv
i iguic 0-20.			annuay	i i oi u i o o u i o	Numps	Queung	magaaon	Gainnary

Notes:

a This intersection would operate with a signal control with mitigation

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound.

2) LTR = left / through / right lanes.

3) TWSC = Two-way STOP-Controlled unsignalized intersection.

4) AWSC = All-way STOP-Controlled unsignalized intersection.

5) Red cells denote lane groups whose queuing length exceeds capacity.

Other Roadway Improvements for Consideration

The preceding sections describe intersection control and geometric improvements to the study intersections, which primarily focus on mitigating the operations of those intersections. Improvements that are not essential for the improvement of operations but may achieve other desirable goals, such as traffic calming, can also be considered.

Temporary reductions of speeds from the posted speed of 35 MPH to approximately 25 MPH where conflicts are more likely to occur (e.g., crosswalks and intersections) would significantly reduce the risk of serious crashes to either pedestrians, cyclists, or occupants of a vehicle. A specific consideration for improvement regarding potential speeding issues along Powder Mill Road relates to existing rumble strips that are positioned on Powder Mill Road near the intersections with Poultry Road and Research Road. Rumble strips generate abrasive sounds when passed over, may be regarded as discordant with preferred aesthetics, and are often uncomfortable for people on bicycles or motorcycles; however, other alternatives are available that also achieve speed reduction goals.

At either intersection, as recommended in the state of Pennsylvania for reference, speed tables may be positioned on Powder Mill Road approximately 150 feet east and west of the Research Road intersection or 250 feet east and west of the Poultry Road/BEP driveway intersection, assuming it is signalized as previously recommended (FHWA 2017). Considerations should be given to drainage for the design of speed tables. Because Powder Mill Road serves the express Metrobus Route B30, implementation of speed cushions in lieu of speed tables may be considered. While speed tables feature raised areas of the roadway that extend along the entire width of the traveled roadway, speed cushions are raised areas in the roadways that differ from speed tables in that the raised areas of each approach have gaps on either side. The gaps created by the speed cushion allow vehicles with wide tracks, such as emergency vehicles and buses, to pass through the gaps of the speed cushion and prevent speed reductions for those vehicles. In this way, speed cushions may be preferential to speed tables for the ease of emergency vehicles.

Approximately 650 feet east of the Research Road intersection, a marked crosswalk connects the north and south sides of Powder Mill Road to sidewalks that serve nearby USDA facilities. Two sets of rumble strips are positioned on Powder Mill Road approximately 100 feet east of the crosswalk. While pedestrians may be protected from speeding vehicles approaching from the east on Powder Mill Road, no apparent traffic calming measures are available immediately west of the crosswalk on Powder Mill Road. A potential improvement to this condition would be to replace the marked crosswalk with a raised crosswalk to slow vehicles and install streetlighting that could adequately improve the visibility of pedestrians using the crosswalk.

C Signal Warrant Analysis Summary

A signal warrant analysis is a quantitative assessment based on traffic volumes and established standards to determine if installing a traffic signal at a specific intersection is justified or warranted. A signal warrant analysis was conducted following the guidelines of the 2009 Manual on Uniform Traffic Control Devices (MUTCD) (FHWA 2012).

A peak hour warrant (Warrant 3) following the MUTCD requires two categorial tests (Warrants 3A and 3B). If either Warrants 3A or 3B pass, then the intersection meets the warrant for signalization. Warrant 3A includes three subtests: (1) a calculation of the stopped time delay of one minor street approach controlled by a stop sign, (2) exceeding the threshold for volume of the same minor street approach, and (3) exceeding the threshold for the total intersection volume. Warrant 3B is based on a plotted chart published in the MUTCD (Figure 4C-3; FHWA 2012). The plotted point in the chart indicates the highest minor street approach volume versus the total major street approach volume. If the plotted point is situated higher than the appropriate curve (based on the number of lanes for major and minor approaches), the peak hour warrant is met.

- As has been previously discussed, four unsignalized study intersections (including Intersection #10, where the site driveway is located) are recommended for signalization. This section presents a peak hour warrant analysis (based on Warrant 3) for each of those intersections, which include:
- Powder Mill Road/Poultry Road (BEP Driveway) (Intersection #10)
- Powder Mill Road/Springfield Road (Intersection #12)
- Powder Mill Road/MD 295 (BW Parkway) southbound ramps (Intersection #13)
- Powder Mill Road/MD 295 (BW Parkway) northbound ramps (Intersection #14)

Figure 6-27 summarizes the peak hour warrant (Warrant 3) analysis results for each of the four study intersections, and **Figures 6-28** through **6-31** present the MUTCD plotted graph (Warrant 3B) with the volumes of each intersection point plotted. Based on the peak hour warrant analysis, each of the intersections would meet the warrant for signalization.

ID	Warrant and Intersection	Forecast	Forecasted Values			Morrout
		AM Peak Hour	PM Peak Hour	Warrant Threshold	Category Check	Met or Not Met
10	Powder Mill Road/Poultry Road (BEP Drive	way)				
	Warrant 3A.1 - Stopped Time Delay	0 veh-hrs	85 veh-hrs	4 veh-hrs	Met	
	Warrant 3A.2 - Minor Street Volume	0	862	150	Met	
	Warrant 3A.3 - Total Intersection Volume	1403	1895	650	Met	
	Warrant 3B - Plotted Point on Curve	S	ee Figure 6-28		Met	Met
12	Powder Mill Road/Springfield Road	Powder Mill Road/Springfield Road				
	Warrant 3A.1 - Stopped Time Delay	8 veh-hrs	60 veh-hrs	4 veh-hrs	Met	
	Warrant 3A.2 - Minor Street Volume	155	309	150	Met	
	Warrant 3A.3 - Total Intersection Volume	1237	1713	650	Met	
	Warrant 3B - Plotted Point on Curve	S	ee Figure 6-29		Met	Met
13	Powder Mill Road/BW Parkway Southbound	d Ramps				
	Warrant 3A.1 - Stopped Time Delay	52 veh-hrs	137 veh-hrs	4 veh-hrs	Met	
	Warrant 3A.2 - Minor Street Volume	524	432	150	Met	
	Warrant 3A.3 - Total Intersection Volume	1549	2141	650	Met	
	Warrant 3B - Plotted Point on Curve	See Figure 6-30			Met	Met
14	Powder Mill Road/BW Parkway Northbound Ramps					
	Warrant 3A.1 - Stopped Time Delay	94 veh-hrs	38 veh-hrs	4 veh-hrs	Met	
	Warrant 3A.2 - Minor Street Volume	427	122	150	Met	
	Warrant 3A.3 - Total Intersection Volume	1570	2165	650	Met	
	Warrant 3B - Plotted Point on Curve	S	ee Figure 6-31		Met	Met

Figure 6-27: Peak Hour Warrant Analysis Summary

Figure 6-28: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road Road/Poultry Road (BEP Driveway)

Notes:

1) Triangular symbol indicates AM peak hour volumes; Circular symbol indicates PM peak hour volumes

approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 6-29: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road Road/Springfield Road

Notes:

1) Triangular symbol indicates AM peak hour volumes; Circular symbol indicates PM peak hour volumes

Figure 6-30: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road/BW Parkway Southbound Ramps

Notes:

1) Triangular symbol indicates AM peak hour volumes; Circular symbol indicates PM peak hour volumes

approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 6-31: MUTCD Warrant 3B – Peak Hour Warrant with Intersection Point Plotted for Powder Mill Road/BW Parkway Northbound Ramps

Notes:

1) Triangular symbol indicates AM peak hour volumes; Circular symbol indicates PM peak hour volumes

This page intentionally left blank.

7. ROM Costs

A Mitigation Design

Given the conceptual nature of the Mitigation Designs articulated in the previous chapter, the Rough Order of Magnitude (ROM) Costs derive primarily from the surface area consumed through the implementation of in these upgrades, measured in square footage. Thus, each final Construction ROM directly correlates to the expected square footage of newly installed surface necessary to achieve the outcome indicated in each of the five Design Concepts: Intersection #6, Intersection #7, Intersection #8, Intersections #12, #13, #14 (one single unified mitigation strategy), and the BEP Driveway (Intersection #10). **Figure 7-1** shows the ROM totals and the breakdowns of their component parts.

ID	Intersection	Construction ROM	Construction Grading A ROM S		Asphalt Surfacing	Misc. Improvements	
6	MD 201 (Edmonston) and Sunnyside	\$5,940,000	\$1,485,000	\$1,782,000	\$2,376,000	\$297,000	
7	MD 201 (Edmonston) and Beaver Dam	\$2,650,000	\$662,500	\$795,000	\$1,060,000	\$132,500	
8	MD 201 (Edmonston) and Powder Mill	\$6,300,000	\$1,575,000	\$1,890,000	\$2,520,000	\$315,000	
10	Powder Mill and Poultry (BEP Driveway)	\$2,220,000	\$555,000	\$666,000	\$888,000	\$111,000	
12	Powder Mill and Springfield	\$700,000	\$175,000	\$210,000	\$280,000	\$35,000	
13	Powder Mill and BW Parkway Southbound	\$1,600,000	\$400,000	\$480,000	\$640,000	\$80,000	
14	Powder Mill and BW Parkway Northbound	\$1,900,000	\$475,000	\$570,000	\$760,000	\$95,000	
12, 13, 14	Powder Mill, Springfield, and BW Parkway	\$4,200,000	\$1,050,000	\$1,260,000	\$1,680,000	\$210,000	
	Total Improvements	\$21,310,000	\$5,327,500	\$6,393,000	\$8,524,000	\$1,275,500	

Figure 7-1: Construction ROM for Mitigation Strategies

The per-square-foot costs account for grading (approximately 25%), aggregate sub-base (approximately 30%), asphalt surfacing (approximately 40%), and miscellaneous items, such as striping, signage, and traffic signals (approximately 5%). These estimates assume a balanced site with no cause for soil remediation or water mitigation. The estimates also assume use the site designs validated during the Future Conditions report, and the results are subject to change based on adjustments to the mitigation designs that may take place in future iterations. They use a loaded rate and assume burdened labor. The margin of error for these estimates is -30% to +50% in accordance with ACCE International guidelines for a class 5 estimate. Inclusion of design-related costs would necessitate a 4% mark-up into the ROMs for total improvements.

Though subject to fluctuations induced by approvals from state, county, and federal agencies, the estimated duration given the scale of the construction is 24 months. Therefore, with an award date of June 2021 and a start of January 2022, the reasonable completion date would be January 2024.

B Land Acquisition

The metrics listed for Land Acquisition used a different methodology than the above Construction ROM, and any further analysis should perceive these numbers on their own terms, as an alternative estimate

that may apply to potential eminent domain proceedings, if they need to take place to expand rights of way necessary for the desired construction. For most of the listed mitigation strategies, land acquisition would not comprise any quantifiable cost, because most land is federally owned, and the requisite title transfer could take place through a Memorandum of Understanding or similar agreement between various federal agencies. As **Figure 4-5** indicated, the majority of parcels in the study area are exempt, largely due to public ownership.

Figure 7-2 shows land acquisition estimates, for the only two intersections where land acquisition might take place due to the presence of privately owned (non-federal) land: Intersection #7 and Intersection #8. Intersection #7 features four privately owned parcels (single-family detached homes) that could be affected through extensions of the right of way and resurfacing, while Intersection #8 features a parcel owned by a non-profit (tax-exempt but a private landowner), and three for-profit commercial entities.

ID	Intersection	Land Acquisition
6	MD 201 (Edmonston) and Sunnyside	Exempt: USDA
7	MD 201 (Edmonston) and Beaver Dam	\$19.99 per sq ft (also Exempt: USDA)
8	MD 201 (Edmonston) and Powder Mill	\$4.43 per sq ft
10	Powder Mill and Poultry (BEP Driveway)	Exempt: USDA
12, 13, 14	Powder Mill, Springfield, and BW Parkway	Exempt: USDA & Treasury

Figure 7-2: Land Acquisition by Median Square Footage

The privately-owned residential lands (Intersection #7), seen in **Figure 7-3**, use a differing methodology from the commercial/non-profit lands (Intersection #8). All parcel square footage comes from Prince George's County Geospatial Data, but assessment data's tendency to under-estimate residential properties impelled the Project Team (A/E) to use fair market value for the homes as estimated by a widely recognized real estate search engine (Trulia.com), which offers the most up-to-date fair market value estimates, using a combination of public data (assessments), historic listings, and recent sales of those homes with similar characteristics (lot size, square footage, location, bedrooms and bathrooms, etc.). By combining these two variables—publicly recognized parcel size with fair market estimates--the median value of land per square foot was determined to be \$19.99 at this Intersection. It is essential to note that the current design conspicuously avoids any acquisition of these parcels should account for both the cost of acquisition estimated here, as well as the broader impact of a four-lane arterial in close proximity to homes, which may prompt the landowners to seek a complete taking via eminent domain.

Trulia Market Value Estimation	Parcel Square Footage	Cost Per SF
\$275,877	13,564	\$ 20.34
\$374,240	15,256	\$ 24.53
\$293,391	14,945	\$ 19.63
\$305,039	48,603	\$ 6.28
	MEDIAN	\$ 19.99

Figure 7-3: Disaggregated Basis for Median Value, Using Intersection #7 Parcels

For Intersection #8, seen in **Figure 7-4**, Trulia is not available; it only provides estimates for residential properties. Thus, the next best option is Prince George's County Geospatial Data, featuring the latest assessment records (last updated June 2019) and the same data source's measurement for parcel area. The median value of land per square foot was determined to be \$4.43 at this intersection. This figure is considerably lower, which does not logically follow from real estate convention, given that the intersection is more prominent (higher traffic flow on Powder Mill Road than on Beaver Dam) and the land uses are commercial. However, two of the parcels are zoned commercial but are vacant and unimproved, resulting in a lower assessed value; furthermore, county appraisals are usually valued lower than an independent appraising entity (such as Trulia). Lastly, the considerable presence of protective easements on several of these parcels—as previously referenced in the Site Analysis—places considerable restriction on development, thereby likely lowering anticipated fair market value of the land.

Assessed Value (PG County GIS Data)	Parcel Square Footage	Cos	t Per SF
\$546,100	96,964	\$	5.63
\$443,700	535,499	\$	0.83
\$59,966	443,284	\$	3.23
\$1,683,500	211,489	\$	7.96
	MEDIAN	\$	4.43

Figure 7-4: Disaggregated Basis for Median Value, Using Intersection #8 Parcels

C Responsible Party

The primary agency responsible for any of the improvements indicated in the mitigation strategies depends on the ownership of the respective rights of way, as indicated in **Figure 7-5**. Any roads that pass through BARC fall under USDA's control, which in this instance refers to a considerable portion of Powder Mill Road.

Intersection	Intersection	Responsible Agencies
6	MD 201 (Edmonston) and Sunnyside	Maryland SHA/Prince George's County DPW&T
7	MD 201 (Edmonston) and Beaver Dam	Maryland SHA/Prince George's County DPW&T
8	MD 201 (Edmonston) and Powder Mill	Maryland SHA/Prince George's County DPW&T
10	Powder Mill and Poultry (BEP Driveway)	USDA
12, 13, 14	Powder Mill, Springfield, and BW Parkway	USDA/NPS

Figure 7-5: Responsible Parties for Improvements at Each Recommended Intersection for Mitigation.

8. References

- BEP (Bureau of Engraving and Printing). 2017. Future Workplace Recommendations Report. Accessed August 2019. Part of Government Furnished Material provided to consultant team by client.
- Censky, Steve, USDA Deputy Secretary, Departmental Administration (DA) transmittal to Washington DC employees, transmitted to Eric McAfee from Alliance Consulting Group by Christopher Bentley from USDA, October 16, 2019.
- City of Greenbelt. 2016. Pedestrian and Bicycle Trail Maps, Fall 2016. Accessed September 2019. Available at: <u>https://www.greenbeltmd.gov/home/showdocument?id=12187</u>.
- Davis and Johnson. 2019. Personal communication between Chuck Davis from BEP and Harvey Johnson from USACE on August 5, 2019.
- DC.gov. 2018a. WMATA Bus Lines, DCGIS Open Data, DC.Gov, September 2018. Accessed December 2019. Available at: <u>https://opendata.dc.gov/datasets/35738eb6405f4bb0bfdceddb21ac3122_59</u>.
- DC.gov. 2018b. WMATA Bus Stops, DCGIS Open Data, DC.gov, September 2018. Accessed December 2019. Available at: <u>https://opendata.dc.gov/datasets/e85b5321a5a84ff9af56fd614dab81b3_53</u>.
- DDOT (District Department of Transportation). 2010. DC's Transit Future System Plan Final Report. Accessed December 2019. Available at: <u>https://ddot.dc.gov/page/dc-transit-future-system-plan-final-report-april-2010</u>.
- FEMA (Federal Emergency Management Agency). 2016. Digital Flood Insurance Rate Maps (DFIRMs) for Prince George's County, Maryland: panels 24033C0044E and 24033C0042E. Accessed October 2019. Available at: <u>https://msc.fema.gov/portal/advanceSearch</u>
- FHWA (Federal Highway Administration). 2017. Traffic Calming ePrimer, 3.9 Roundabout. Accessed November 25, 2019. Available at: https://safety.fhwa.dot.gov/speedmgt/ePrimer_modules/module3pt2.cfm.
- FHWA. 2014. Designing Sidewalks and Trails for Access. Chapter 4 Sidewalk Design Guidelines and Existing Practices. February 2014. Accessed October 28, 2019. Available at: http://www.fhwa.dot.gov/environment/bicycle pedestrian/publications/sidewalks/chap4a.cfm.
- FHWA. 2012. Manual on Uniform Traffic Control Devices, 2009 Edition with Revision Numbers 1 and 2 Incorporated May 2012. Accessed November 12, 2019. Available at: https://mutcd.fhwa.dot.gov/pdfs/2009r1r2/pdf index.htm.
- FHWA. 2006. FHWA Course on Bicycle and Pedestrian Transportation. Lesson 13: Walkways, Sideways, and Public Spaces. Accessed October 28, 2019. Available at: http://safety.fhwa.dot.gov/ped_bike/univcourse/pdf/swless13.pdf.
- FWS (Fish and Wildlife Service). 2017. National Wetlands Inventory (NWI) data for the Middle Potomac-Anacostia-Occoquan Watershed. Available at: <u>https://www.fws.gov/wetlands/Data/Data-Download.html</u>
- ITE (Institute of Transportation Engineers). 2014. Trip Generation Handbook, Third Edition, An ITE Proposed Recommended Practice, Institute of Transportation Engineers, Washington, D.C.
- ITE. 2012. Trip Generation Manual, Ninth Edition, Institute of Transportation Engineers, Washington, D.C., September 2012.

- M-NCPPC (Maryland National Capital Park and Planning Commission). n.d.a. PGAtlas. Accessed October 28, 2019. Available at: <u>http://www.pgatlas.com/</u>.
- M-NCPPC. n.d.b. Stream and Wetland Buffer Identifier. Accessed November 7, 2019. Available at: <u>https://www.arcgis.com/apps/webappviewer/index.html?id=db315dc766b8484a9464dc7464569a</u> <u>8f</u>.
- M-NCPPC. 2014. Plan Prince George's 2035. May 6, 2014. Accessed September 2019. Available at: <u>http://www.pgplanning.org/374/Plan-2035</u>.
- M-NCPPC. 2012a. Transportation Review Guidelines. Accessed September 2019. Available at: <u>http://www.pgparks.com/1743/Transportation-Review-Guidelines</u>.
- M-NCPPC. 2012b. Adopted and Approved Priority Preservation Area Functional Master Plan. Accessed September 2019. Available at: <u>https://issuu.com/mncppc/docs/ppa_book/31</u>.
- M-NCPPC. 2012c. Transportation Review Guidelines Part I Part II. Accessed October 28, 2019. Available at: <u>http://www.pgparks.com/1674/Transportation-Review-Guidelines</u>.
- M-NCPPC. 2010. Approved Master Plan and Sectional Map Amendment for Subregion 1 (Planning Areas 60, 61, 62, and 64). Accessed September 2019. Available at: https://issuu.com/mncppc/docs/subregion 1.
- M-NCPPC. 2001. Greenbelt Metro Area. Approved Section Plan and Section Map Amendment. Accessed December 9, 2019. Available at: http://mncppcapps.org/planning/publications/PDFs/29/01%20Abstract%20and%20Foreword.pdf.
- Maryland SHA. 2018. Traffic Volume Maps by County. Accessed October 28, 2019. Available at: https://www.roads.maryland.gov/Index.aspx?PageId=792.
- Maryland SHA (Maryland State Highway Administration). 2014a. Maryland SHA's 2013 Functional Class GIS data.
- Maryland SHA. 2014b. AADT's of Stations for the Years 2007-2013. Accessed September 2019. Available at: <u>http://www.marylandroads.com/oppen/station_history.pdf.</u>
- MDOT (Maryland Department of Transportation). 2019. Accessed October 25, 2019. Available at: <u>https://www.mta.maryland.gov/schedule/marc-camden</u>.
- MDOT SHA (Maryland Department of Transportation State Highway Administration). 2018. Roadway Functional Classes (GIS data). October 2018. Accessed September 2019. Available at: <u>https://maryland.maps.arcgis.com/apps/webappviewer/index.html?id=83797b4feb2c48f190606e9</u> c2a440170.
- MWCOG (Metropolitan Washington Council of Governments). 2016. Commuter Connections, State of the Commute Survey, 2016. Technical Survey Report.
- NCPC (National Capital Planning Commission). 2016. Comprehensive Plan for the National Capital Federal Elements. Accessed September 2019. Available at: <u>https://www.ncpc.gov/plans/compplan/</u>.
- Prince George's County Planning Department. 2013. The Approved Greenbelt Metro Area and MD 193 Corridor Sector Plan and Sectional Map Amendment. Accessed September 2019. Available at: <u>http://mncppcapps.org/planning/publications/BookDetail.cfm?item_id=278&Category_id=1</u>.

- PGC PD (Prince George's County Planning Department). 2009. Approved Countywide Master Plan of Transportation. Accessed September 2019. Available at: http://www.pgparks.com/1156/Transportation-Plans.
- Renard Development Company. 2014. Internal Traffic Flow Analysis for Greenbelt WMATA, Mixed-Use, and FBI Headquarters prepared by Lenhart Traffic Consulting, Inc., October 6, 2014.
- TRB (Transportation Research Board). 2016. Highway Capacity Manual 6th Edition, National Academy of Science.
- TRB. 2011. National Cooperative Highway Research Program Report 684, Enhancing Internal Trip Capture Estimation for Mixed-Use Developments, Transportation Research Board for the National Academies of Science, Washington. D.C.
- TRB. 2010. 2010 Highway Capacity Manual. Washington, D.C.: Transportation Research Board.
- TRB. 2000. 2000 Highway Capacity Manual. Washington, D.C.: Transportation Research Board.
- USACE (U.S. Army Corps of Engineers). 2019. Environmental Condition of Property Report (ECP): 104-Acre Parcel of Land Surrounding Poultry Road. Accessed August 2019. In DRAFT form. Part of Government Furnished Material provided to consultant team by client.
- U.S. Environmental Protection Agency. 1998. Characterization of Building-related Construction and Demolition Debris in the United States. Accessed December 6, 2019. Available at: <u>https://www.epa.gov/sites/production/files/2016-03/documents/charact_bulding_related_cd.pdf</u>.
- USDA (United States Department of Agriculture). 2019. Beltsville Agricultural Research Center, Maryland, Map. Accessed September 2019. Available at: https://www.nal.usda.gov/exhibits/speccoll/items/show/8896.
- USDA. 1996. Beltsville Agricultural Research Center. 1996 Master Plan Update, Master Plan Report.
- USDA-ARS (United States Department of Agriculture Agricultural Research Service). 1996. Beltsville Agricultural Research Center. 1996 Master Plan Update, Master Plan Report.
- USDOJ (United States Department of Justice). 2010. 2010 ADA Standards for Accessible Design. Accessed October 28, 2019. Available at: <u>http://www.ada.gov/regs2010/2010ADAStandards/2010ADAstandards.htm#c4</u>.
- USDOJ. 2007. Civil Rights Division, Standards for Accessibility Design Chapter 6, Curb Ramps and Pedestrian Crossings. May 2007.
- WMATA (Washington Metropolitan Area Transit Authority). n.d. Strategic Plans 2025 Initiatives. Accessed December 2019. Available at: <u>https://www.wmata.com/initiatives/strategic-plans/</u>.
- WMATA. 2014. Momentum The Next Generation of Metro (Strategic Plan 2013–2025). Accessed September 2019. Available at: <u>https://www.wmata.com/initiatives/plans/upload/2013-Momentum-Strategic-Plan-for-2025.pdf</u>.
- WMATA. 2019a. WMATA Schedules and Timetables. Accessed December 9, 2019. Available at: <u>https://www.wmata.com/schedules/timetables/</u>.
- WMATA. 2019b. Trip Planner. Accessed October 25, 2019. Available at: <u>https://www.wmata.com/schedules/trip-planner/trip-planner-</u> <u>results.cfm?locationLatLng=&destinationLatLng=&location=GALLERY+PLACE+METRO+STATIO</u>

N&destination=GREENBELT+METRO+STATION&travelby-trip-planner=BCFKLRSTX123&arrdep-trip-planner=A&hour-leaving-trip-planner=6&minute-leaving-trip-planner=00&period-leaving-trip-planner=AM&month-leaving-trip-planner=10&day-leaving-trip-planner=29&route-trip-planner=T&walk-distance-trip-planner=.75#main-content.

9. APPENDIX A: SIGNED SCOPING AGREEMENT AND COMMENT RESPONSES

Traffic Impact Study Scoping Agreement

The Maryland-National Capital Park and Planning Commission

Prince George's County Planning Department Transportation Planning Section, Countywide Planning Commission

Project Name:	nd Printing Transportation Study			
Policy Tier (Developed, Developing, or Rural): Please note if in center or corridor:	Proposed site located in "Rural" designated area; therefore, LOS C standard for Critical Lane Volume Analysis.			
Type of Application (see Table 3):	Transp Impact Bureau Greent Agricul provid	ortation Study to Statement asse of Engraving an pelt Maryland, us tural Research C e authority to tra	o accompany an Environmental ssing the impacts of relocating the id Printing from Washington D.C. to sing USDA property at the Beltsville Center (BARC). The 2018 Farm Bill will ansfer land to BEP	
Project Location:	USDA-	owned 104-acre	site at BARC adjacent to Poultry Road	
Traffic Consultant Name: Contact Number(s):	Allianc Mark B Eric Mo Harvey	e Consulting Gro Ierger, WSP – 20 Afee, Alliance C Johnson, USACE	up and WSP (formerly Louis Berger) 2-303-2787 onsulting Group – 202-617-8485 5 – 410-962-7961	
Describe the Proposal Under Study: Residential—Number & Type of Units: Commercial—Amount & Type of Space: Other Uses and Quantity:	Propos Printin facility suppor	ed construction g Facility ranging would include a t staff needs.	of new Bureau of Engraving and from 850,000 SF to 1M SF. The printing facility and office space to	
Are pass-by trip rates in accordance with the guidelines? (circle one)	Not	Applicable	If No, please provide explanation on separate sheet.	
Are there diverted trips? (circle one)	Not	Applicable	If Yes, please provide explanation on separate sheet.	
Will a TOD credit be used? (Section 4 of the Guidelines) (circle one)	Not	Applicable	Note that all development in centers and corridors will be evaluated for TOD.	
Will a transit facilities credit be used? (Section 5 of the Guidelines) (circle one)	Yes	USDA Shuttle Bus to Greenbelt Metro Station	Need/nexus must be justified in study, and it must be supported by operating agency.	
Will a bike/ped facilities credit be used? (Section 6 of the Guidelines) (circle one)	No		Need/nexus must be justified in study, and it must be supported by operating agency.	
Are additional trip reductions (internal trips, transit trips, etc.) proposed? (circle one)	Yes	Carpooling	If Yes, please provide explanation on separate sheet.	

Attach a map (or maps) showing the study area network with included intersections and links, estimated site trip distribution, and growth factors for through traffic.

SHA/DPW&T capital program improvements assumed:	None			
Other improvements assumed:	None			
Is Mitigation (Section 8 of the Guidelines) to be proffered? (circle one)	TBD	Note the locational criteria in Section 8, and please note the clarifications regarding mitigation included in Section 3, Subsection E.		
Is a cooperative funding arrangement (such as a SCRP, PFFIP, or some other pro rata) to be used? (circle one)	TBD	If Yes, please provide explanation on separate sheet, and note limitations in Section3, Subsection E.		
Will summer counts be used? (circle one)	Counts taken in September	The use of summer counts must have specific concurrence of TPS staff.		
Have there been discussions with the permitting agency (DPW&T and/or SHA) regarding access to this site and the analysis requirements? (circle one)	No – discussion between USDA and BEP regarding access from Powder Mill Road and Poultry Road	Section 1, Subsection E, strongly advises that these discussions occur early in the development review process. Note that driveway access onto arterial facilities must be justified and approved by the Planning Board as a part of the subdivision process.		
Has a listing of background development been developed? (circle one)	Beltway Plaza, North Core at Greenbelt Station, and Residential units at Cherrywood Lane	If Yes, please provide the list so that TPS staff may either concur with it or provide changes.		
Have the costs and feasibility of potential off-site transportation improvements been evaluated? (circle one)	That is the purpose of the study.	If No, bear in mind that Section 3, Subsection D, requires that any recommended physical off- site improvements include an evaluation of feasibility.		

SIGNED:

JOHNSON.HARVEY.L.1229425958

Digitally signed by JOHNSON.HARVEY.L.1229425958 Date: 2019.10.20 12:10:15 -04'00'

Date Traffig Consultant 2019 TPS/Coordinator (or Supervisor) Date This form is not required for sites that do not require a TIS

APPROVED:

Trip Generation

The new site would contain 1,427 employees. The production staff would be present during their shift hours. Administrative staff would be present during the daytime shift and would be expected to arrive in a similar pattern as a typical government office. Figure 1 contains a breakdown of number of employees by time of day.

	want sviles as me	1 Mar 1 Mar 1 Mar 1 Mar 1 Mar		
Shift	Total Employees	Production Staff	Administrative Staff	Shift Hours
DAY	1,138	884	254	6:30 AM - 3:00 PM
Evening	168	168		2:30 PM - 11:00 PM
Midnight	166	166		10:30 PM - 7:00 AM

Figure 1: Total Trips Generated

TOTAL 1,472

The Institute of Traffic Engineers (ITE) *Trip Generation Manual 9th Edition* was referenced to provide guidance regarding the number of administration employees that would arrive during the shift peak hour and external roadway peak hour. The ITE Land Use Code 715 (Single Tenant Office Building) provided the best match to the proposed facility because it closely matches the proposed land use and has been studied over 35 times by ITE. The resultant trips calculated by ITE manual were subtracted from the total administrative trips to estimate the number of administrative trips that would occur between 6:00 AM and 8:00 AM in the morning and 3:00 PM and 5:00 PM in the afternoon. These values were then divided by two to estimate the number of administrative trips that might occur during the morning and afternoon shift peak hour. Figure 2 presents the administrative trip pattern.

Figure 2: Administrative Arrival Pattern

	Arrivals Out Peak Hour (IT	side of Shift E Calculated)	Arrivals Duri Hour (254 st	ng Shift Peak aff minus ITE
	AM	PM	calculated AM	I value/2) PM
Daytime Staff	135*	130**	60	62

* ITE Land Use Code 715 (0.53 X 254 administrative staff)

** ITE Land Use Code 715 (0.51 X 254 administrative staff)

The production staff and administrative employees who would arrive during the same AM and PM peak hours were combined resulting in 944 and 946 peak hour trips, respectively. The total administrative employee trips generated during the external roadway AM and PM peak hour would be 135 and 130, respectively. Figure 3 presents the results.

Figure 3: Total Trips Generated

	Peak Arrival Time	AM	Peak Departure Time	PM
Shift Peak Hour	6:00 – 7:00 AM	944	3:00 – 4:00 PM	946
Roadway System Peak Hour	7:45 – 8:45 AM	135	5:00 – 6:00 PM	130

The study will assess the AM and PM production staff peak hours because they reflect the bigger traffic impact.

Parking Requirement

The National Capital Planning Commission (NCPC) recommends that Federal agencies located beyond 2,000 feet from a Metro station provide a parking ratio of 1 space per every 2.0 employees. A total of 1,138 daytime employees are expected to work at the new facility. Two parking ratios are recommended to cover BEP employees depending on the staff type as follows:

- All production staff would follow a 1:1 parking ratio
- All administrative staff would follow a 1:2 parking ratio

The number of employee parking spaces would be 1,179 spaces, composed of the following calculations:

- 1. Daytime Production Staff = 884 spaces (1:1 parking ratio)
- 2. Daytime administrative staff = 127 spaces (1:2 parking ratio)
- 3. Overlap of other shift = 168 spaces (1:1 parking ratio)

The recommended 1:1 parking ratio for production staff is based on a number of factors including impact to the BEP mission, transit availability, and union agreements:

 <u>BEP MISSION</u>: As noted in the April 2018 Government Accountability Office report titled Options for and Costs of a Future Currency Production Facility, "The BEP is not an ordinary government agency requiring an ordinary government building. The BEP is a manufacturing facility – a printing plant – which produces an iconic commodity trusted worldwide." As such, BEP employees are not typical government employees who have wide latitude on work center arrival and departure times. BEP production and production support employees must be at their respective work center at specific times or the BEP production process comes to a halt.

There is approximately a 30-minute overlap of production staff employees to ensure continuity of printing press operations. Production presses cannot be taken off-line in order to facilitate a shift change, because the resulting shut down/restart process will significantly increase product spoilage and production costs. As such, BEP requires enough parking spaces to accommodate both the outgoing and in-coming production and production support workers.

BEP has agreements with a number of unions that represent the production workers. These agreements include the start and end of shift times.

2. <u>METRORAIL TRANSIT AVAILABILITY</u>: Access to BEP by Metrorail would require employees to ride the Metro Green or Yellow Line to Greenbelt Metro Station, transfer to a USDA shuttle bus that would drop them off at the pedestrian gate entrance, and then they would have a short walk to the BEP building entrance. For BEP production staff to arrive in time for the daytime shift, they must board a 6:00 AM USDA shuttle bus at the Greenbelt Station. Only the first Green Line or Yellow Line train on weekdays is scheduled to arrive before 6 AM (5:51 and 5:53 AM) at Greenbelt Station. The USDA shuttle bus will take 10-12 minute to drive to the BEP security gate. After departing the bus, an additional 15-20 minutes must be allocated to cover the time for employees to pass through site security and change into BEP provided uniforms before starting their shift.

For employees arriving for the 6:30 AM shift, the Metrorail schedule creates a single point of mission failure given that there is only one train arriving on each line that could meet the 6:00 AM USDA shuttlebus. It could endanger the mission to assume all employees will successfully catch one of these trains and that the trains will operate on time each weekday of the year.

Page 5

While the current BEP staff modal split for public transportation is 44%, this is due to the proximity of BEP to the center of the Metrorail hub and spoke system and a station is located within a fiveminute walk. The 44 percent represents the percentage of all BEP employees and may represent a majority of administrative workers who have the flexibility to arrive between 6:00 and 9:00 AM each weekday.

Figure 5 on the next page reveals the distribution of employees' residences by zip code, reveal that a sizable number live in southeastern Prince George's County, Charles County, and Stafford County (VA), well outside the limits of WMATA's Metrorail lines.

- 3. <u>METROBUS TRANSIT AVAILABILITY</u>: One Metrobus route serves the BEP facility (Route 87), but an employee would need to reside in Laurel, MD to access the bus (less than 20 current employees live in Laurel).
- 4. <u>MARC TRANSIT AVAIABILITY</u>: The first MARC Train from Baltimore to Greenbelt Station could meet the USDA 6:00 AM shuttle departure, but shift staff ending their shift at 3:00 PM would have to wait 2 hours before they could board a train home.

MARC Trains from Washington DC in the morning do not arrive until after the start of the Daytime shift.

5. <u>CARPOOL OPTION</u>: Carpools could help to offer production staff another transportation option. The MWCOG 2016 State of the Commute indicated that 5.4 percent of commuters carpool on a daily basis and up 7 percent carpooled when traveling to work less than 5 days per week. Based on a comparison of the federal facilities in the national capital region, the highest percent of commuters that traveled in a carpool did not exceed 12 percent. These values are presented below in Figure 4:

Federal Facility	Percent that Carpooled
2013 NSA Bethesda TMP	11.3%
2014 JBAB TMP	10.5%
2015 NRL TMP	5.5%
2013 Carderock TMP	10.7%
2014 Naval Observatory TMP	7.6%
2013 NSF Arlington TMP	9.0%
2015 Navy Yard TMP	10.2%

Figure 4: Comparison of Carpool Percentages among DC-area Federal Facilities

The total spaces would therefore be 1,011 spaces to accommodate daytime employees plus the maximum number of staff from the evening or overnight shifts or 168. *The total number of employee spaces required would be 1,179 spaces to accommodate employees.*

Visitor parking spaces may also be included, but are exempt from the NCPC parking ratio.

Modal Split

BEP is planning to conduct a commuter survey to ask existing employees if they would consider alternative transportation options. In lieu of the survey results and following other Federal facilities, an estimate of 10 percent of administrative employees (equivalent to 2 percent of all daytime employees) would carpool. Assuming a three person per vehicle occupancy for carpools, carpoolers would require 8 parking spaces, leaving 1,003 parking spaces for single occupant vehicles (SOV). This would result in SOVs representing 47 percent of administrative employees (equivalent to 88 percent of all daytime employees). The remaining 10 percent would represent those who would opt to take transit or use a bicycle to commute. Based on the site location, it is not assumed that employees would commute by walking. Figure 6 presents the proposed modal splits.

	- 1 0		
Travel Mode	Percent	Persons	Vehicles
SOV	88%	1,003	1,003
Carpool	2%	23	8
Transit	9%	1.00	N/A
Bicycle	1%	11	N/A
TOTAL	100%	1,138	1,011

Figure 6: Proposed Modal Split

Figure 7: Proposed Trip Distribution

Route	Percent
Capital Beltway WB (I-95/I-495)	22.5%
BW Parkway NB	9.5%
BW Parkway SB/ Capital Beltway SB	63.5%
MD 201 NB (Edmonston Rd)	2.0%
MD 201 SB (Edmonston Rd)	1.5%
Powder Mill Road EB	0.5%
Powder Mill Road WB	0.5%
TOTAL	100%

Trip Distribution/Study Area:

The zip codes for the existing employees was used to develop the trip distribution for the future site. The employee survey will also ask questions pertaining to route preferences to access the site and might be used to tweak the distributions. Based on the zip code database, the majority of employees would most likely use the Baltimore-Washington Parkway or Capital Beltway to access the site. The proposed study area would comprise of 15 intersections and include Powder Mill Road between the Baltimore-Washington Parkway and MD 201, MD 201 between I-95 and Powder Mill Road, Odell Road at MD 201, and Odell Road and Poultry Road. Figure 7 (above) presents the proposed trip distribution, and the map at Figure 8 illustrates the proposed trip distribution and proposed study area.

No Build Condition Regional Growth

Six years of traffic counts were compared to develop a background growth rate for the study area. Traffic volumes from MD 201 - south of Sunnyside Avenue, MD 201 - north of Sunnyside Avenue, and Powder Mill Road between MD 201 and Baltimore-Washington Parkway were compared. Based in the comparison, the average yearly growth rate was 1.2 percent. Figure 9 presents six years of traffic volumes and Figure 10 presents the yearly growth comparison.

Functional				Traffic	Volumes		
Class	SUPER TRANSPORT	2013	2014	2015	2016	2017	2018
Minor Arterial	MD 201 - South of Sunnyside	32,821	32,722	36,330	34,601	35,432	35,860
Minor Arterial	MD 201- North of Sunnyside	24,331	24,262	26,643	25,374	25,985	23,490
Minor Arterial	Powder Mill Road	10,861	10,832	11,893	11,324	11,605	11,960

Figure 9: Six Years of Traffic Volumes

Figure 10: Yearly Growth Comparison

Functional Class	Street	Avg. 2013- 2014	Avg. 2014- 2015	Avg. 2015- 2016	Avg. 2016- 2017	Avg. 2017- 2018	Avg. 2011- 2018					
Minor Arterial	MD 201 - South of Sunnyside	-0.3%	11.0%	-4.8%	2.4%	1.2%	1.9%					
Minor Arterial	MD 201- North of Sunnyside	-0.3%	9.8%	-4,8%	2.4%	-9.6%	-0.5%					
Minor Arterial	Powder Mill Road	-0.3%	9.8%	-4.8%	2.5%	3.1%	2.1%					
Overall Yearly Growth Average												

Traffic Analysis – Mitigation Thresholds

Establishment of traffic analysis thresholds will help to determine if mitigation is necessary, and if so, how much mitigation to recommend. The following presents the thresholds for the traffic operations and queueing:

- Critical Lane Volume (CLV) must be equal or lower than a 1,300 CLV (LOS C) to pass. If the No Build Condition is failing, then the Build Condition CLV will be improved to an equal or lower CLV than the failing value. The CLV will be reported using a custom Excel table.
- Highway Capacity Manual 6th Edition must be LOS D or better to pass. If the No Build Condition is LOS E or F, then the Build Condition LOS will be improved to equal or better LOS than under the No Build. Synchro will be used to assess the HCM 6th Edition LOS. If an intersection signal timing is not compliant with HCM 6th editions rules, such as special pedestrian or hold phases, then the HCM 2000 results will be reported within Synchro. If the No Build LOS is LOS E or F, the Build Condition will not increase the vehicle delay by more than 5 percent.
- 95th Percentile Queueing Analysis must not exceed the available storage capacity of the turning lanes or interfere with the previous upstream intersection. If the No Build 95th Percentile Queueing conditions already exceed the available storage, the Build Condition will not increase the queue length by more than 150-feet. SimTraffic will be used to assess the queueing.

Driveway Location Concept Plan

This concept plan identifies the major site constraints that would influence the placement of driveway entrances to the Bureau of Engraving and Printing's (BEP) Beltsville Agricultural Research Center (BARC) site from Powder Mill Road and Odell Road, as seen in Figure 11. Alternative site plans are feasible and will be

explored further with these constraints in mind. The plan was prepared based on preliminary information provided by the BEP and the Security Concept Site Planning and Area Development considerations in the BEP Future Workplace Recommendations Report (Final 17 August 2017). The site development program includes the following:

- 850,000-1,000,000 square foot building for manufacturing, storage, and office uses;
- 1,179 parking spaces using the ratio and designations agreed upon during the meeting with NCPC on 4 October 2019, and elaborated during the "Parking Requirement" section of this memo
- a visitor center and visitor parking;
- loading areas for truck deliveries;
- internal circulation; and
- stormwater management facilities.

Figure 11: Conceptual Plan for Driveway Location

Comment Submittal Sheet

Submitted By:Eric McAfeeDate and Time:18-Jun-20

Recipients:

Submittal Name & Type: Bureau of Engraving and Printing: Traffic Impact Study at BARC - Prefinal

Comment #	Reviewer Name	e Agency / Unit	Chapter / Volume of Pag Report N	ge / Slide	Paragraph / Figure (if applicable)	Critical	nt ? Comment	DrChecks?	AE Responder	AE Response Status	AE Discussion	Potential Scope	Potential Cost	Potential Schedule	A/E Fulfilled Obligatio in the Comment?	1 Final Resolution
1	Fric		General Concerns				Representation of graphics is inconsistent: some use frames and some don't, and the inclusion of north	No	Alliance	Concur	The production team will ensure consistency in appearance among all maps.	No	No	No	Partial	Still awaiting Adaba Illustrator canacity to fix the Utility Man
2		SHA: Traffic Forecasting		1	Figure 4-10		The westbound lane configuration should be a shared through/right-turn lane and a dedicated left-turn	No	WSP	For Information	The production team rechecked the lane geometry for all intersections with westbound approaches that have a through movement (#3, #8, and #9) and could not find any errors in either	No	No	No	Yes	WSP defends its research and findings, unless there's some detail
3	Rafey Subhani Rafey Subhani	and Analysis SHA: Traffic Forecasting and Analysis	Current Conditions 48 Current Conditions 52	5	Figure 4-13		lane. The eastbound right-turn volume of intersection #1 is low compared to the historical counts available through MDOT SHA's I-TMS database. While the report shows an AM (PM) volume of 73 (95), the most recent (2016) historical count shows a volume of 205 (360).	No	WSP	For Information Only	Figures 4-10 and 4-11 or in the Synchro analysis worksheets in the appendix. The turning movement volumes displayed in Figure 4-13 represents the expected peak hour for BEP between 6:00 a.m. and 7:00 a.m. The higher volume from 2016 represents the traffic flow during the Greenbelt/Beltsville area AM peak hour between 8:00 a.m. and 9:00 a.m. The BEP peak hour was used because that reflects the time when the daytime shift workers would travel through the study area each weekday morning.	No	No	No	Yes	that they are misinterpreting. This single peak hour analysis was agreed upon at the scoping meeting.
4	Rafey Subhani	SHA: Traffic Forecasting and Analysis	current Conditions Gene	eral			The analysis only considers the peak hour of the proposed development and not the peak hour of the surrounding road network. Both should be considered in the analysis to assess which volume combination would lead to the highest whicle volumes and to ensure that the study intersections will operate at an acceptable level during both sets of peaks.	No	WSP	For Information Only	As stated in the previous comment, the highest vehicle demand (850 vehicle trips) from the proposed BEP facility would occur between 6:00 a.m. and 7:00 a.m. The remainder of the morning commute would involve fewer than 125 vehicle trips by administrative workers arriving between 8:00 a.m. and 9:00 a.m. A similar condition would occur during the evening commute. This is based on the nature of the BEP site, which would have two daytime shift changes, each occurring during the study peak hours. Given that situation, all relevant agencies agreed the study should focus on the primary BEP-generated traffic peak hour and formalized that agreement in the scoping agreement. Maryland SHA was part of the scoping agreement discussions.	No	No	No	Yes	Again, these parameters were discussed and agreed upon at the scoping meeting.
5	Rafey Subhani	SHA: Traffic Forecasting and Analysis	Current Conditions Gene	eral			TFAD concurs with the 1.2% growth rate used in the analysis. TFAD concurs with the trip distribution.	No	WSP	Concur	We concur.	No	No	No	Yes	
6	Rafey Subhani	SHA: Traffic Forecasting and Analysis	g Current Conditions Gene	eral			The trip generation be performed using the latest ITE trip generation manual, the 10th edition, and not the 9th edition. While the trip rates of the proposed developments will not be affected by this update, the trip rates of the background development will change.	No	WSP	Check and Resolve	The ITE 9th Edition was proposed as the source for the action condition trip generation process in the scoping agreement. No present parties, including the Maryland SHA representative, disputed this assumption. The 9th Edition was then used for all background development projects to keep the process consistent. Based on this request in the comment, the 10th Edition was compared to the 9th Edition and the Beltway Plaza development was updated to the latest approved plan (See comment #22). Five vehicle trips would be removed and nine vehicle trips would be added to the study area network if the assessment followed the ITE 10th Edition. This would have a negligible effect on the analysis. A sensitivity analysis will be prepared as an appendix to the traffic study to incorporate the ITE 10th Edition. Based on the negligible change and scoping agreement, the report assessment will continue to follow the ITE 9th Edition.	No	No	Yes	Yes, through Sensitivit Analysis	We presented the ITE 9th Edition because all parties were in accordance with that edition during the scoping meeting. The analysis needs to retain one edition throughout the study or it loses consistency. We performed a parallel analysis with TE 10th Edition, which results in a loss of 5 trips in the morning and an increase of 9 rtrips in the afternoon. This is not statistically significant for traffic impact purposes. WSP proposes to produce a sensitivity analysis that runs the analysis through the ITE 10th Edition trip generation manual. It would not take considerably more hours and would not require a contract modification. USACE and BEP supports this potential edition.
7	Rafey Subhani	SHA: Traffic Forecasting and Analysis	Future Conditions 101		Figure 5-9	Yes	The trip generation shown in Figure 5-9 does not separate entering and exiting trips. All AM trips are treated as entering trips, and all PM trips are treated as exiting trips. This does not follow the ITE trip generation methodology and should be corrected.	No	WSP	Check and Resolve	The total number of BEP peak hour vehicle trips forecasted using ITE trip generation was applied to inbound trips in the morning and outbound trips in the evening to follow the BEP schedule. Administrative trips would only arrive during the morning and would only leave during the evening. This ensured that the worst-case scenario was assessed by placing 100% of the ITE calculated trips in the direction of the commute. If vehicle trips were applied in the outbound direction in the AM and inbound direction in the PM, that would lessen the impact of the primary vehicle flows and not represent the worst-case scenario or actual commute pattern that would occur.	No	No	Yes	Yes	It's almost a 90/10 split with vehicles in one direction, and we attempted to capture the worst-case scenario through this. A sensitivity analysis could capture a more optimal situation, but that is not going to capture the full magnitude of potential impacts as effectively. However, we propose that the sensitivity analysis not evaluate a different trip generation assumption because it would require additional analysis and would not reflect a worst-case scenario. BEP's recommendation is to leave it as it is.
8		SHA: Traffic Forecasting	Nikimine 8 Conton 143				No mitigation is proposed for intersection #2; however, the intersection is shown to back up onto I-95 NB during the AM peak hour of the Action Alternative. The intersection should be mitigated to prevent backups	No	WSP	Check and Resolve	According to Synchro, the intersection operations would operate at LOS C or better during the AM peak hour. The team explored more deeply into the northbound queuing issue along MD 201 through intersection #2. After further assessment, SimTraffic is showing that the lane drop north of the Cherrywood Lane intersection would cause a queue issue extended back to as far as intersection #2, but most of the time only as far back as Intersection #4. SimTraffic is not the best tool to assess lane drops scenarios and overestimates the potential queue extended from Sunnyside Avenue to Intersection #1 to help assess if the lane drop would create a queueing issue. Based on the results, the lane drop would not create a queue. The recommended sensitivity analysis will include an assessment of MD 201 northbound during the AM BEP peak hour using the TransModeler model to more accurately assess the queueing effects from the lane drop.	No	No	Yes	Yes	Intersections on MD 201 between the Beltway and Cherrywood Lane operate with acceptable LOS, but there is a lane drop on MD 201 north of Cherrywood Lane. The SimTraffic software is not the best tool for analyzing lane drops and produces results that are often too conservative by overestimating queue lengths. Even at the most extreme example, with 100% of people arriving in a 30- minute stretch instead of 60 minutes, the standards caused by the lane drop should still not create a queue when using the TransModeler software. Complete relief of queuing at the Access Control Point would require 6 or 7 lanes, which is a huge infrastructural investment for just 30 minutes of need, while it would remain vacant the remaining 23 hours.
9	Rafey Subhani	and Analysis SHA: Traffic Forecasting and Analysis	Mitigation & Cost 142				onto the Capital Beltway. Intersection #6 remains above the CLV threshold of 1,300 after the proposed mitigations. While the proposed mitigations would improve the operation of the intersection, further improvements are necessary to reduce the CLV below the acceptable threshold. If additional mitigations are not feasible, a discussion should be included in the report.	No	WSP	For Information Only	Following the scoping agreement and MNCPPC requirements, the intersection was mitigated to address the impacts caused by adding the vehicle trips generated by the proposed BEP project. The CLV was improved to a better CLV than under the No Action Alternative. Improving the intersection further than the BEP impacts was not explored, however the team is happy to share the data if Maryland SHA would like to explore more roadway improvements to achieve a CLV of 1 200 or lower.	No	No	No	Yes	The parameters set in the scoping agreement make the proposed mitigation reasonable. BEP is invested in mitigating any impacts it creates, but mitigating impacts beyond those generated through the BEP project is beyond the scope.
10	Pafay Subbagi	SHA: Traffic Forecasting	Annendices 396				Appendix G: Calibration Report - has highlighted text and placeholder section and figure numbers. (Also	No	Alliance	Concur	The production team will remove highlights and fill missing references with the correct pages and source material.	No	No	No	Yes	
11		SHA: Traffic Development &	Current Convint				The "Data Collection and Development of the Peak Hour" section states that nine ATR locations were placed	No	WSP	Concur	The production team will update the text to state the location of four, not nine, ATRs.	No	No	No	Yes	
12	Cameron Abedi	SHA: Traffic Development & Support	Current Conditions 50	Fi	igure 4-13, 4 [.] 14	-	The existing volumes displayed in Figures 4-13 and 4-14 do not match the count volumes found in the appendix. The discrepancies could be due to balancing or alterations due to the ATR counts. Please explain why the existing volumes were changed.	No	WSP	For Information Only	The volumes displayed in Figures 4-13 and 4-14 reflect the adjusted volumes based on the ATR values to ensure the turning movement volumes represent the vehicle demand and not the vehicle capacity at each intersection. Volume adjustments were also performed to improve the balance in the number of vehicles between intersections to improve the performance of the microsimulation models. Paragraph 4 on page 50 of the report explains the process followed to adjust the volumes. In general, existing peak hour volumes were adjusted to higher values compared the volumes reported in the appendix.	No	No	No	Yes	We believe we addressed this discrepancy through paragraph 4 on page 50 of the report.
13	Compress the "	SHA: Traffic Development &	Current Condition	val			The 10th edition of the ITF tele senses in a result is with bound in the 11 for	No	WSP	Check and Resolve	Please see the response to comment #6.	No	No	Yes	Yes, through Sensitivit Analysis	See response to comment #6
14	Cameron Abedi	Support SHA: Traffic Development & Support	Future Conditions 96	:1 d1			Under the "No Action Alternative Forecasted Traffic Volumes" section, the TIS states that the signal timings were optimized. What was optimized? Was the cycle length changed? Please be more specific.	No	WSP	Concur	The signal splits and offsets were optimized. The cycle lengths were kept constant to follow the existing traffic signal cycle coordination. Text will be added to the report to indicate that the traffic signal splits and offsets were optimized.	No	No	No	Yes	
15	Cameron Abedi	SHA: Trattic Development & Support	Current Conditions				Please provide a volume diagram with the background growth volumes only. We concur with the 1.2% growth rate used.	No	WSP	Concur	The production team will add a turning movement volume illustration that only shows the background growth volumes to the report.	No	No	No	Yes	

Transportation Impact Study BEP Prefinal Comment Response Matrix_200618 , Comments

Comment #	Reviewer Nam	e Agency / Unit	Chapter / Volume of Report	Page / Slide Number	Paragraph / Figure (if applicable)	Critical? Comment	DrChecks?	AE Responder	AE Response Status	AE Discussion	Potential Scope Impact	Potential Cost	Potential Schedule Impact	A/E Fulfilled Obligation in the Comment?	Final Resolution
16	Cameron Abedi	SHA: Traffic Development & Support	Mitigation & Cost	General		Mitigation should be provided for the intersection of MD 201 and Cherrywood Lane. The northbound through queue extends into the adjacent signalized intersection in the Action Alternative.	No	WSP	Check and Resolve	Please see the response to comment #8.	No	No	Yes	Yes, through Sensitivity Analysis	See response to comment #8
17	Cameron Abedi	SHA: Traffic Development & Support	Mitigation & Cost	149	Figure 6-3	The mitigation for MD 201 at Sunnyside Avenue proposes an additional northbound and southbound through lane that extends from Powder Mill Road to approximately 1,500 feet south of Sunnyside Avenue. We recommend that the additional through lanes extend to the intersection of MD 201 and Cherrywood Lane.	No	WSP	For Information Only	Widening MD 201 the entire extent between Cherrywood Lane and Sunnyside Avenue would benefit traffic flow and remove a lane drop, as related to comment #8. However, MD 201 crosses the Beaverdam Creek, which is listed as an area of critical concern. Widening the bridge and roadway through this area seems like it would create major environmental impacts. Specifically, Beaverdam Creek is a Tier II stream whereas Indian Creek is a cultural resource of archaeological importance. Nevertheless, the team is happy to share this data if Maryland SHA would like to explore the effect of this extension.	No	No	No	Yes	Such an extended lane would yield substantial environmental impacts at Beaverdam Creek, with wetlands of critical concern. Given these constraints, it is not likely to be worth the effort. The federal government isn't pursuing this level of intervention because the road's functionality is satisfactory at this level. Beaverdam is a Tier II water quality reference stream. Indian Creek also proposes cultural resource barriers.
18	Cameron Abedi	SHA: Traffic Development & Support	Mitigation & Cost	150	Figure 6-4	The proposed mitigation for the MD 201/Beaver Dam Road intersection includes prohibiting the southbound left turn onto Beaver Dam Road. Were the traffic volumes reallocated in the Action Alternative to account for this? What alternative routes are available?	No	WSP	For Information Only	The assumption was for traffic to turn onto Powder Mill Road eastbound and turn right at the next road to access Beaver Dam Road. The production team will add text describing the alternative route modeled to access Beaver Dam Road from the north. The triggers for mitigation at this intersection were not met under the Action Alternative. The proposed left turn restriction was based on remedying potential safety issues that could arise from vehicles attempting to make the southbound left turn while waiting for acceptable gaps in opposing northbound traffic.	No	No	No	Yes	This is really just a morning thing during peak hour. Few cars make the southbound left turn, but when they try it creates huge back- ups. This is nota big enough problem to warrant a mitigation initiative; the prohibited left term is more of a safety issue as left- turning vehicles make decisions to turn based on the oncoming northbound traffic. BEP recommends adding these statements to demonstrate why further mitigation is unwarranted. May help to add a sentence clarifying the parameters of the scoping agreement and a reference to its place in the Appendices.
19	Cameron Abedi	SHA: Traffic Development & Support	Mitigation & Cost	152	Figure 6-6	We defer comments to Prince George's County with regards to the proposed signalized intersections along Powder Mill Road and the Baltimore Washington Parkway Ramps.	No	WSP	Concur	Acknowledged.	No	No	No	Yes	
20	David Rodgers	SHA: Regional & Intermodal Planning	Ex Summ/Findings & Summary Report	22, 24	Figure 12	These pages in the F&S indicate that the intersections of MD 201 at Powder Mill Road and Sunnyside Avenue are expected to fail and mitigation measures are recommended. However, the extent of which these mitigation measures would be effective was not discussed. The report should explicitly indicate the level of service (LOS) will result from the mitigation and whether or not that LOS meets Prince George's County's standards for the developed tier. MDOT SHA defers to the mitigation standards of Prince George's County.	e No	WSP	Concur	The Production team will add text from the main report to document these details in the summary section.	No	No	No	Yes	
21	Andre Futrell	SHA: District Engineer	General Concerns			Please submit a CD containing the traffic impact study, all supporting documentation, and a point-by-point response addressing the comments noted above to the Access Management Division. For electronic submissions create an account with our new online system https://mdotsha.force.com/accesspermit. Please reference the SHA tracking number on any future submissions. Please keep in mind that you can view the reviewer and project status via SHA Access Management Division web page at https://www.roads.maryland.gov/mdotsha/pages/amd.aspx. if you have any questions, or require additional information, please contact Mr. Kwesi Woodroffe at 301-513-7347, by using our toll free number in Maryland only at 1-800-876-4742 (x7347) or via email at kwoodroffe@mdot.maryland.gov or shaamdoermits@mdot.maryland.gov.	No	Alliance	Concur	Acknowledged. The AE Team will coordinate with USACE and BEP to convey the responses to the SHA in the manner they deem most suitable.	No	No	No	USACE Will Do This?	
22	Terri Hruby	City of Greenbelt	Future Conditions	87, 93		Beltway Plaza has an approved PPS and while included as background traffic in the TIS the development is now proposed to have 2500 multi-family units. Townhouses are no longer being planned	No	WSP	Check and Resolve	In addition to comparing the ITE 9th and 10th Editions, this specific development was updated to match the latest approved plan. The results are described in Comment #6. A recommended sensitivity analysis will incorporate this change to the No Action Alternative trip generation. This change to the assumed development program would result in a reduced number of vehicle trips since multi-family units are a less intense trip generator, per unit, than townhouses.	No	No	Yes	Yes, through Sensitivity Analysis	We use whatever background information we receive from leadership. These changes would actually reduce the number of trips, but the sensitivity analysis will measure the impact with these new numbers.
23	Terri Hruby	City of Greenbelt	Future Conditions	129	10th bullet	Staff does have a concern that t failing lanes would not require mitigation if they did not increase the queue more than 150 feet. For example: "Northbound left of MD 295 (BW Parkway Northbound Off-Ramp) during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative; queuing would increase by less than 150 feet under the Action Alternatives is is required"	No Is	WSP	For Information Only	The 150-foot rule was established as a reasonable threshold for requiring mitigation and was approved through the scoping agreement. Queueing assessments using microsimulation techniques will fluctuate with each microsimulation run. The 150-foot threshold (also used by DDOT) is a beneficial means of removing approaches with small queue increase (six cars or fewer) and focusing on the approaches with more substantial queue changes. This approach also has implications in terms of determining appropriate mitigation, since providing additional roadway capacity can have further implications for environmental impact. The Production team did revisit the ADD 201 corridor during the AM to further investigate the queuing issue and determined that the AM northbound flow would not result in any queueing issue (See response to comment #8). The example for the BW Parkway did have an operational issue and it was recommended to upgrade the entire interchange to address the issue.	No	No	No	Yes	The 150-foot rule is being used by DDOT and helps to focus on the more substantive issue; cars stacked behind one another, on average, take up 20-25 feet of space. Then it begs the question of how many extra cars of back-up is problematic enough to justify a huge investment for additional lane space, especially after factoring financial and environmental considerations. DDOT, in their transportation impact review guidelines, establishes that a 150-foot difference between a no action condition and an action condition warrants further review. Prince George's County guidelines do not current provide clear guidance on measuring or mitigating substantial queue impacts. In lieu of such guidance being available, the DDOT standards were applied, as part of the Scoping Arreement.
24	Terri Hruby	City of Greenbelt	Mitigation & Cost	145	2nd full paragraph	The issue of the 150-foot threshold is further addressed in Mitigation Strategies, stating that this 150-foot queue increase was agreed to during the scoping agreement because M-NCPPC guidelines do not have acceptable increases in queuing	No	WSP	For Information Only	MNCPPC and Maryland SHA do not offer guidance to address queuing issues. In lieu of this guidance, metrics of measuring queue impact were based on DDOT standards. The scoping agreement added that element to ensure the Production team focused on the approaches with substantial queueing issues.	No	No	No	Yes	Echoing the comments in #23, there is limited guidance from either agency on measuring and mitigating queuing impacts. The DDOT standards were proposed and agreed-to as a metric for this study during the scoping process.
25	Diane Sullivan	NCPC	Ex Summ/Findings & Summary Report	10		Pedestrian Network: This paragraph should describe that this is federal property, in a primarily rural/agrarian area with rural roads where sidewalks are not feasible. There is a residential area across Odell Road, which is north of this site, but it is not where any of the employees live. Since Powder Mill Road is a future location for bike lanes, staff would suggest creating new bike lanes be included as mitigation – connecting the site to the existing bike lanes on Edmonston Road.	II No	WSP	Concur	The Production team will add text from the main report pedestrian section to the section. Powder Mill Road has a wide shoulder and USDA recently removed the rumble strips to allow bicycles a better riding environment. Therefore, bicycle facilities already exist that connect the facility to Edmonston Road.	No	No	No	Yes	
26	Diane Sullivan	NCPC	Ex Summ/Findings & Summary Report	10		Please include a description of the times public transit will operate. This will affect the ability for employees to utilize these on a daily basis for commuting.	No	WSP	Concur	Production team will update the summary with more of the public transit operational details described in the main report.	No	No	No	Yes	
27					Figure 14		No	WSP	For Information Only	The 340,000 SQ FT value represents the total new paved surface added to MD 201, Powder Mill Road, the BW Parkway interchange, and the BEP driveway up to the property boundary. This value does not include the BEP parking and circulation roadway system within the BEP property.	No	No	No	Yes	Concerns about MS4 permits regarding this impervious surface could largely be addressed through the EIS and conceptually will determine the roadwork that needs to be done. USACE will continue to work through this and will probably have to advance the designs to determine the best solution. It may require supplemental EIS work, potentially an EA or a FONSI.
28	Diane Sullivan	NCPC	Ex Summ/Findings & Summary Report Ex Summ/Findings &	24-25	Figure 15-18	The proposed mitigation will add over 340,000 sq. ft. (or between 7 and 8 acres) of new pavement for roadways. Is this the maximum amount of paving being proposed? Staff understands the site plans identify wetlands adjacent to the roadways, however it's unclear if the wetlands may be impacted by the proposed roadway widening mitigation projects. Additional information is	s No	WSP	For Information	The assessment of wetland impacts from proposed roadway widening will be addressed in the BEP Environmental Impact Statement. This report serves as the transportation assessment of the	No	No	No	Yes	Regarding the original comment, the need is there to work with BEP and USDA to determine more precisely through the design what the impacts are, including stormwater management.

Comment #	Reviewer Nan	me Agency / Unit	Chapter / Volume of Report Page / Slid	le Paragraph / Figure (if applicable)	Critical? Comment	DrChecks?	AE Responder	AE Response Status	AE Discussion	Potential Scope Impact	Potential Cost Impact	Potential Schedule Impact	A/E Fulfilled Obligation in the Comment?	Final Resolution
29	Diane Sullivan	NCPC	General Concerns		Staff is unclear if the proposed mitigation balances environmental impacts with transportation network improvements. Please provide additional information describing if this is the least environmentally impactfu option and still meets the criteria for mitigating the impacts of the BEP development on the roadway network.	No	WSP	For Information Only	The roadway mitigation plan did balance environmental impacts with traffic benefits. Unless it is possible to assume a lower number of vehicle trips at the affected intersections, roadway geometric changes emerge as the essential tool for improving intersection operations based on CLV, since CLV is a calculation driven by volume and lane geometry inputs. This is from the perspective of improving traffic operations, even though additional roadway capacity through lane geometry requires a degree of new land use. With this in consideration, all proposed widening along MD 201 is to the east to avoid housing and wetland areas to the west, the BW parkway improvements included minimal added pavement, and MD 201 was not recommended to connect Cherrywood Lane to Sunnyside Avenue with a four-lane cross-section. This last point, regarding the section of MD 201 between Cherrywood Lane and Sunnyside Avenue, avoids widening a bridge and damaging a forested area that is considered an environmental area of critical concern.	No	No	No	Yes	The mitigation conceptual design strives to avoid the wetland and to minimize the addition of new pavement at the BW Parkway interchange. We can provide additional verbiage where it is needed. The goal is to avoid residences, avoid wetlands, and avoid property impacts. This is the level of detail discussed in the scoping agreement. We could overtly list some of the non-preferred alternatives that were rejected because of harm to the environment.
30	Diane Sullivan	NCPC	Ex Summ/Findings & Summary Report 9		Exec Summary in full TIS Report: The TIS describes that there will be 254 admin staff and 884 production staff commuting daily adding 944 morning peak trips and 946 evening peak trips to the existing network. The BEP estimates 10% employees will be using alternative commuting modes (transit, biking, carpool, etc.) The rest of the employees, 90%, would be commuting via SOV. In order to have a clearer understand about the daily commute, the TIS should include a summary describir why BEP employees may not be able to utilize transit (WMATA etc.) and how this effects the nearby roadwa network. If transit is not a feasible option, more employees will have to drive to the installation. This will impact the roadway network because these additional trips will add more traffic to the roadway network. Additional cars on these roadways will require mitigation to ensure the network functionality is not degraded. This important information is included in the Development of Action Alternative, p. 103, howeve it is very deep into the report and could be lost.	No Ig Iy r	WSP	Concur	The Production team will add the more detailed discussion of the daily commute from the main report into the summary report. As is correctly noted, page 103 of the report illustrates the limitations of transit accessibility given the BEP schedule. The morning shift change begins at 6:30 a.m. For employees to report on time for this shift utilizing transit, employees would be required to disembark the first trains that arrive at Greenbelt Metro station at 5:51 a.m. and 5:53 a.m., connect with a USDA shuttle that has a 10-12 minute ride to the BEP security gate, and allot an additional 15-20 minutes for the employees to then process through security and change into uniforms to begin their shift. This will be expanded upon in the summary report.	No	No	No	Yes	
31	Diane Sullivan	NCPC	Current Conditions 42	Section B	This section does a good job identifying the roads and describing the existing uses on these roads. However there isn't any description of the environment in which these roads exist. We would suggest that a separate subsection be introduced that describes the roadways adjacent conditions including large forests, cropland maintained grass, or wetlands. This information is necessary since the proposed mitigation may impact these adjacent areas and little information is provided.	, No	Alliance	Concur	The team can explore the county-level GIS data to see if it offers any further insight along these roads. However, the more vigorous exploration of the ecological conditions around the roadways will undergo its more vigorous analysis during the upcoming NEPA process.	No	No	Yes	Yes	
32	Diano Sullivan	NCPC	General Concerns		We look forward to continuing working with the U.S. Army Corps of Engineers and the Bureau of Engraving and Printing staff on this important relocation project. when it is submitted for review by NCPC in the future If you have any questions regarding our comments, policies, or our project submission requirements, please refer to our agency website at www.ncpc.gov. Mr. Carlton Hart continues to serve as the point of contact for the project at 201429-272 or carlton battements of the project submission requirements, please the project at 201429-272 or carlton battements.	e. No e vr	Alliance	Concur	Acknowledged.	No	No	No	Yes	
33	Jahid Russel	PG County, DPIE	Ex Summ/Findings & Summary Report 11		The study hours for this study are 6 AM – 7 AM to 3 PM - 4 PM (page 11 of findings and summary). The study hours for this study are 6 AM – 7 AM to 3 PM - 4 PM (page 11 of findings and summary). The site peak hours are different from commuter traffic peak hours. A comparison could have been performed for few locations to illustrate that peak hours are more critical than regular commuter peak hours.	n No	WSP	For Information Only	Please see the response to comment #4.	No	No	No	Yes	Please see the response to comment #4.
34	Jahid Russel	PG County, DPIE	Current Conditions	Figure 4-13	When compared, there were a significant differences (more than 10%) between raw counts and existing volumes. In most cases the raw counts were significantly lower than the volumes shown ir the exhibit. It is possible that these were done as a part of the volume balancing. The report needed to explain it.	No	WSP	For Information Only	Differences between the raw count data and the existing volumes that were actually used in the analysis, as presented in Figure 4-13 of the report, result from efforts to balance the flow of traffic between study intersections as well as baselining an existing network that is representative of the actual vehicle demand per ATR data. In general, the raw counts are less than the volumes used in the analysis.	No	No	No	Yes	This was alluded to in the response to comment #12, but it is standard to compare raw data collection with other available data to determine if adjustments should be made. Traffic volumes are often balanced because raw data, such as because of the exact time a car passes through an intersection, usually does not perfectly track every vehicle as it moves between intersections. Balancing is done to assume that every vehicle can be traced through every study intersection. This becomes important when conducting simulations such as through SimTraffic, since large discrepancies in volume counts can be problematic for the software. We believe this was a reasonable approach given the data that is available.
35	Jahid Russel	PG County, DPIE	Current Conditions		For the intersection of Powder Mill Rd and Edmonston Rd, the EB left, EB thru and SB right (PM Peak hour), the raw counts were higher than the existing volume figures. This could mean the impact shown in the study is less than what the actual impact is. Please explain.	No	WSP	For Information Only	As stated in the response to the previous comment, adjustments to existing turning movement counts reflect efforts to reasonably balance volumes between study intersections and establish a baseline of volumes that is more representative of typical vehicle demand. For the intersection of Powder Mill Road and Edmonston Road, as with any intersection, the collected count data is a snapshot in time on that particular count day that is not necessarily typical. Comparisons between the collected count data with previous data can indicate potential abnormalities. A comparison of the count data for this study with turning movement count (TMC) data previously collected by WSP as well as the TMC and ATR data published by SHA suggested that specific turning movements concerning the eastbound and southbound approaches were abnormal compared with previous count data. As a result, during the balancing of volumes, existing PM peak hour volumes were adjusted downward for the southbound right turn, the eastbound left turn, and the eastbound through movement; while volumes were adjusted upward for the eastbound right turn and the southbound through movement.	No	No	No	Yes	This expands on the response to comment #34. The raw data that was collected for this intersection was compared with other available data from 2014, 2015, and 2018 that was collected by WSP or SHA. It was determined that specific turning movements of this intersection were not in agreement with other recent data and was not entirely representative of a typical traffic pattern. The applied volumes in the study were adjusted to better reflect this other data. We believe this was a reasonable approach given the data that is available.
36	Jahid Russel	PG County, DPIE	Current Conditions		The intersection of Springfield Road and Baltimore Washington Parkway the AM peak hour southbound right turn volumes for the action alternative condition should be 19, not 9.	No	WSP	For Information Only	The Production Team reviewed the Synchro analysis files and the appendix for this intersection and could not locate this discrepancy. Pages 359 and 382 of the report indicate that a volume of 19 was correctly used for the AM peak hour southbound right for the Action Alternative.	No	No	No	Yes	WSP defends its analysis results based on the comment provided.
37	Jahid Russel	PG County, DPIE	Future Conditions	Figure 5-8	The trip generation is based on number of employees (production and administrative). The study does not assume any outbound trips in the morning or inbound trips in the afternoon. The study assumes all morning trips are in only and afternoon trips are out only.	No	WSP	For Information Only	As mentioned in response to comment #7, the total number of BEP peak hour vehicle trips forecasted using ITE trips generation were applied to inbound trips in the morning and outbound trips in the evening to follow the nature of the BEP schedule.	No	No	No	Yes	Please see the response to comment #7.
38	Jahid Russel	PG County, DPIE	Future Conditions	Figure 5-26	In the queue comparison table, the queueing for no action and action alternative are compared. The reported queues are compared, but the numbers do not match up with the simtraffic results (95th queue) for AM peak hour condition for non-action alternative. Please clarify.	No	WSP	Concur	The appendix of the submitted study inadvertently included outdated SimTraffic results. The study appendix will be updated to include the correct SimTraffic results for the No Action Alternative AM peak hour condition as they are reflected in Figure 5-26.	No	No	No	Yes	
39	Jahid Russel	PG County, DPIE	Appendices		In the appendix, the action alternative simtraffic queues were included two times, with different results. An the second sets for mitigation conditions? Please label correctly and tabulate in the main report also.	e No	WSP	Concur	The SimTraffic results in the appendix of the submitted study were not properly labeled for the Action Alternative with Mitigation conditions, however the tables in the report body correctly show the results. The appendix labels will be updated to their correct analysis scenarios.	No	No	No	Yes	
40	Jahid Russel	PG County, DPIE	Ex Summ/Findings & Summary Report	Figure 12	This figure shows the tabular form of operating condition and mitigation requirement for the stud intersection. Many of the failing intersections are not included/selected for mitigation measures. The table/figure should identify the reason/explanations why mitigation is not needed. Among them Powder Mill Road and Poultry Road are included in the mitigation.	y No	WSP	Concur	The figure in the executive summary will be updated to include an additional column briefly explaining why mitigation is not required at pertinent intersections, similar to the format used in Figure 6-1 of the report.	No	No	No	Yes	

Comment # Reviewer Name	Agency / Unit	Chapter / Volume of Report	Page / Slide Number	e Paragraph / Figure (if applicable)	/ Critical? Comment	DrChecks?	AE Responder	AE Response Status	AE Discussion	Potential Scope Impact	Potential Cost Impact	Potential Schedule Impact	A/E Fulfilled Obligation in the Comment?	Final Resolution
41 Jahid Russel	PG County, DPIE	Mitigation & Cost	150	Figure 6-4	Please consider adding a southbound left turn bay at the intersection of Edmonston Rd and Bea Dam Road. A peak hour left turn restriction may not be easy to implement in a non-urban locati Also there is no location in the vicinity of the intersection to make a u-turn.	ver ion. No	WSP	For Information Only	The Beaver Dam Road intersection with Edmonston Road was not required to be mitgated. A suggestion of implementing a left turn restriction was included, not for the purpose of satisfying mitgation, but on the basis that such a change may have benefits to safety by preventing gap acceptance decisions regarding southbound left-turning vehicles conflicting with approaching northbound volumes on Edmonston Road. As described in the response to comment #18, with the left turn restriction, the assumption was that the traffic that previously made this left turn would instead continue eastbound on Powder Mill Road and turn right at the next road to access Reaver.	No	No	No	Yes	Addition of a turn bay at this intersection would result in additional environmental impacts, for which BEP is not responsible because this intersection does not require mitigation in the first place.
42 Jahid Russel	PG County, DPIE	Mitigation & Cost	142-143		For the intersection of Edmonston Road and Odell Road, a northbound left turn lane analysis is recommended. No site trip is going thru this movement, however, this can eliminate safety concern.	No	WSP	For Information Only	This intersection is not required for mitigation, because minor street volumes are less than 100 vehicles per hour under the Action Alternative. The impact of BEP to this intersection would be minimal and no site trips would utilize the northbound left turn movement. However, the team is happy to share the data if Prince George's County would like to explore this modification.	No	No	No	Yes	Improving this intersection as proposed in the comment would be beyond the scope of the study, since BEP is not responsible to implement mitigation at this location.
43 Jahid Russel	PG County, DPIE	Mitigation & Cost	142-143		Please provide northbound left turn analysis for the intersection of Edmonston Road and Odell Road.	No	WSP	For Information Only	Please see the response to comment #42.	No	No	No	Yes	Please note the response to comment #42.
44 Jahid Russel	PG County, DPIE	General Concerns			For a regular public roadway intersection, peak hour warrant should not be used. Any proposed signal warrant analysis should be based on other warrants.	No	WSP	For Information Only	The peak hour warrant, in lieu of a higher-level signal warrant analysis that reviews other warrants, was selected for specific reasons. Because of the nature of the BEP site, with shift changes occurring within two hours that match the study peak hours, no warrants related to minimum vehicular volume or continuous flow of traffic under the eight-hour volume warrant or the four-hour volume warrant would be relevant to the site driveway intersection. Therefore, the peak hour warrant presents a worst-case condition for the overall intersection operations. In addition, a formal signal warrant analysis was not scoped for the purpose of the EIS, since a formal signal warrant analysis reviewing other warrants would require additional count data and forecast assumptions. The peak hour warrant is intended to present preliminary conclusions on the need for a signal at this location.	No	No	No	Yes	The purpose of evaluating a peak hour warrant was to determine at an early stage if a signal might be warranted at the site driveway location. A signal warrant analysis was not scoped for purposes of this EIS and the warrants that are being requested for evaluation would require substantial assumptions and data that are beyond the scope. A more detailed signal warrant study could be conducted at a later time such as if a traffic signal design is pursued, but not at this time.

10. APPENDIX B: EMPLOYEE SURVEY FULL RESULTS
Q1 Please select the answer that best fits with what you think would be your most primary mode of transportation, once the facility is relocated to the Beltsville area.

ANS	ANSWER CHOICES								
a.	Transit/WMATA Metro (using shuttle to get from Metro stop to BEP facility)	27.00%	186						
b.	Personal vehicle driving alone	58.35%	402						
C.	Carpool	12.48%	86						
d.	Bicycle	0.44%	3						
e.	Motorcycle	0.15%	1						
f.	Other (Includes Walking, Getting Picked Up/Dropped Off by another Driver)	1.60%	11						
TOT	TOTAL								

Q2 If carpooling to the new site, what type of carpool would you use? [Please check all that apply.]

ANS	WER CHOICES	RESPONSES	ES 79				
a.	Carpool with a co-worker	97.53%					
b.	UberPool	0.00%	0				
C.	Lyft Shared	0.00%	0				
d.	Waze Carpool	2.47%	2				
e.	Via	2.47%	2				
Tota	I Respondents: 81						

Q3 Regarding mass transit, please rate the items below from Most Important to Least Important. Using the drop-down option next to each topic, please rank accordingly.1 = Most important2 = Very important3 = Somewhat important4 = Not as important5 = Least important

	1	2	3	4	5	TOTAL	SCORE
a. Cost	26.15% 137	19.85% 104	16.60% 87	13.17% 69	24.24% 127	524	3.10
b. Convenience	26.47% 135	24.71% 126	22.94% 117	14.12% 72	11.76% 60	510	3.40
c. Travel time	30.39% 155	24.71% 126	20.00% 102	14.90% 76	10.00% 51	510	3.51
d. Reliability	11.91% 61	17.58% 90	27.54% 141	29.69% 152	13.28% 68	512	2.85
e. Safety and comfort	17.07% 98	16.55% 95	13.94% 80	20.21% 116	32.23% 185	574	2.66

ANSWER CHOICES	RESPONSES					
a. Daytime	84.13% 546					
b. Evening	7.40% 48					
c. Midnight	8.47% 55					
TOTAL	649					

Q5 Using the map above, from which of the four quadrants will you be approaching the proposed site for the BEP replacement facility? The facility is represented the purple star on the map.

ANS	WER CHOICES	RESPONSES	
a.	Quadrant I (Q-I)	13.56%	85
b.	Quadrant II (Q-II)	15.79%	99
C.	Quadrant III (Q-III)	34.45% 2	216
d.	Quadrant IV (Q-IV)	27.75% 1	74
e.	I will be dependent upon transit	8.45%	53
тот	AL	6	27

Q6 If driving, what is the primary route you would take to access the new site when traveling to work, if you're originally coming from within Quadrant I?[NOTE: If this map doesn't represent your point of origin, please click the "PREV" button and go to one of the other quadrants.]

ANSWER CHOICES							
1. MD 200 to Konterra Dr, to Muirkirk Rd, to Old Baltimore P Orange on the Map)	ike/Edmonston Road to Powder Mill Rd (indicated with 47.62%	40					
2. I-95 Southbound to MD 212 to Powder Mill Rd (indicated	with Green on the map) 40.48%	34					
3. MD 200 to Konterra Dr, to Ritz Way, to Baltimore Ave, to	Powder Mill Rd (indicated with Pink on the Map) 11.90%	10					
TOTAL		84					

Q7 If driving, what is the primary route you would take to access the new site when traveling to work, if you're originally coming from within Quadrant II?[NOTE: If this map doesn't represent your point of origin, please click the "PREV" button and go to one of the other quadrants.]

ANSWER CHOICES							
1.	Baltimore-Washington Pkwy Northbound to Powder Mill Rd (indicated with Orange on the Map)	16.84%	16				
2.	Baltimore-Washington Pkwy Southbound to Powder Mill Rd (indicated with Green on the map)	18.95%	18				
3.	MD 197 to Powder Mill Rd (indicated with Pink on the map)	50.53%	48				
4.	MD 32 to Baltimore-Washington Pkwy Southbound to Powder Mill Rd (indicated with Blue on the map)	13.68%	13				
ΤΟΤΑ	NL		95				

Q8 If driving, what is the primary route you would take to access the new site when traveling to work, if you're originally coming from within within Quadrant III?[NOTE: If this map doesn't represent your point of origin, please click the "PREV" button and go to one of the other quadrants.]

ANS	WER CHOICES	RESPON	SES
1. the M	Capital Beltway Outer loop to Baltimore-Washington Pkwy Northbound to Powder Mill Rd (indicated with Orange on lap)	30.00%	60
2. Gree	US 50 to the Capital Beltway Outer loop to Baltimore-Washington Pkwy Northbound to Powder Mill Rd (indicated with n on the map)	9.00%	18
3.	US 50 to the Capital Beltway Outer loop to MD 201 (indicated with Pink on the map) to Powder Mill Rd	8.00%	16
4.	Capital Beltway Outer loop to MD 201 to Powder Mill Rd (indicated with Blue on the map)	30.00%	60
5. with I	Baltimore-Washington Parkway Northbound, to Capital Beltway Outer Loop, to MD 201 to Powder Mill Rd (Indicated Brown on the map)	5.00%	10
6.	Baltimore-Washington Parkway Northbound, to Powder Mill Rd (Indicated with Red on the map)	18.00%	36
TOT	AL		200

Q9 If driving, what is the primary route you would take to access the new site when traveling to work, if you're originally coming from within Quadrant IV?[NOTE: If this map doesn't represent your point of origin, please click the "PREV" button and go to one of the other quadrants.]

ANSWER CHOICES									
1. Map)	Capital Beltway Inner loop to US 1 to Sunnyside Avenue to MD 201 to Powder Mill Road (indicated with Orange on the								
2.	MD 201 from south of the Beltway, northward to Powder Mill Rd (indicated with Green on the map)	6.76%	10						
3.	Capital Beltway Inner loop to MD 201 to Powder Mill Rd (indicated with Pink on the map)	8.11%	12						
4.	Capital Beltway Inner loop to Baltimore-Washington Pkwy North to Powder Mill Rd (indicated with Blue on the map)	13.51%	20						
5.	US 1 Northbound to Powder Mill Road (indicated with Brown on the map)	23.65%	35						
TOT	AL		148						

Q10 On average, how many days per week do you telework?

ANS	WER CHOICES	RESPONSES	
a.	5	1.17%	7
b.	4	0.67%	4
C.	3	1.34%	8
d.	2	11.89%	71
e.	1	16.08%	96
f.	One day every other week	10.39%	32
g.	I do not telework.	27.47% 16	34
h.	I am not eligible for telework.	30.99% 18	35
тот	AL	59	97

11. APPENDIX C: TRAFFIC COUNT DATA

LOCATION: H CITY/STATE:	Kenilw Greer	orth Av nbelt, N	ve I-49 //D	95 EB	Ramps	5									QC DATE:	JOB # Tue, 1	#: 1502 Sep 17	27001 2019
369 ← 73 _ 0 = 830 ← 757 =	1132 369 7 369 7 0 1 0 8 1520	954 (G3 0 • • • • 87 • • • 87 • • 87 • • 887 • • 881	0 ← 0 0 0 → 0			Pe Pea	ak-Hou k 15-M Qua DATA TH	r: 6:00 in: 6:4	AM	- 7:00 / 7:00	AM AM			14.9 ← 8.2 0 9.4 → 9.5	102 14.9 8 14.9 8 0 8 8.8		• 0 • • 0 • 0 •	0
0		→ [→]	0		_	8	: ↓ ↓	Ţ			₽	-		0 0 0			■ 0 ■ 0 ■ 0	
و + NA +			A A A A A A A A A A A A A A A A A A A		-		* * *		ţ	↑	**	-		NA			NA	
15-Min Count Period		Kenilwo (North	orth Ave bound)			Kenilwo (South	orth Ave bound)			I-495 El (Eastk	3 Ramps bound)			I-495 EE (Westl	8 Ramps bound)		Total	Hourly
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		IOTAIS
6:00 AM 6:15 AM 6:30 AM 7:00 AM 7:15 AM 7:30 AM 7:30 AM	0 0 0 0 0 0 0 0 0	219 198 216 248 265 262 262 262 288		0 0 0 0 0 0 0 0		144 176 209 234 316 312 328 368	84 71 127 87 107 129 136 128	0 0 0 0 0 0 0	12 15 21 25 19 17 13 20		143 194 194 226 222 193 202 253	0 0 0 0 0 0 0 0			0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	602 654 767 820 929 913 941 1057	2843 3170 3429 3603 3840
8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0	265 264 233 231	0 0 0 0	0 0 0 0	0 0 0 0	406 366 393 357	129 135 120 121	0 0 1 0	21 39 37 30	0 0 0 0	266 252 249 310	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1087 1056 1033 1049	3998 4141 4233 4225
Peak 15-Min	1.4	North	bound		1	South	bound		1.5	Eastb	ound		1.6	West	ound		Tot	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	Left 0 0	Thru 992 84 0 0	Right 0 0	0	Left 0 0	936 72 0 0	Right 348 60 0	0	Left 100 0	0 0 0 0	Right 904 92 0	0	Left 0 0	Thru 0 0 0 0 0 0	Right 0 0	0	32 30 0	80 18

Report generated on 10/2/2019 7:36 AM

Comments:

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

LOCATION: Kenilworth Ave -- I-495 EB Ramps QC JOB #: 15027002 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 1713 1551 47 8 Peak 15-Min: 3:30 PM -- 3:45 PM ŧ **↑** 2 644 1067 5.1 4.5 0 . . **t** 0 **+** 0 644 🔶 95 🌶 5.1 🗲 6.3 🌶 **a** 0 t 0 0 🌩 0 0.91 0 0 ٠ ÷ 7.2 \Rightarrow 7.3 🥆 1000 🜩 905 🥆 **€** 0 **→** 0 ŧ ŧ 0 1454 0 0 8.1 0 + ŧ ŧ Quality Counts 1972 1454 5.8 8.1 DATA THAT DRIVES COMMUNITIES 0 0 0 ٠ \$ 1 0 🖌 **t** 0 AD 0 0 0 **+** 0 07 **f** 0 C 1 ŧ 0 0 0 NΔ 4 t و t 🗲 NA NA NA NA \$ Ĩ 1 Τ Τ ... ъ ٤ ŧ NA NΔ **Kenilworth Ave Kenilworth Ave** I-495 EB Ramps I-495 EB Ramps 15-Min Count Period Beginning At Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right U 3:00 PM 0 330 0 0 0 0 257 162 0 25 0 219 0 0 0 0 0 993 3:15 PM 0 341 0 0 256 131 29 0 219 0 0 0 0 0 977

0	394	0	0	0	298	191	0	19	0	237	0	0	0	0	0	1139	
0	389	0	0	0	256	160	1	22	0	230	0	0	0	0	0	1058	4167
0	419	0	0	0	276	164	0	15	0	201	0	0	0	0	0	1075	4249
0	442	0	0	0	276	179	0	24	0	236	0	0	0	0	0	1157	4429
0	393	0	0	0	268	175	0	20	0	217	0	0	0	0	0	1073	4363
0	463	0	0	0	259	176	0	17	0	213	0	0	0	0	0	1128	4433
0	452	0	0	0	272	174	0	14	0	230	0	0	0	0	0	1142	4500
0	477	0	0	0	280	167	0	18	0	277	0	0	0	0	0	1219	4562
0	475	0	0	0	288	137	0	15	0	243	0	0	0	0	0	1158	4647
0	440	0	0	0	315	181	0	16	0	264	0	0	0	0	0	1216	4735
0	405	0	0	0	275	172	0	19	0	240	0	0	0	0	0	1111	4704
0	391	0	0	0	318	141	0	28	0	247	0	0	0	0	0	1125	4610
0	351	0	0	0	273	121	0	22	0	144	0	0	0	0	0	911	4363
0	333	0	0	0	257	104	0	24	0	251	0	0	0	0	0	969	4116
Northbound				Southbound				Eastbound				Westbound				T - 1	-
Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	101	ai
0	1576	0	0	0	1192	764	0	76	0	948	0	0	0	0	0	45	56
0	128	0		0	48	36		12	0	80		0	0	0		30)4
	0				0				0				0			C)
0	0	0		0	0	0		0	0	0		0	0	0		C)
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 394 0 389 0 419 0 393 0 463 0 452 0 452 0 452 0 477 0 475 0 405 0 391 0 351 0 351 0 351 0 1576 0 128 0 0 0 0	0 394 0 0 389 0 0 419 0 0 412 0 0 393 0 0 463 0 0 452 0 0 452 0 0 477 0 0 475 0 0 405 0 0 351 0 0 351 0 0 353 0 Northburd Left Thru Right 0 128 0 0 0 0	0 394 0 0 0 389 0 0 0 419 0 0 0 442 0 0 0 442 0 0 0 442 0 0 0 442 0 0 0 453 0 0 0 452 0 0 0 475 0 0 0 475 0 0 0 475 0 0 0 391 0 0 0 351 0 0 0 353 0 0 0 128 0 0 0 128 0 0 0 0 0 0 0	0 394 0 0 0 0 389 0 0 0 0 419 0 0 0 0 442 0 0 0 0 393 0 0 0 0 463 0 0 0 0 452 0 0 0 0 457 0 0 0 0 477 0 0 0 0 475 0 0 0 0 391 0 0 0 0 351 0 0 0 0 351 0 0 0 0 128 0 0 0 0 128 0 0 0 0 0 0 0 0	0 394 0 0 0 298 0 389 0 0 0 256 0 419 0 0 0 256 0 419 0 0 0 276 0 442 0 0 0 276 0 393 0 0 0 268 0 463 0 0 0 259 0 452 0 0 0 272 0 477 0 0 0 280 0 475 0 0 0 288 0 405 0 0 275 0 391 0 0 0 273 0 351 0 0 0 273 0 1576 0 0 0 48 0 128 0 0 48 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Comments:

Report generated on 10/4/2019 9:05 AM

LOCATION: E	Kenilw Greer	orth Av nbelt, N	ve I-4 //D	95 WE	3 Ramp	IS									QC DATE:	: JOB	‡: 1502 Sep 17	27003 2019
$140 \leftarrow 0 \Rightarrow $	813 140 673 • • 0.8 0.8 0.8 1129	1100 3 0 4 1 3 0 4 1 3 + 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	717 ◆ 1173 0 456 ◆ 558	1		Pea Pea	ak-Hou k 15-M Qua DATA TH	r: 6:00 in: 6:4	AM	- 7:00 / 7:00 unts	AM AM			129 ← 0 0 0 → 0	14.1 12.9 14 12.9 1	5.5 1.4 0 1 14.9 12.1	42 ← 3 ■ 0 ■ 29 → 1	.7 49
0		→ [→ [0		-	*]↓↓	ŢŢ						0 0 0			0 0 7 0	
و + NA + • ٦			NA NA +		-	1 Koniku		1	· †	↑ (* [NA			► NA	
15-Min Count Period Beginning At	Left	Kenilwo (North Thru	orth Ave bound) Right	U	Left	Kenilwo (South Thru	brth Ave bound) Right	U	Left	Eastb (Eastb Thru	B Ramps oound) Right	U	Left	West (West	B Ramps bound) Right	U	Total	Hourly Totals
6:00 AM 6:15 AM 6:30 AM 6:45 AM	0 0 0	64 72 90 157	154 142 140 122	0 0 0	0 0 0	120 145 177 231	42 29 36 33	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	104 109 118 125	0 0 0	181 162 164 210	0 0 0	665 659 725 878	2927
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:30 AM 8:45 AM	0 0 0 0 0 0 0	135 146 124 158 141 172 157 160	138 152 132 170 129 143 108 104	0 1 0 0 0 0 0 0	0 0 0 0 0 0 0	218 257 286 296 316 313 296 275	35 30 47 35 37 32 30 33	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	175 175 187 203 240 193 217 201	0 0 0 0 0 0 0 0	205 196 189 177 198 205 225 180	0 0 0 0 0 0 0 0	906 957 965 1039 1061 1058 1033 953	3168 3466 3706 3867 4022 4123 4191 4105
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastb Thru	ound Right	U	Left	West Thru	bound Right	U	То	al
All Vehicles Heavy Trucks Pedestrians Bicycles	0 0 0	628 48 0 0	488 80 0	0	0 0 0	924 120 0 0	132 16 0	0	0 0 0	0 0 0 0	0 0 0	0	500 20 0	0 0 0 0	840 40 0	0	35 32 0	12 4

Railroad Stopped Buses Comments:

Report generated on 10/2/2019 7:36 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

LOCATION: Kenilworth Ave -- I-495 WB Ramps QC JOB #: 15027004 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 1365 1156 43 13.4 Peak 15-Min: 3:30 PM -- 3:45 PM ŧ ŧ ↓↓< **↑** 0 4.7 2.2 ÷ . € 476 € 980 183 🛥 0 🛊 2.2 🗢 0 🌶 0 0 🌩 0.92 0 0 ÷ • ٠ 0 **•** 0 **•** € 504 → 869 0 + 0 7 ŧ ٦ ŧ r 0 • 4.6 4 680 869 9.4 7.8 ŧ ŧ **↑** 8.5 Quality Counts 1553 1690 DATA THAT DRIVES COMMUNITIES 0 0 0 . \$ Ŧ • • **t** 0 A 0 0 **+** 0 07 **f** 0 ŧ C 0 0 0 NA ÷ t . NA ← NA NA NA \$ * ſ ٦ c ŧ NA **Kenilworth Ave Kenilworth Ave** I-495 WB Ramps I-495 WB Ramps 15-Min Count Period Hourly Totals (Southbound) (Eastbound) (Northbound) (Westbound) Total Beginning At Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ

3:00 PM	0	147	215	1	0	267	57	0	0	0	0	0	138	0	126	0	951	
3:15 PM	0	165	194	0	0	248	49	0	0	0	0	0	135	0	109	0	900	
3:30 PM	0	177	233	1	0	362	38	0	0	0	0	0	119	0	133	0	1063	
3:45 PM	0	191	227	2	0	305	39	0	0	0	0	0	112	0	108	0	984	3898
4:00 PM	0	181	279	0	0	307	64	0	0	0	0	0	126	0	123	0	1080	4027
4:15 PM	0	175	271	2	0	340	74	0	0	0	0	0	112	0	110	0	1084	4211
4:30 PM	0	204	224	2	0	330	70	0	0	0	0	0	99	0	106	0	1035	4183
4:45 PM	0	226	260	0	0	345	56	0	0	0	0	0	89	0	102	0	1078	4277
5:00 PM	0	203	261	0	0	339	79	0	0	0	0	0	98	0	126	0	1106	4303
5:15 PM	0	210	302	1	0	370	97	0	0	0	0	0	93	0	103	0	1176	4395
5:30 PM	0	243	259	0	0	343	96	0	0	0	0	0	83	0	128	0	1152	4512
5:45 PM	0	199	244	0	0	350	55	0	0	0	0	0	114	0	103	0	1065	4499
6:00 PM	0	186	239	0	0	347	57	0	0	0	0	0	122	0	99	0	1050	4443
6:15 PM	0	206	205	0	0	316	64	0	0	0	0	0	139	0	124	0	1054	4321
6:30 PM	0	201	183	0	0	254	47	0	0	0	0	0	129	0	107	0	921	4090
6:45 PM	0	195	156	0	0	243	33	0	0	0	0	0	126	0	115	0	868	3893
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	oound			
Flowrates	Loft	Thru	Right		Loft	Thru	Right	11	Loft	Thru	Right		Loft	Thru	Right	11	To	tal
	Leit	mu	Night	0	Leit	mu	Night	0	Leit	11110	Night	U	Leit	THE	Night	0		
All Vehicles	0	708	932	4	0	1448	152	0	0	0	0	0	476	0	532	0	42	52
Heavy Trucks	0	68	80		0	72	0		0	0	0		12	0	80		31	.2
Pedestrians		0				0				0				4			4	
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0		C)
Railroad																		
Stopped Buses																		

Comments:

Report generated on 10/4/2019 9:05 AM

LOCATION: E	Kenilw Greer	orth Av nbelt, N	ve Cre ⁄ID	escent	Rd										QC DATE:	J OB Tue,	‡: 1502 Sep 17	27005 2019
33 ← 1 ≠ 0 ↔ 4 → 3 ◄	738 4 707 4 707 0.82 0.82 3 4 1010 829	1078	66 ← 180 1 113 → 63			Pea Pea	ak-Hou k 15-M Qua DATA TH	r: 6:00 in: 6:4	AM	- 7:00 / 7:00	AM AM			3 ★ 0 0 50 ★ 66.7	183 0 18 • 0 • 18	48 ↑ 4 18.5 ↓ 4 18.5 ↓ 5	6.1 ← 3 • 0 • 18 → 1	13 5.9
o		→ [→ [0		-	*]↓↓	ļ	•		₽ •_ +	-		0 0 0			0 0 7 0	
€			NA 🔸		-	-÷	•	1 1	Î Î	↑ (* 	<u>\$</u>	-		NA			⊾ ► NA	
15-Min Count Period		Kenilwo (North	orth Ave bound)			Kenilwo (South	orth Ave bound)			Cresc (Eastl	ent Rd bound)			Cresc (West	ent Rd bound)		Total	Hourly
Beginning At 6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM	Left 5 7 11 5 8 6 5 7 7	Thru 215 220 257 318 326 295 292 307 325	Right 11 7 4 15 9 25 17 21 16 42	U 0 2 2 1 1 5 0 5 2	Left 5 4 9 8 14 14 14 17 16 16	Thru 139 172 203 193 201 266 251 276 264 202	Right 0 0 2 4 2 4 5 2 2	U 0 0 1 0 0 0 0 0 0 0 0	Left 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thru 0	Right 0 0 0 1 0 1 0	U 0 0 0 0 0 0 0 0 0 0 0	Left 21 19 33 40 59 44 69 57 68 67	Thru 1 0	Right 12 17 20 14 31 28 32 26 27	U 0 0 0 0 0 0 0 0 0 0 0 0	409 446 535 613 633 687 689 720 711 761	2003 2227 2468 2622 2729 2807 2001
8:30 AM 8:45 AM	5 3 3	335 337 322	42 29 26	2 1 0	13 28	265 258	2 1 3	0 0	2 0	0 0	2 3 3	0 0 0	66 57	0	27 30 28	0 0 0	750 728	2962 2970
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastb Thru	oound Right	U	Left	Westl Thru	bound Right	U	То	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	44 0 0	1272 56 0 0	60 8 0	8	32 4 0	772 136 8 0	8 0 0	4	0 0 0	0 0 0	12 8 0	0	160 8 0	0 0 0	80 0 0	0	24 22 8 (52 :0 ;

Report generated on 10/2/2019 7:36 AM

			-			-	-				-						
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	bound		Total
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Total
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad	4 0 0	988 148 0 0	176 8 0	16	120 12 0	1280 64 0 0	4 0 0	0	0 0 0	0 0 0 0	24 0 0	0	184 8 0	0 0 0 0	92 12 0	0	2888 252 0 0

Report generated on 10/4/2019 9:05 AM

LOCATION: Kenilworth Ave -- Ivy Ln OC JOB #: 15027007 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 6:00 AM -- 7:00 AM 5.9 Peak 15-Min: 6:45 AM -- 7:00 AM ŧ ÷ ŧ ŧ 57.1 17 . . 82 🛥 0 🛊 • 0 0 + t 0.84 + 7.1 🔿 7.1 🤉 **€** 0 → 0 98 🔹 98 0 🔹 0 c ŧ 4.3 5.9 ŧ ŧ ÷ ŧ Quality Counts 15.7 5.8 DATA THAT DRIVES COMMUNITIES . \$ • • **t** 0 A ÷ **f** 0 ŧ NΔ t و t NA NA NA A NA Î Î ... ŧ C NA NA Kenilworth Ave **Kenilworth Ave** lvy Ln lvy Ln 15-Min Count Period Hourly Totals (Eastbound) (Westbound) (Northbound) (Southbound) Total **Beginning At** Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ 6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 2 5 5 9 0 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM n n n Λ n Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru Right U Left Thru Right υ Left Thru Right υ Left Thru Right υ All Vehicles 4 120 12 0 0 0 4 Heavy Trucks Õ õ õ

Stopped Buses

Pedestrians

Bicycles

Railroad

Report generated on 10/2/2019 7:36 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

LOCATION: Kenilworth Ave -- Ivy Ln QC JOB #: 15027008 CITY/STATE: Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 1088 14.1 935 5.6 Peak 15-Min: 3:45 PM -- 4:00 PM ŧ ▲ 1078 1 ŧ 22.2 5.5 9 0 . 108 🛥 0 **t** 0 **+** 0 6.5 ፍ 0 🌶 0 . 0 0 🌩 0 0.94 0 Λ ÷ 2 + 2 7 203 🔹 203 🥆 **€** 0 **→** 0 ↑↑101 934 **n** 5 ŧ ۴ 0 14.1 0 **↓** 1283 ↓ 4.9 ٠ Quality Counts DATA THAT DRIVES COMMUNITIES **↑** 13.2 1035 0 0 0 L. \$ 1 0 **J t** 0 AD 0 1 0 🌩 **+** 0 0 7 **f** 0 ŧ C 0 0 0 NΔ t NA 🗲 NA NA NA Î \$ ŧ NA 15-Min Count **Kenilworth Ave Kenilworth Ave** lvy Ln lvy Ln

Period		(North	bound)			(South	bound)			(East	bound)			(West	oound)		Total	Hourly
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		TOTAIS
3:00 PM	21	217	0	0	0	256	3	1	0	0	42	0	0	0	0	0	540	
3:15 PM	25	232	0	0	0	239	2	0	0	0	52	0	0	0	0	0	550	
3:30 PM	28	228	0	1	0	309	1	0	0	0	50	0	0	0	0	0	617	
3:45 PM	25	257	0	1	0	274	3	0	0	0	59	0	0	0	0	0	619	2326
4:00 PM	19	255	0	0	0	269	3	0	0	0	93	0	0	0	0	0	639	2425
4:15 PM	34	214	0	0	0	298	3	0	0	0	99	0	0	0	0	0	648	2523
4:30 PM	29	246	0	0	0	297	2	0	0	0	85	0	0	0	0	0	659	2565
4:45 PM	31	250	0	2	0	294	1	0	0	0	121	0	0	0	0	0	699	2645
5:00 PM	22	237	0	1	0	315	1	0	0	0	135	0	0	0	0	0	711	2717
5:15 PM	37	266	0	0	0	291	3	0	0	0	115	0	0	0	0	0	712	2781
5:30 PM	31	275	0	0	0	293	2	1	0	0	148	0	0	0	0	0	750	2872
5:45 PM	29	220	0	0	0	299	6	0	0	0	96	0	0	0	0	0	650	2823
6:00 PM	15	241	0	1	0	311	1	1	0	0	139	0	0	0	0	0	/09	2821
6:15 PM	24	267	0	0	0	263	4	0	0	0	96	0	0	0	0	0	654	2763
6:30 PM	23	248	0	1	0	237	3	0	0	0	61	0	0	0	0	0	5/3	2586
6:45 PM	19	261	0	2	0	1/8	4	0	0	0	55	0	0	0	0	0	519	2455
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	ound		То	tal
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	10	Lai
All Vehicles	100	1028	0	4	0	1096	12	0	0	0	236	0	0	0	0	0	24	76
Heavy Trucks	4	124	0		0	48	4		0	0	0		0	0	0		18	30
Pedestrians		0				0				0				0			C)
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0		C)
Railroad																		
Stopped Buses																		
																		_

Comments:

Report generated on 10/4/2019 9:05 AM

QC JOB #: 15027009

LOCATION: Kenilworth Ave/Edmonston Rd -- Cherrywood Ln **CITY/STATE:** Greenbelt, MD

CITY/STATE:	Greer	nbelt, N	ИĎ												DATE:	Tue,	Sep 17	2019
338 ← 115 0 140 → 25	830 ↓ 211 6: ↓ ↓ ↓ ↓ 127 & 644	979 19 0 60 60 61 991	0 ← 0 0 0 → 0			Pe Pea	ak-Hou k 15-M DATA TH	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		- 7:00 / 7:00	AM AM			18 ← 9.6 0 114 → 20	14.8 0.9 1 	6.6 9.5 0 • • • • • 3.3 0 • 5.9	• 0 + • 0 • 0 •	0
0		→ [→ [0		-	1	₹↓↓	Ļ			₽	_		1 0 0			• 0 • 0 • 0	
و + NA + ج +			NA ►		-		* * *		٩	† †	***	_		NA			t ← NA F	
15-Min Count Period Beginning At	Kenilv	worth Av F (North	ve/Edmo Rd bound)	onston	Kenilv	vorth Av F (South	ve/Edmo ld bound)	onston		Cherry (Eastk	wood Ln bound)			Cherry (West	wood Ln bound)		Total	Hourly Totals
6.00 \\	Left	174	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	383	
6:15 AM 6:30 AM	27 29 46	194 220 276	0	0	0	141 191 167	36 62 79	0	34 26	0	1 3	0	0	0	0	0	433 531 614	1961
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM	42 54 40 49 46	252 231 236 214 220	0 0 0 0	0 1 0 0 0	0 0 0 0	188 226 221 262 241	97 87 118 101 116	0 0 0 0	22 29 33 30 30	0 0 0 0	10 10 10 11 13	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	611 638 658 667 666	2189 2394 2521 2574 2629
8:15 AM 8:30 AM 8:45 AM	55 38 45	202 221 203	0 0 0	0 1 0	0 0 0	250 235 250	124 104 88	1 0 0	32 27 20	0 0 0	7 5 13	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	671 631 619	2662 2635 2587
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	bound		Tot	tal
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
Heavy Trucks	184	52	0	0	0	668 120	316 8	U	144 8	0	40 8	0	0	0	0	U	24 19	6
Pedestrians Bicycles	0	0 0	0		0	0 0	0		0	0 0	0		0	0 0	0		C	

Pedestrians Bicycles Railroad Stopped Buses

Comments:

Report generated on 10/2/2019 7:36 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

LOCATION: Kenilworth Ave/Edmonston Rd -- Cherrywood Ln QC JOB #: 15027010 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 1180 1056 48 14.2 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓ Peak 15-Min: 3:30 PM -- 3:45 PM ŧ 5.3 1.4 0 . 213 🗲 180 🌶 **a** 0 5.2 🗢 7.2 🌶 **t** 0 0 0 0 🌩 0 🔸 0.92 0 Λ + 7.8 🔶 9 🤉 **€** 0 → 0 258 🔶 78 🤻 ŧ ŧ 74 876 0 12.2 15.6 0 ŧ ♦ 5.5 ŧ ŧ Quality Counts 1119 15.4 950 DATA THAT DRIVES COMMUNITIES 0 1 0 \$ 1 **e** 0 **t** 0 AD 0 0 0 🔸 **+** 0 1 7 **f** 0 ŧ 0 0 0 t NA 🗲 NA ΝΛ NΛ 1 📱 1 T ŧ NA NΔ Kenilworth Ave/Edmonston Kenilworth Ave/Edmonston Cherrywood Ln Cherrywood Ln 15-Min Count I Rd Rd

Period Beginning At		۳ North(bound)			٦ South(bound)			(Eastb	ound)			(West	oound)		Total	Hourly Totals
	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		
3:00 PM	15	211	0	0	0	246	28	0	45	0	25	0	0	0	0	0	570	
3:15 PM	13	204	0	0	0	231	29	0	40	0	23	0	0	0	0	0	540	
3:30 PM	28	225	0	0	0	288	46	0	45	0	15	0	0	0	0	0	647	
3:45 PM	17	236	0	1	0	275	37	0	50	0	15	0	0	0	0	0	631	2388
4:00 PM	16	225	0	0	0	232	37	0	70	0	28	0	0	0	0	0	608	2426
4:15 PM	25	215	0	0	0	267	48	0	60	0	31	0	0	0	0	0	646	2532
4:30 PM	16	214	0	0	0	287	40	0	75	0	36	0	0	0	0	0	668	2553
4:45 PM	20	233	0	1	0	251	38	0	77	0	44	0	0	0	0	0	664	2586
5:00 PM	25	224	0	0	0	269	52	0	89	0	46	0	0	0	0	0	705	2683
5:15 PIM	24	223	0	0	0	255	50	0	88	0	49	0	0	0	0	0	689	2726
5:30 PIM	33	242	0	2	0	233	54	0	79	0	3/	0	0	0	0	0	680	2738
5:45 PIVI	22	219	0	1	0	280	49	0	104	0	29	0	0	0	0	0	6/8 700	2752
6.15 DM	20	210	0	1	0	200	44 55	0	76	0	24	0	0	0	0	0	692	2730
6.30 PM	29	242	0	3	0	204	/1	0	64	0	27	0	0	0	0	0	581	2749
6:45 PM	20	221	0	1	0	178	30	0	68	0	20	0	0	0	0	0	581	2553
Deals 45 Min	27	North	bound	-	Ű	South	hound	Ū	00	Fasth	ound	<u> </u>	Ű	West	bound	Ŭ	501	2000
Flowrates	1 oft	There	Diaht		Laft	There	Diaht		Loft	There	Diaht		Loft	These	Diaht		То	tal
Howfates	Leit	Inru	Right	U	Leit	Inru	Right	U	Leit	Thru	Right	U	Leit	Inru	Right	U		
All Vehicles	112	900	0	0	0	1152	184	0	180	0	60	0	0	0	0	0	25	88
Heavy Trucks	20	124	0		0	44	4		12	0	12		0	0	0		22	L6
Pedestrians		0				0				0				0			()
Bicycles	0	0	0		0	0	0		0	0	1		0	0	0		1	-
Railroad																		
Stopped Buses																		
Comments:																		

Report generated on 10/4/2019 9:05 AM

LOCATION: E CITY/STATE:	Edmon Greer	ston Ro belt, N	d Sun ⁄ID	nyside	e Ave										QC DATE:	: JOB 	‡: 1502 Sep 17	27011 2019
417 ← 59 . 0 • 226 → 167 •	828 110 71 - 0.8 - 0	723 8 0 • • • 5 • • 4 0 971	0 ← 0 0 ← 0			Pea Pea	ak-Hou k 15-M Qua	r: 6:00 in: 6:4	AM 5 AM 5 AM	7:00 / - 7:00	AM AM			6.7 ← 10.3 0 10.6 → 10.3	16.3 10 1 10 1 2 4 55 7 16	7.6 7.3 0 7.3 0 7.4 0 6.8	• 0 • • 0 • 0 •	0
•		→ [] → [0		-	*]↓↓			l	₿			0 0 0			0 0 0	
← ♪ NA → → →			► NA ►		-					ך ך ן	我			NA			NA	
15-Min Count		Edmon	ston Rd			Edmon	ston Rd			Sunnys	ide Ave			Sunnys	ide Ave			Hourly
Period Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	(Eastb	Right	U	Left	(west Thru	Right	U	Iotal	Totals
6:00 AM 6:15 AM 6:30 AM 6:45 AM	73 66 82 <mark>86</mark>	118 154 175 217	0 0 0 0	0 0 0	0 0 0	146 161 201 210	24 29 33 24	0 0 0	9 16 18 16	0 0 0	36 33 56 42	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	406 459 565 595	2025
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	80 79 62 79 62 70 69 65	212 176 200 183 172 179 180 153	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	236 241 253 235 231 245 234 225	28 30 23 27 29 18 28 33	0 0 0 0 0 0 0	13 12 19 11 23 18 21 36	0 0 0 0 0 0 1 0	61 87 100 119 146 109 111 125	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 1	0 0 0 0 0 0 0	630 625 657 654 663 639 644 638	2249 2415 2507 2566 2599 2613 2600 2584
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	oound		Tot	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	Left 344 28 0	Thru 868 40 0	Right 0 0 0	0	Left 0 0	Thru 840 124 0 0	Right 96 0	0	Left 64 12 0	Thru 0 0 0 0 0 0	Right 168 12 0	0	Left 0 0	Thru 0 0 0 0 0 0	Right 0 0	0	233 21 0 0	80

Report generated on 10/2/2019 7:36 AM

			-	-	-			-		-		-	-	-	-	-		
5:30 PM	58	262	0	0	0	208	34	0	42	0	104	0	0	0	0	0	708	2776
5:45 PM	55	240	0	0	0	207	24	0	51	0	121	0	0	0	0	0	698	2800
6:00 PM	84	274	0	0	0	215	27	0	41	0	103	0	0	0	0	0	744	2847
6:15 PM	60	258	0	0	0	205	19	0	45	0	90	0	0	0	0	0	677	2827
6:30 PM	58	237	0	0	0	176	28	0	33	0	76	0	0	0	0	0	608	2727
6:45 PM	70	235	0	0	0	154	25	0	34	0	57	0	0	0	0	0	575	2604
Peak 15-Min		North	bound			South	bound			Eastb	ound			West	bound		Та	hal
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	10	Ldi
All Vehicles	276	944	0	0	0	816	120	0	148	0	388	0	0	0	0	0	26	92
Heavy Trucks	32	144	0		0	24	8		8	0	12		0	0	0		22	28
Pedestrians		0				0				0				0			0)
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0		0)
Railroad																		
Ramouu																		

Report generated on 10/4/2019 9:05 AM

LOCATION: E CITY/STATE:	Edmon Beltsv	ston R ville, M	d Bea D	ver Da	am Rd										QC DATE:	JOB ‡ Thu, :	‡: 1502 Sep 19	27017 2019
	874 0 863 • 0.77 • 0.77 • 0.683 882	700	12 ★ 25 0 13 ★ 12			Pea Pea	ak-Hou k 15-M Qua DATA TH	r: 6:00 in: 6:4	AM 5 AM	- 7:00 / 7:00	AM AM			0 + 0 0 0 + 0	16.9 0 17 • • • • • • • 16.9	9.6 0 4 28.6 9.4	333 ← 2 0 7.7 → 10	10
0		• [0		-		4				500 ₽ }			0 0 0			0 0 0	
و ب NA پ ک			← NA ←		-	50 0				•				NA			NA	
15-Min Count Period Reginning At		Edmon (North	ston Rd bound)			Edmon (South	ston Rd bound)			Beaver (Eastb	Dam Rd ound)			Beaver (Westl	Dam Rd bound)		Total	Hourly Totals
6:00 AM 6:15 AM 6:30 AM 6:45 AM	Left 0 0 0	Thru 128 141 183 236	Right 3 1 2 1	0 0 0 0	Left 0 0 1 4	Thru 178 190 235 266	Right 0 0 0 0	U 0 0 0	Left 0 0 0	Thru 0 0 0 0 0 0	Right 0 0 0 0	0 0 0 0	Left 1 3 6 3	Thru 0 0 0 0 0 0	Right 3 2 6 1	0 0 0 0	313 337 433 511	1594
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:30 AM 8:45 AM	0 0 0 0 0 0 0	180 206 176 195 200 152 181 156	0 5 4 2 7 8 9 5	0 0 0 0 0 0 1	2 5 2 5 3 2 10	302 277 255 299 270 259 261 242	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	3 4 3 7 5 8 5 2	0 0 0 0 0 0 0	5 4 9 8 5 10 7	0 0 0 0 0 0 0 0	492 501 444 514 495 435 468 423	1773 1937 1948 1951 1954 1888 1912 1821
Peak 15-Min Flowrates	Left	North	bound Right	U	Left	South	bound Right	U	Left	Eastb Thru	ound Right	U	Left	Westh	ound Right	U	Tot	al
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	0 0 0	944 92 0 1	4 0 0	0	16 0 0	1064 156 0 0	0 0 0	0	0	0 0 0 0	0 0 0	0	12 0 0	0 0 0 0	4 0 0	0	204 24 0 1	44 -8

Report generated on 10/2/2019 7:36 AM

Comments:

LOCATION: E CITY/STATE:	dmon Beltsv	ston R ille, M	d Bea D	ver Da	am Rd										QC DATE:	Thu,	#: 1502 Sep 19	27018 2019
	859 0 831 • 0 0.88 0.88 0.88 • 0 0.88 • 0 102 • 849	1033	, 9 ← 27 0 18 → 86	;		Pe Pea	eak-Hou ak 15-M	ur: 3:00 lin: 3:3	0 PM - 30 PM	- 4:00 3:45 unts	PM 5 PM			0 + 0 0 0 + 0	5.9 0 6. • • • • • 0 12 • • 6.1	12.9 1 0 3 5.2 12.6	€ 0 ↔ ← 0 € 5.6 →	3.7 3.5
o		→ [→ [0		-		DATA T⊢	IAT DRIV	ES COMI	MUNITIES	s ∰ \$—	_		0 0 0			€ 0 ← 0 € 0	
• • • NA • • •			• • •		-	500				†		_		NA			€ ← NA ₽	
15-Min Count Period Beginning At	Left	Edmon (North Thru	ston Rd bound) Right	U	Left	Edmon (South Thru	iston Rd bound) Right	U	Left	Beaver (Eastb Thru	Dam Rd pound) Right	U	Left	Beaver (Westl Thru	Dam Rđ bound) Right	U	Total	Hourly Totals
3:00 PM 3:15 PM 3:30 PM	0 0 0	218 254 283	12 10 <u>18</u>	0 0 0 0	8 4 6	190 182 237	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	6 4 4	0 0 0	5 1 2	0 0 0	439 455 550	1068

3:30 PM	0	283	18	0	6	237	0	0	0	0	0	0	4	0	2	0	550	
3:45 PM	0	269	18	0	10	222	0	0	0	0	0	0	4	0	1	0	524	1968
4:00 PM	0	257	15	0	5	218	0	1	0	0	0	0	7	0	6	0	509	2038
4:15 PM	0	248	19	0	12	212	0	0	0	0	0	0	3	0	7	0	501	2084
4:30 PM	0	257	24	0	8	221	0	0	0	0	0	0	1	0	9	0	520	2054
4:45 PM	0	224	31	0	9	227	0	0	0	0	0	0	4	0	10	0	505	2035
5:00 PM	0	225	33	0	5	203	0	0	0	0	0	0	2	0	12	0	480	2006
5:15 PM	0	246	27	0	4	213	0	0	0	0	0	0	3	0	8	0	501	2006
5:30 PM	0	268	32	0	8	231	0	0	0	0	0	0	3	0	12	0	554	2040
5:45 PM	0	277	19	0	14	210	0	0	0	0	0	0	7	0	13	0	540	2075
6:00 PM	0	272	12	0	11	227	0	0	0	0	0	0	7	0	15	0	544	2139
6:15 PM	0	272	8	0	10	259	0	0	0	0	0	0	4	0	11	0	564	2202
6:30 PM	0	229	12	0	11	218	0	0	0	0	0	0	1	0	5	0	476	2124
6:45 PM	0	221	3	0	5	208	0	0	0	0	0	0	5	0	4	0	446	2030
Peak 15-Min		North	bound			South	bound			Eastb	oound			West	bound		Та	4-1
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	10	tai
All Vehicles	0	1132	72	0	24	948	0	0	0	0	0	0	16	0	8	0	22	00
Heavy Trucks	0	120	4		0	56	0		0	0	0		4	0	0		18	34
Pedestrians		0				0				0				0			()
Bicycles	0	0	0		0	1	0		0	0	0		0	0	0		1	L
Railroad																		
Stopped Buses																		

Report generated on 10/4/2019 9:05 AM

Report generated on 10/2/2019 7:36 AM

Stopped Buses Comments:

LOCATION: Edmonston Rd -- Powder Mill Rd QC JOB #: 15027014 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 712 840 49 16 Peak 15-Min: 3:45 PM -- 4:00 PM ÷ ŧ ŧ 4 387 239 86 0.4 11.6 6.2 . . 860 🗢 331 🌶 37 7.7 + 11.5 + **t** 8.1 **+** 3.6 **4** 249 £ 19.5 🜩 **+** 3.5 471 🜩 0.89 **+** 144 14.2 🔹 2.8 🥆 944 🔹 142 🍾 € 1.5 → 14.9 ٦ ŧ C 329 472 146 11.2 19.7 2.1 ↓ 1.3 ÷ ŧ **↑** 14 Quality Counts 947 DATA THAT DRIVES COMMUNITIES 0 0 0 L. . \$ ┥ 0 🖌 **t** 0 Ate 0 0 1 **+** 0 0 7 **r** 0 C 4 4 0 1 0 NA L. . t NA 🗢 NA NA NA ſ ₩. Ī 1 ٦ ç ŧ r 1 NA NΔ Edmonston Rd Edmonston Rd Powder Mill Rd Powder Mill Rd 15-Min Count Period Beginning At Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ 81 59 14 19 655 3:00 PM 112 34 0 18 42 86 0 81 112 34 0 31 10 0 3:15 PM 115 43 0 15 56 95 0 60 113 42 40 q

4:15 PM 4:30 PM	97 72	140	46 46	0	28 39	91 106	17 14	0	15	92 97	96 93	0	10 19	32 51	6 9	0	670 690	2924 2888
4:45 PM	73	143	56	0	26	123	15	0	15	95	96	1	7	42	10	0	702	2785
5:00 PM	95 82	133	53	0	32	126	18 13	0	15 20	78 118	99 99	0	14	38 47	11	0	712	2774
5:30 PM	103	139	43	0	37	138	26	0	15	120	106	0	28	30	13	0	798	2998
5:45 PM	93	154	28	0	28	105	24	0	12	78	117	0	29	32	6	0	706	3002
6:15 PM	118	141	38	0	9	78	19	0	27	51	95 95	0	12	23	9	0	625	2995
6:30 PM	92	151	45	0	9	109	18	0	15	54	90	0	16	22	6	0	627	2661
6:45 PM	95	111	31	0	10	95	15	0	22	44	76	0	15	28	14	0	556	2511
																	Total	
Peak 15-Min		North	bound			South	bound			Eastb	ound			Westk	bound		To	tal
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastb Thru	ound Right	U	Left	Westk Thru	oound Right	U	Tot	tal
Peak 15-Min Flowrates	Left 404 40	North Thru 504 108	bound Right 132 4	U 0	Left 132 8	South Thru 324 4	bound Right 468 16	U 0	Left 408 40	Eastb Thru 504 108	ound Right 124 4	U 0	Left 68 0	Westk Thru 104 4	oound Right 48 8	U 0	Tot 32 34	tal 20 4
Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians	Left 404 40	North Thru 504 108 0	bound Right 132 4	U 0	Left 132 8	South Thru 324 4 0	bound Right 468 16	U 0	Left 408 40	Eastb Thru 504 108 0	ound Right 124 4	U 0	Left 68 0	Westk Thru 104 4 0	Argenter State Sta	U 0	Tot 32 34 0	tal 20 4
Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Baikroad	Left 404 40 0	North Thru 504 108 0 0	bound Right 132 4 0	U 0	Left 132 8 0	South Thru 324 4 0 0	bound Right 468 16 0	U 0	Left 408 40 0	Eastb Thru 504 108 0 0	ound Right 124 4 0	U 0	Left 68 0	Westb Thru 104 4 0 0	Arrowski strangt stran	U 0	32. 34 0 0	20 4

Comments:

Report generated on 10/4/2019 9:05 AM

LOCATION: Edmonston Rd -- Odell Rd OC JOB #: 15027015 DATE: Tue, Sep 17 2019 **CITY/STATE:** Greenbelt, MD Peak-Hour: 6:00 AM -- 7:00 AM 11.2 Peak 15-Min: 6:45 AM -- 7:00 AM ÷ ŧ ŧ **↑** 0 7.7 . J, . 9.1 🗲 68.4 🌶 19 **t** 0 **•** 0 . ŧ 0.95 70 → 100 → € 0 → 66.7 ٦, c 2 🌩 ŧ ŧ r 11.1 8.7 66.7 ÷ ♦ 22.1 ŧ Quality Counts 9.3 DATA THAT DRIVES COMMUNITIES . ₼ • • **t** 0 A + **f** 0 ŧ C NA ÷ ÷ t و 🔶 NA NA ΝΛ NA • ... c ŧ r NA NA Edmonston Rd Edmonston Rd Odell Rd Odell Rd 15-Min Count Period Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total **Beginning At** Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ 6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM . 7 8 7:15 AM 0 7:30 AM 2 2 7:45 AM 5 2 8:00 AM 8:15 AM 8:30 AM 8:45 AM n n Δ Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru Right U Left Thru Right υ Left Thru Right υ Left Thru Right υ All Vehicles 68 0 0 8 0 0 Heavy Trucks Õ õ Ö Pedestrians Bicycles Railroad

Report generated on 10/2/2019 7:36 AM

Stopped Buses Comments:

LOCATION: Edmonston Rd -- Odell Rd OC JOB #: 15027016 DATE: Tue, Sep 17 2019 **CITY/STATE:** Greenbelt, MD Peak-Hour: 3:00 PM -- 4:00 PM Peak 15-Min: 3:45 PM -- 4:00 PM ŧ **↑ ↑** 0 55.6 7.3 . . 20 **1** 56.6 + 25 **t** 0 **a** 0 ŧ 0.96 + 22.2 + 20 -Ъ, 2 🌩 c ŧ ŧ C 57.7 14.9 33.3 ÷ + ŧ ŧ Quality Counts 7.4 16.9 DATA THAT DRIVES COMMUNITIES . ₼ • • **t** 0 A + **f** 0 ŧ C NA ÷ ÷ t t و 🔶 NA NA NA NA • ... c ŧ r NA NA Edmonston Rd Edmonston Rd Odell Rd Odell Rd 15-Min Count Period Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total **Beginning At** Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 2 1 0 7 6 4:15 PM 3 2 4:30 PM 4:45 PM 0 5:00 PM 5:15 PM 3 2 4 5:30 PM 0 5 4 0 0 5:45 PM 0 0 2 2 0 6:00 PM

2 6:15 PM 7 0 6:30 PM 6:45 PM л n Northbound Westbound Southbound Eastbound Peak 15-Min Flowrates Total Left Thru υ Left υ Left υ Left U Right Thru Right Thru Right Thru Right All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses

Comments:

Report generated on 10/4/2019 9:05 AM

Stopped Buses Comments:

Bicycles

Railroad

Report generated on 10/2/2019 7:36 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

LOCATION: Poultry Rd -- Powder Mill Rd OC JOB #: 15027020 **CITY/STATE:** Greenbelt, MD DATE: Thu, Sep 19 2019 Peak-Hour: 3:00 PM -- 4:00 PM Peak 15-Min: 3:45 PM -- 4:00 PM ÷ ŧ 0 ***** 231 📥 **a** 233 • 0 + t 0.87 1.9 🔺 3.1 + ÷ 1.8 → 0 → 0 🔶 598 c ŧ ŧ ÷ ŧ ŧ Quality Counts n DATA THAT DRIVES COMMUNITIES . ♠ 0 1 **t** 0 A ÷ **f** 0 ŧ NΔ ÷ t و t NA NA NA NA . STOP ... ъ ŧ C NA NA Poultry Rd Poultry Rd Powder Mill Rd Powder Mill Rd 15-Min Count Period Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total **Beginning At** Left Thru Right υ Left Thru Right υ Left Thru Right υ Left Thru Right υ 3:00 PM 3:15 PM 3:30 PM 3:45 PM 4:00 PM 0 2 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM

5:30 PM 5:45 PM 0 0 0 0 0 6:00 PM 6:15 PM 0 6:30 PM 6:45 PM Λ n n Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru υ Left υ Left υ Left U Right Thru Right Thru Right Thru Right All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses

Comments:

Report generated on 10/4/2019 9:05 AM

LOCATION: F	Resear Green	ch Rd - belt. N	- Powd /ID	er Mil	Rd										QC DATE:	JOB # Thu. :	#: 1502 Sep 19	27036 2019
261 ← 0 112 120 → 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 🔶 264 247 17 🔸 131			Pe Pea	ak-Hou k 15-M Qua DATA TH	D AM - I5 AM	$ \begin{array}{c} 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 19 + 0 & 4 \\ 36 + 2 \\ 33 + 0 & 7 \\ 0 & 53 \\ 0 & 3 \\ \end{array} $									
0		→ [→ 1	0		-	şın	Þ				+	-		0 0 0			• 0 • 0 • 0	
											an ?		N4			€ ◆ NA F		
15-Min Count Period		Resea (North	rch Rd bound)			Resea (South	rch Rd bound)			Powder (Eastb	r Mill Rd bound)			Powder (West	[.] Mill Rd bound)		Total	Hourly
6:00 AM	Left 2	Thru 0	Right 3	U 0	Left 0	Thru 0	Right 0	U 0	Left 0	Thru 25	Right 1	U 0	Left 6	Thru 52	Right 0	U 0	89	Totals
6:15 AM 6:30 AM 6:45 AM	0 5 7	0 0 0	5 5 6	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	26 27 34	2 0 5	0 0 0	2 2 7	61 53 81	0 0 0	0 0 0	96 92 140	417
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	3 9 6 8 10 5 7 9	0 0 0 0 0 0 0 0	5 6 4 10 6 11 11 3	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	32 46 56 63 75 87 64 69	2 7 13 17 18 14 10 16	0 0 0 0 0 0 0 0	5 3 5 4 11 8 7 5	75 87 98 113 90 84 89 51	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	122 158 182 215 210 209 188 153	450 512 602 677 765 816 822 760
Peak 15-Min Flowrates	l oft	North	bound Right	11	left	South	bound Right	11	left	Eastb	ound Right	11	left	West	ound Right	11	Tot	tal
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	28 0 0	0 0 0 0	24 0 0	0	0 0 0	0 0 0 0	0 0 0	0	0 0 0	136 8 0 0	20 0 0	0	28 0 0	324 4 0 0	0 0 0	0	56 11 0 0	60 2)

Report generated on 10/2/2019 7:36 AM

Comments:

Period		(North	bound)			(South	bound)			(Eastk	ound)			(Westl	bound)		Total	Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		TOtals
3:00 PM	6	0	3	0	0	0	0	0	0	104	4	0	5	42	0	0	164	
3:15 PM	3	0	7	0	0	0	0	0	0	118	17	0	4	50	0	0	199	
3:30 PM	5	0	18	0	0	0	0	0	0	161	11	0	7	58	0	0	260	
3:45 PM	13	0	12	0	0	0	0	0	0	163	12	1	9	53	0	0	263	886
4:00 PM	6	0	16	0	0	0	0	0	0	147	18	0	16	52	0	0	255	977
4:15 PM	4	0	19	0	0	0	0	0	0	185	20	0	8	57	0	0	293	1071
4:30 PM	7	0	16	0	0	0	0	0	0	175	25	0	2	52	0	0	277	1088
4:45 PM	7	0	26	0	0	0	0	0	0	157	26	0	3	42	0	0	261	1086
5:00 PM	7	0	28	0	0	0	0	0	0	142	23	0	5	50	0	0	255	1086
5:15 PM	11	0	19	0	0	0	0	0	0	169	29	0	10	51	0	0	289	1082
5:30 PM	8	0	21	0	0	0	0	0	0	152	29	0	9	46	0	0	265	1070
5:45 PM	11	0	13	0	0	0	0	0	0	155	20	0	14	48	0	0	261	1070
6:00 PM	11	0	14	0	0	0	0	0	0	129	12	0	7	54	0	0	227	1042
6:15 PM	8	0	6	0	0	0	0	0	0	101	22	0	5	50	0	0	192	945
6:30 PM	7	0	3	0	0	0	0	0	0	75	11	0	3	42	0	0	141	821
6:45 PM	9	0	2	0	0	0	0	0	0	70	9	0	2	46	0	0	138	698
Peak 15-Min	Northbound				Southbound					Eastb	ound		Westbound				-	
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	10	tai
All Vehicles	52	0	48	0	0	0	0	0	0	652	48	4	36	212	0	0	10	52
Heavy Trucks	0	0	0		0	0	0		0	4	0		4	0	0		8	3
Pedestrians		0				0				0				0			()
Bicycles	0	0	0		0	0	0		0	0	0		0	0	0		()
Railroad																		
Stopped Buses																		

Report generated on 10/4/2019 9:05 AM

LOCATION: S CITY/STATE:	Springf Green	ield Ro Ibelt, N	l Pow /ID	der M	lill Rd										QC DATE:	JOB # Tue,	‡: 1502 Sep 17	27023 2019		
$286 \leftarrow 4$ 122 $126 \rightarrow 0$	138 17 0 ↓ 0 ↓ 0 0 0 0	139 121 • • • • • 0 • 0	135 ← 404 269 0 → 243		Peak-Hour: 6:00 AM 7:00 AM Peak 15-Min: 6:45 AM 7:00 AM									$ \begin{array}{c} 14 & 29 \\ 0 & 0 & 17 \\ 28 + 25 & & & \\ 49 + & & & \\ 56 + 0 & & & \\ & & & & & \\ & & & & & \\ & & & & $						
0		→ [→ [0		-	şı	▶ .↓				<u>.</u>	-		0 0 0			€ 0 ← 0 € 0			
• € NA ≠ • ₹		-		- → 				STOP	_		NA			€ ← NA F						
15-Min Count Period		Spring (North	field Rd bound)			Spring (South	field Rd bound)			Powder (Eastk	r Mill Rd oound)			Powder (West	r Mill Rd bound)		Total	Hourly Totals		
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM	Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thru 0 0 0 0 0 0 0 0 0	Right 0 0 0 0 0 0	U 0 0 0 0 0	Left 23 25 29 44 60 73	Thru 0 0 0 0 0 0 0 0 0	Right 4 2 7 1 2	U 0 0 0 0 0	Left 0 1 3 0 3 2	Thru 20 32 29 41 42 53	Right 0 0 0 0 0 0	U 0 0 0 0 0	Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Thru 53 66 69 81 67 89	Right 34 27 24 50 43 62	U 0 0 0 0 0	134 155 156 223 216 281	668 750 876		
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	98 96 96 94 100 94	0 0 0 0 0	3 2 0 5 5	0 0 0 0 0	1 2 5 5 2 2	65 59 70 60 76 86	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	109 98 109 108 91 58	64 54 39 57 49 40	0 0 0 0 0	340 312 321 324 323 285	1060 1149 1254 1297 1280 1253		
Peak 15-Min Flowrates	Left	North Thru	bound Right	U	Left	South Thru	bound Right	U	Left	Eastb Thru	ound Right	U	Left	Westl Thru	oound Right	U	То	tal		
All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	0 0 0	0 0 0	0 0 0	0	176 8 0	0 0 0	28 0 0	0	0 0 0	164 8 0 0	0 0 0	0	0 0 0	324 8 0 0	200 0 0	0	89 2 () ())2 4)		

Report generated on 10/2/2019 7:36 AM

LOCATION: Springfield Rd -- Powder Mill Rd OC JOB #: 15027024 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 3.3 Peak 15-Min: 3:30 PM -- 3:45 PM ÷ ŧ 1.9 ▲ 135 ← 352 225 🛥 18 🛊 49 - 56 + • 3 43 463 🔶 0.92 1.9 🔺 5.1 **e** 217 2.1 + 0 0 3 0 🔹 729 481 🔺 c ŧ ŧ ŧ ŧ ŧ Quality Counts n DATA THAT DRIVES COMMUNITIES . 0 1 **t** 0 A <u>م</u> **f** 0 ŧ NΔ t و t NA NA NA NA ... ъ ŧ C NA NA Springfield Rd Springfield Rd Powder Mill Rd Powder Mill Rd 15-Min Count Period Hourly Totals (Northbound) (Southbound) (Eastbound) (Westbound) Total **Beginning At** Left Thru Right υ Left Thru Right U Left Thru Right υ Left Thru Right υ 3:00 PM 3:15 PM 3:30 PM 3:45 PM 57 4:00 PM Ō 4:15 PM 4:30 PM Ō 4:45 PM 5:00 PM 5 5 5:15 PM Ō Ō 5:30 PM

5:45 PM 1 6:00 PM 6:15 PM 6:30 PM 6:45 PM n Λ Λ Northbound Southbound Eastbound Westbound Peak 15-Min Flowrates Total Left Thru υ Left Thru Right υ Left Thru Right U Left Thru υ Right Right All Vehicles Heavy Trucks 0 Pedestrians Bicycles Railroad Stopped Buses

Comments:

Report generated on 10/4/2019 9:05 AM

LOCATION: Baltimore-Washington Pkwy SB Ramps -- Powder Mill Rd OC JOB #: 15027025 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 6:00 AM -- 7:00 AM Peak 15-Min: 6:45 AM -- 7:00 AM ŧ ŧ ŧ 1.5 . . 24 • 0 • 409 🛥 0 348 • 0 **a** 23 + ŧ 165 🜩 0.76 **e** 273 4.8 🔺 2.9 3.7 + 1.2 246 \Rightarrow 81 🍾 ŧ ÷ ŧ. ÷ ŧ Quality Counts 0.6 n DATA THAT DRIVES COMMUNITIES . 0 1 **t** 0 A ÷ **f** 0 ŧ NΔ t -**-**+ و t NA NA NA NA ... ъ c ŧ C NA NA **Baltimore-Washington Pkwy Baltimore-Washington Pkwy** Powder Mill Rd 15-Min Count Period Beginning At Powder Mill Rd SB Ramps SB Ramps Hourly (Eastbound) (Westbound) Total (Northbound) (Southbound) Totals Left υ Left Left Thru Right υ Left Thru υ Thru Right Thru Right υ Right 6:00 AM 6:15 AM 6:30 AM 6:45 AN 7:00 AM 7:15 AM Ō Ō 7:30 AM 7:45 AM 8:00 AM Ō Ō 8:15 AM 8:30 AM 8:45 AM Northbound Southbound Westbound Eastbound Peak 15-Min Total Flowrates Left Thru Right U Left Thru Right U Left Thru Right υ Left Thru Right υ All Vehicles Heavy Trucks Pedestrians 0 0 0 Õ õ Bicvcles Railroad Stopped Buses Comments:

Report generated on 10/2/2019 7:36 AM
Railroad Stopped Buses

Pedestrians

Bicvcles

Comments:

Report generated on 10/4/2019 9:05 AM

SOURCE: Quality Counts, LLC (http://www.qualitycounts.net) 1-877-580-2212

Comments: Report generated on 10/2/2019 7:36 AM

Stopped Buses

Northbound Southbound Eastbound Westbound Peak 15-Min Total Flowrates Left Thru Right υ Left Thru Right υ Left Thru Right υ Left Thru Right υ All Vehicles **Heavy Trucks** Pedestrians Bicvcles Railroad Stopped Buses

Comments:

Report generated on 10/4/2019 9:05 AM

Report generated on 10/2/2019 7:36 AM

Stopped Buses Comments:

LOCATION: Soil Conservation Rd -- Powder Mill Rd QC JOB #: 15027030 **CITY/STATE:** Greenbelt, MD DATE: Tue, Sep 17 2019 Peak-Hour: 3:00 PM -- 4:00 PM 0 0 1 0 Peak 15-Min: 3:45 PM -- 4:00 PM ŧ ŧ ŧ 4 0 1 0 0 0 0 . . 830 🛥 0 0 16 • 0 • **4** 311 € 0 € 3.2 + ŧ 304 0.88 **e** 280 2.6 🜩 **e** 2.5 + 2.6 \Rightarrow 2.5 🥆 659 **→** 355 **¬** € 9.7 → 2.4 ŧ 549 0 34 1.1 0 0 ♦ 3.1 ŧ ŧ. ŧ Quality Counts 386 583 DATA THAT DRIVES COMMUNITIES 0 0 0 . \$ \$ ♠ 0 🖌 **t** 0 AD 0 0 1 **+** 0 * 07 **f** 0 ŧ C 1 0 0 0 NA 4 t و t 🗲 NA NA NA NA \$ 1 ſ 蠢 ... ъ ٤ ŧ C NA NA Soil Conservation Rd Soil Conservation Rd Powder Mill Rd Powder Mill Rd 15-Min Count Period Hourly Totals (Southbound) (Westbound) (Northbound) (Eastbound) Total **Beginning At** Left Thru Right υ Left Thru Right υ Left Thru Right υ Left Thru Right U 341 357 71 97 0 0 0 0 3:00 PM 118 0 0 9 0 0 0 0 0 73 68 0 0 0 0 2 5 3:15 PM 119 6 0 0 0 0 0 67 63 0 3:30 PM 151 0 13 0 0 0 0 0 75 91 0 3 79 0 0 412

5:45 PIVI	101	0	D	U	0	0	1	0	0	89	90	0	21	70	U	0	444	1554
4:00 PM	169	0	8	0	0	0	0	0	1	98	105	0	11	50	0	0	442	1655
4:15 PM	205	0	16	0	0	0	0	0	0	101	113	0	8	52	0	0	495	1793
4:30 PM	156	0	14	0	0	0	0	0	0	111	123	0	11	68	0	0	483	1864
4:45 PM	175	0	13	0	0	0	1	0	1	113	125	0	10	98	0	0	536	1956
5:00 PM	205	0	16	0	0	0	6	0	7	106	126	0	8	64	0	0	538	2052
5:15 PM	213	0	14	0	0	0	2	0	2	101	127	0	3	78	0	0	540	2097
5:30 PM	201	0	16	0	0	0	1	0	1	131	102	0	7	71	0	0	530	2144
5:45 PM	194	0	8	0	0	0	1	0	1	88	145	0	18	79	0	0	534	2142
6:00 PM	183	0	18	0	0	0	0	0	0	68	129	0	10	57	0	0	465	2069
6:15 PM	184	0	15	0	0	0	1	0	1	63	106	0	8	55	0	0	433	1962
6.30 PM	130	0	8	0	0	0	0	0	0	64	103	0	7	45	0	0	357	1789
0.301101	130	0	0	0	0	•	•	•		•••	100	•			•	•		1,00
6:45 PM	126	Ő	7	0	Ő	Õ	1	Ő	Ő	53	87	Ő	7	48	1	Ő	330	1585
6:45 PM Peak 15-Min	126	0 North	7 bound	Ő	Ö	0 South	1 bound	Ő	Ő	53 Eastb	87 bound	0	7	48 Westl	1 Dound	Ő	330	1585
6:45 PM Peak 15-Min Flowrates	126 Left	0 North Thru	7 bound Right	0 U	0 Left	0 South Thru	1 bound Right	0 U	0 Left	53 Eastb Thru	87 bound Right	0 U	7 Left	48 Westl Thru	1 Dound Right	0 U	330 To	1585 tal
6:45 PM Peak 15-Min Flowrates All Vehicles	126 126 Left	0 North Thru 0	7 bound Right 24	0 U 0	0 Left	0 South Thru 0	1 bound Right 4	0 U 0	0 Left	53 Eastb Thru 356	87 bound Right 384	0 U 0	7 Left 84	48 Westl Thru 280	1 bound Right	0 U 0	330 To	1585 tal
6:45 PM Peak 15-Min Flowrates	126 126 Left 644 8	0 North Thru 0 0	7 bound Right 24 0	0 U 0	0 Left 0 0	0 South Thru 0 0	1 bound Right 4 0	0 U 0	0 Left	53 Eastb Thru 356 8	87 bound Right 384 20	0 U 0	7 Left 84 4	48 Westl Thru 280 8	1 bound Right 0 0	0 U 0	330 To 17 4	1585 tal
6:45 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians	130 126 Left 644 8	0 North Thru 0 0 0	7 bound Right 24 0	0 U 0	0 Left 0 0	0 South Thru 0 0 0	1 bound Right 4 0	0 U 0	0 Left 0 0	53 Eastb Thru 356 8 0	87 bound Right 384 20	0 U 0	7 Left 84 4	48 Westl Thru 280 8 0	1 cound Right 0 0	0 U 0	330 To	1585 tal
6:45 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles	130 126 Left 644 8 0	0 North Thru 0 0 0 0 0	7 bound Right 24 0 0	0 U 0	0 Left 0 0 0	0 South Thru 0 0 0 0 0	1 bound Right 4 0 0	0 U 0	0 Left 0 0 0	53 Eastb Thru 356 8 0 0	87 00und Right 384 20 0	0 U 0	7 Left 84 4 0	48 Westl Thru 280 8 0 0	1 cound Right 0 0	0 U 0	330 To 17 4 (1585 tal
6:45 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Railroad	130 126 Left 644 8 0	0 North Thru 0 0 0 0	7 bound Right 24 0 0	0 U 0	0 Left 0 0 0	0 South Thru 0 0 0 0	1 bound Right 4 0 0	0 U 0	0 Left 0 0 0	53 Eastb Thru 356 8 0 0	87 00und Right 384 20 0	0 U 0	7 Left 84 4 0	48 Westl Thru 280 8 0 0	1 cound Right 0 0 0	0 U 0	330 To	1585 tal
6:45 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Railroad Stopped Buses	130 126 Left 644 8 0	0 North Thru 0 0 0	7 bound Right 24 0 0	0 U 0	0 Left 0 0	0 South Thru 0 0 0	1 bound Right 4 0 0	0 U 0	0 Left 0 0	53 Easth Thru 356 8 0 0	87 5000nd Right 384 20 0	0 U 0	7 Left 84 4 0	48 Westl Thru 280 8 0 0	1 cound Right 0 0 0	0 U 0	330 To	1585 tal

Comments:

Report generated on 10/4/2019 9:05 AM

Type of report	Tube Count - Vo	lume Data							
LOCATION: 5	Junnyside Ave b	twn Tucke	rr St and Tuck	ter St					QC JOB #: 15027031
SPECIFIC LO	CATION:								DIRECTION: WB
CITY/STATE:	Greenbelt, MD							DA	re: Sep 17 2019 - Sep 19 2019
Start Time	Mon 1	Tue 7 Sep 19	Wed 18 Sep 19	T hu 19 Sep 19	Fri	Average Weekday Hourly Traffic	Sat Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		36	35	35		35		35	
01:00 AM		20	30	37		29		29	
02:00 AM		13	15	23		17		17	
03:00 AM		27	28	31		29		29	
04:00 AM		66	74	57		66		99	
05:00 AM		179	193	197		190		190	
06:00 AM		295	316	327		313		313	
07:00 AM		313	319	338		323		323	
08:00 AM		337	346	314		332		332	
00:00 AM		340	338	332		337		337	
10:00 AM		351	361	345		352		352	
11:00 AM		438	398	475		437		437	
12:00 PM		404	472	392		423		423	
01:00 PM		372	386	363		374		374	
02:00 PM		479	434	467		460		460	
03:00 PM		422	430	439		430		430	
04:00 PM		441	402	418		420		420	
05:00 PM		445	416	379		413		413	
06:00 PM		401	423	440		421		421	
07:00 PM		328	301	300		310		310	
08:00 PM		194	181	196		190		190	
MG 00:00		128	183	139		150		150	
10:00 PM		80	86	100		93		6	
11:00 PM		68	65	80		71		71	
Day Total		6177	6244	6224		6215		6215	
% Weekday Average		99.4%	100.5%	100.1%					
% Week		20 A%	100 5%	1001%		100%			
Average		0/1.00	ACCOST	0/T.00T		0/00T			
AM Peak	Ţ	:1:00 AM	11:00 AM	11:00 AM		11:00 AM		11:00 AM	
Volume		438	398	475		437		437	
PM Peak		2:00 PM	12:00 PM	2:00 PM		2:00 PM		2:00 PM	
Volume		479	472	467		460		460	
Comments:									
Report general	ed on 9/25/2016	3 6:31 AM					5	OURCE: Ouality Counts, LI	C (http://www.gualitycounts.net)

werearcher. Mon Ture State Tate State	Green been been been been been been been	N: Baltimore-V	t - voiurne иага Vashington Pkv	wy SB Off Ram	np to Powder M	ill Rd				QC JOB #: 15027033 DIRECTION: SB
Mot T/sgr Ja Trung Week Numy Traffic Amenage Week 74 36 25 32 32 34 36 25 32 32 34 36 25 32 32 34 31 38 32 32 34 31 32 32 32 34 31 32 33 34 31 333 346 33 33 31 333 346 33 33 31 333 346 33 33 31 333 346 33 33 323 346 33 33 34 333 346 333 34 33 333 346 333 34 33 333 346 333 34 33 341 375 344 33 34 343 340 346 <td< th=""><th>Mot Tree Wordge Week Flag Houry Traffic Average Week 1 86 13 13 13 13 13 14 More Pres More More</th><th>enbelt,</th><th>MD</th><th></th><th></th><th></th><th></th><th></th><th></th><th>JATE: Sep 17 2019 - Sep 19 2019</th></td<>	Mot Tree Wordge Week Flag Houry Traffic Average Week 1 86 13 13 13 13 13 14 More Pres More	enbelt,	MD							JATE: Sep 17 2019 - Sep 19 2019
74 64 72 77 77 77 77 16 2 2 2 2 2 2 16 24 25 2 2 2 2 274 36 317 299 293 337 274 36 317 299 337 371 333 336 337 337 371 333 336 337 337 371 333 336 337 337 373 388 316 337 337 373 388 316 337 337 388 316 337 337 337 388 316 336 336 337 388 316 336 336 336 388 316 346 336 336 388 336 336 336 336 388 336 346 <th>74 64 72 77 7 16 24 25 23 23 16 24 25 23 23 16 24 26 21 23 234 31 32 29 29 31 323 465 31 29 31 323 465 30 30 31 323 465 30 30 31 323 465 30 30 329 335 465 30 30 329 335 465 30 30 329 335 401 36 30 336 345 36 30 36 346 333 345 345 345 348 346 30 36 345 349 346 30 36 345 346 346 30 345 345<th>Mon</th><th>Tue 17 Sep 19</th><th>Wed 18 Sep 19</th><th>Thu 19 Sep 19</th><th>Fri</th><th>Average Weekday Hourly Traffic</th><th>Sat Sun</th><th>Average Week Hourly Traffic</th><th>Average Week Profile</th></th>	74 64 72 77 7 16 24 25 23 23 16 24 25 23 23 16 24 26 21 23 234 31 32 29 29 31 323 465 31 29 31 323 465 30 30 31 323 465 30 30 31 323 465 30 30 329 335 465 30 30 329 335 465 30 30 329 335 401 36 30 336 345 36 30 36 346 333 345 345 345 348 346 30 36 345 349 346 30 36 345 346 346 30 345 345 <th>Mon</th> <th>Tue 17 Sep 19</th> <th>Wed 18 Sep 19</th> <th>Thu 19 Sep 19</th> <th>Fri</th> <th>Average Weekday Hourly Traffic</th> <th>Sat Sun</th> <th>Average Week Hourly Traffic</th> <th>Average Week Profile</th>	Mon	Tue 17 Sep 19	Wed 18 Sep 19	T hu 19 Sep 19	Fri	Average Weekday Hourly Traffic	Sat Sun	Average Week Hourly Traffic	Average Week Profile
34 36 25 32 36 31 38 34 36 37 91 22 36 47 16 37 362 47 16 37 362 47 16 33 371 382 448 33 371 382 448 33 371 382 448 33 373 348 33 33 373 348 33 33 373 441 36 33 388 316 31 33 388 316 33 33 388 316 33 33 388 316 346 30 388 316 346 30 388 316 346 30 388 316 346 30 388 316 40 30 388 <td>34 36 25 32 34 31 36 21 32 34 31 36 31 32 34 31 36 31 32 352 427 416 39 31 352 427 416 39 39 351 333 336 405 39 352 445 30 39 39 353 366 30 30 39 353 366 30 30 39 353 366 30 30 30 359 366 30 30 36 359 353 36 30 36 360 366 30 36 36 360 366 30 36 36 360 366 30 36 36 360 366 36 36 36</td> <td></td> <td>74</td> <td>84</td> <td>72</td> <td></td> <td>17</td> <td></td> <td>77</td> <td></td>	34 36 25 32 34 31 36 21 32 34 31 36 31 32 34 31 36 31 32 352 427 416 39 31 352 427 416 39 39 351 333 336 405 39 352 445 30 39 39 353 366 30 30 39 353 366 30 30 39 353 366 30 30 30 359 366 30 30 36 359 353 36 30 36 360 366 30 36 36 360 366 30 36 36 360 366 30 36 36 360 366 36 36 36		74	84	72		17		77	
16 24 26 22 34 31 38 34 88 9 9 1 29 774 306 317 299 200 371 323 445 390 390 371 323 346 307 403 371 333 346 307 403 373 346 301 303 337 373 346 303 337 403 373 346 303 337 403 373 346 303 337 403 373 346 303 337 346 374 375 337 337 346 375 374 375 337 346 375 374 375 375 375 376 376 376 376 376 376 376 376 376 376	16 24 26 22 8 9 9 11 23 8 9 11 23 34 8 9 11 23 34 8 9 11 23 34 37 416 20 37 40 31 335 445 30 30 31 335 445 30 30 329 316 311 33 33 339 316 311 30 30 339 316 311 30 30 339 316 311 30 30 348 316 316 30 30 348 316 316 30 30 348 335 345 33 33 348 30 30 30 30 349 355 34 30 30		34	36	25		32		32	
34 31 38 34 31 38 34 31 38 34 31 38 34 31 38 34 35 445 39 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34 33 34	34 31 38 34 31 38 34 31 38 34<		16	24	26		22		22	
8 97 91 91 91 91 91 92 321 425 416 29 42 39 333 48 390 321 322 418 333 346 331 333 335	88 97 91 92 92 371 325 416 29 337 371 332 416 337 406 371 333 416 337 406 373 416 337 406 337 401 335 416 337 306 335 336 337 403 337 335 336 333 335 337 336 336 331 335 336 336 336 331 335 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 345 336 336 336 336 345 336 336 336 336 410		34	31	38		34		34	
214 306 317 299 60 311 333 445 402 337 311 333 346 402 337 311 333 346 337 311 333 346 337 311 333 346 337 329 375 445 301 329 375 445 301 329 375 345 333 329 375 345 335 329 375 345 335 329 325 352 335 329 325 335 335 329 326 440 306 320 326 440 305 320 326 440 305 320 326 440 305 320 326 440 305 320 321 110 120 120<	214 306 317 299 402 397 311 323 445 337 402 337 311 333 336 337 402 337 311 333 346 337 402 337 329 335 445 337 346 337 329 335 346 337 346 337 329 336 337 337 337 337 326 306 306 301 335 335 326 325 352 335 335 335 326 325 352 335 335 335 326 326 326 335 335 335 328 326 326 335 335 335 328 346 336 346 336 345 328 329 326 326 335 335		88	97	91		92		92	
312 4.27 4.16 402 402 403 333 336 333 336 333 336 333 336 333 336 333 336 333 333 336 333 336 333 336 333 336 333 336 333 336 333 333 336 333 336 333 336 336 336 336 333 336 </td <td>312 427 416 402 403 339 335 336 339 335 336 336 336 336 336 336 336 336 336 336 336 335 335 335 336<td></td><td>274</td><td>306</td><td>317</td><td></td><td>299</td><td></td><td>299</td><td></td></td>	312 427 416 402 403 339 335 336 339 335 336 336 336 336 336 336 336 336 336 336 336 335 335 335 336 <td></td> <td>274</td> <td>306</td> <td>317</td> <td></td> <td>299</td> <td></td> <td>299</td> <td></td>		274	306	317		299		299	
371 322 418 337 40 337 40 337 40 337 40 337 40 337 40 337 40 337 40 337 40 337 40 337 40 301 303 363 40 303 363 361 401 303 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 363 365 363 363 365 363 363 365 365 363 365 <t< td=""><td>311 332 418 390 337 41 333 436 431 337 339 335 446 331 337 339 335 446 331 337 339 335 446 331 335 338 316 331 345 301 306 306 303 345 346 308 316 331 345 345 346 336 346 300 303 348 335 345 345 345 348 335 345 345 345 348 336 441 375 345 348 345 346 346 345 348 349 345 345 345 348 349 346 346 346 348 346 346 346 346 348 345 <t< td=""><td></td><td>362</td><td>427</td><td>416</td><td></td><td>402</td><td></td><td>402</td><td></td></t<></td></t<>	311 332 418 390 337 41 333 436 431 337 339 335 446 331 337 339 335 446 331 337 339 335 446 331 335 338 316 331 345 301 306 306 303 345 346 308 316 331 345 345 346 336 346 300 303 348 335 345 345 345 348 335 345 345 345 348 336 441 375 345 348 345 346 346 345 348 349 345 345 345 348 349 346 346 346 348 346 346 346 346 348 345 <t< td=""><td></td><td>362</td><td>427</td><td>416</td><td></td><td>402</td><td></td><td>402</td><td></td></t<>		362	427	416		402		402	
41 333 336 337 445 337 346 337 346 337 347 346 331 335 345 331 333	31 333 336 337 337 336 32 355 445 301 305 345 301 303 355 366 301 306 301 301 303 316 326 301 305 301 301 303 304 256 301 305 305 301 316 316 301 305 335 335 335 335 329 326 303 345 336 401 306 336 316 326 336 415 305 336 450 326 338 415 400 305 336 336 328 326 326 336 336 336 336 328 328 326 336 336 336 336 328 328 328 336 336 336 329 328		371	382	418		390		390	
403 555 445 401 401 401 239 373 438 301 383 301 395 316 311 315 345 303 388 316 311 345 363 303 388 316 311 345 345 345 388 316 311 345 345 335 388 316 345 345 345 345 388 316 345 346 345 345 396 345 346 396 345 346 396 389 345 396 345 346 396 389 345 396 345 346 396 389 345 366 366 366 396 389 345 366 366 366 396 386 450 366 366 366	403 355 445 401 239 373 438 383 399 301 286 301 388 315 331 383 388 316 331 333 388 316 301 363 388 316 331 345 388 316 301 345 388 316 301 345 388 375 354 355 388 375 354 355 388 376 366 301 388 376 356 400 386 356 400 305 388 326 356 400 390 388 326 305 388 326 326 305 389 366 400 400 391 111 157 110 145 128 602 400		341	333	336		337		337	
339 373 438 383 385 383 385 383 385 385 385 385 385 383 385 3	339 373 438 383 383 383 297 301 366 301 363 388 316 331 345 345 388 316 331 345 345 388 316 331 345 345 388 316 331 345 346 388 316 335 345 346 318 316 335 345 346 318 316 356 346 336 318 315 346 356 346 326 336 440 306 450 323 234 223 235 235 234 223 233 235 235 234 233 660 000 107 101 117 113 113 113 113 113 113 113 116 1145 123 652 640 640 635 683 108		403	355	445		401		401	
297 301 306 301 306 301 308 314 286 300 345 345 328 315 331 345 345 345 328 325 353 345 345 345 328 338 401 376 330 400 326 389 415 300 390 400 300 289 326 400 305 376 300 289 326 400 400 305 300 289 326 600 305 376 300 289 326 600 305 376 301 112 112 123 125 126 102 112 112 120 1600 305 102 112 112 120 126 126 102 112 120 120 120 120	297 301 306 301 306 338 316 331 335 335 338 316 331 335 335 348 378 401 376 335 348 378 401 376 335 348 378 401 376 336 348 376 340 376 336 348 376 346 300 367 366 386 366 400 406 300 289 326 316 400 301 117 112 110 110 117 112 110 110 110 118 118 123 5682 6402 305 223 523 523 523 315 112 110 120 120 102 112 110 120 120 103 683		339	373	438		383		383	
309 304 286 300 345 300 388 315 331 345 345 345 388 316 331 345 345 335 388 316 335 345 335 335 441 375 354 390 356 366 300 389 415 300 366 450 314 375 354 306 450 366 300 389 415 300 366 450 301 365 440 305 366 450 302 289 317 112 110 167 114 112 112 110 157 229 229 102 117 112 110 157 229 229 102 6402 223 523 223 223 102 6402 223 16402 16402 229 926 986 1028 223 16402 223	309 304 286 300 345 300 328 315 331 345 345 345 328 315 352 335 345 345 348 378 401 375 345 345 348 375 354 390 450 390 354 430 356 440 390 345 300 289 345 390 450 460 300 289 345 390 450 460 300 289 345 390 395 390 201 111 112 112 110 127 102 112 112 110 127 223 102 112 112 110 127 223 102 121 112 120 460 460 912 6402 0000 100 100 100		297	301	306		301		301	
38 316 331 345 345 328 325 332 335 335 348 376 340 335 335 348 375 340 375 335 341 375 345 395 335 396 389 415 390 450 302 283 326 450 395 303 222 281 235 235 230 217 112 110 157 145 155 171 157 235 233 6373 6373 6402 305 923 632 6402 900 107 923 632 6402 903 905 924 988 10286 900 903 9204 986 10286 900 903 9204 986 10286 900 903 9204 986 </td <td>38 316 31 345 345 345 345 345 345 345 345 345 345 345 345 345 345 335</td> <td></td> <td>309</td> <td>304</td> <td>286</td> <td></td> <td>300</td> <td></td> <td>300</td> <td></td>	38 316 31 345 345 345 345 345 345 345 345 345 345 345 345 345 345 335		309	304	286		300		300	
329 325 352 335 335 348 378 401 376 335 341 375 354 396 376 341 375 354 396 400 356 389 415 390 366 300 289 326 450 400 303 222 281 235 235 203 222 281 235 235 203 222 281 235 235 203 222 281 235 235 214 223 235 235 235 235 513 101 157 110 145 112 112 112 112 155 111 112 110 157 145 128 1028 100 1602 155 1028 1028 100 1602 1612 1028 1008 1602 1602 1624 1028 1028 1028 <td>329 325 352 335 335 348 378 401 376 376 348 378 401 376 376 341 375 336 401 376 306 396 401 306 400 308 316 400 306 400 308 326 306 400 306 308 326 306 306 306 308 326 306 305 305 308 223 223 223 235 234 223 171 1157 110 145 173 1157 110 110 145 223 6402 6402 6402 6402 652 98% 1028% 100% 9602 6402 6402 992% 98% 1028% 100% 6402 6402 6402 600 600 98% 1028% 100% 6402 6402 600 600</td> <td></td> <td>388</td> <td>316</td> <td>331</td> <td></td> <td>345</td> <td></td> <td>345</td> <td></td>	329 325 352 335 335 348 378 401 376 376 348 378 401 376 376 341 375 336 401 376 306 396 401 306 400 308 316 400 306 400 308 326 306 400 306 308 326 306 306 306 308 326 306 305 305 308 223 223 223 235 234 223 171 1157 110 145 173 1157 110 110 145 223 6402 6402 6402 6402 652 98% 1028% 100% 9602 6402 6402 992% 98% 1028% 100% 6402 6402 6402 600 600 98% 1028% 100% 6402 6402 600 600		388	316	331		345		345	
348 378 401 376 376 376 441 375 334 396 450 396 524 430 396 45 390 396 306 389 415 40 305 390 301 233 236 40 305 395 233 234 229 231 235 235 145 117 112 110 157 110 102 117 112 110 125 235 102 117 112 110 127 235 102 117 112 110 127 235 92.2% 98% 102.8% 100 96.02 96.02 92.3% 98% 102.8% 100% 96.02 96.02 93.0 806 98% 100% 96.02 96.02 93.0 806 98% 100% 96.00 96.02 93.0 806 98% 100% 96.00 96.00 <	348 378 401 376 376 376 441 375 334 390 366 450 390 326 346 396 450 396 450 390 326 389 315 390 366 450 390 300 289 315 390 365 450 400 303 222 281 235 235 235 235 234 224 229 235 235 235 235 145 112 112 112 112 112 112 145 112 112 112 112 112 112 145 112 112 112 112 112 112 155 112 112 112 112 112 112 99.2% 98% 102.8% 100% 960 960 960 99.2% 98% 102.8% 100% 960 960 960 910 600 900		329	325	352		335		335	
441 375 354 396 450 396 524 339 415 450 450 450 306 389 415 450 450 450 306 289 326 450 450 450 303 222 281 235 235 235 235 234 229 171 112 110 157 100 102 117 112 110 157 100 10 102 177 112 110 157 10 10 92.2% 98% 102.8% 6402 6402 6402 6402 99.2% 98% 102.8% 100% 6402 6402 6402 90.0 AM 6:00 AM 9:00 AM 6:00 AM 9:00 AM 6:00 AM 6:00 AM 500 PM 5:00 PM 6:00 AM 6:00 AM 6:00 AM 6:00 AM 6:00 AM 500 PM 5:00 PM 6:00 PM 6:00 AM 6:00 AM 6:00 AM 6:00 AM	41 375 354 390 450 390 450 390 524 430 396 450 450 450 450 450 365 389 415 415 450 450 450 450 305 289 215 171 12 110 157 400 305 234 224 229 229 229 229 229 229 102 117 112 110 110 110 110 110 102 117 112 110 110 110 110 110 99.2% 98% 102.8% 102.8% 100% 6402 6402 6402 99.2% 98% 102.8% 100% 6402 6402 6402 6402 99.2% 600 PM 600 PM 600 PM 600 PM 6402 6402 6402 504 403 600 PM 6402 6402 6402 6402 6402 524 430 600 PM 5400 PM <td></td> <td>348</td> <td>378</td> <td>401</td> <td></td> <td>376</td> <td></td> <td>376</td> <td></td>		348	378	401		376		376	
524 430 396 415 40 40 396 389 415 40 40 40 300 289 326 305 305 305 303 223 281 233 235 235 234 229 171 112 110 157 145 173 112 110 129 100 6552 673 6582 6402 6402 10 99.2% 98% 102.8% 100 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.0 40 600 6402 6402 6402 99.0 403 600 6402 6402 6402 90.0 800 800 800 900	24 430 396 450 450 450 450 450 396 389 415 400 400 400 400 303 223 223 231 235 235 235 234 173 173 123 235 235 235 145 173 112 110 113 110 110 102 117 112 110 110 110 110 99.2% 98% 102.8% 100% 96402 6402 6402 99.2% 98% 102.8% 100% 96402 6402 6402 99.2% 98% 102.8% 100% 96402 6402 6402 99.2% 98% 102.8% 100% 96402 96402 96402 99.2% 98% 102.8% 100% 650 AM 96402 96402 99.2% 108% 960 AM 650 AM 96402 96402 9650 AM 99.2% 403 600 AM 650 AM 650 AM		441	375	354		390		390	
36 389 415 400 400 400 300 289 326 305 335 335 203 229 231 235 235 235 234 229 171 157 157 157 145 117 112 110 157 110 6352 6273 6582 6402 6402 6402 99.2% 98% 102.8% 100 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 90.2% 98% 102.8% 100% 6402 6402 90.3 427 445 402 402 402 500 PM 500 PM 500 PM 500 PM 500 PM 500 PM	396 389 415 400 40 40 300 289 326 305 305 305 234 229 155 171 127 135 145 112 112 110 157 110 532 6213 582 6402 6402 209 99.2% 98% 102.8% 6402 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.06 MM 6:00 AM 9:00 AM 6:00 AM 6:00 AM 6:00 AM 500 PM 6:00 AM 5:00 PM 5:00 PM 6:00 AM 6:00 AM 524 430 430 430 430 430 430		524	430	396		450		450	
300 283 326 305 305 305 203 222 281 235 235 235 234 224 229 171 157 155 145 155 171 157 110 157 102 117 112 110 110 157 102 117 112 110 110 101 6352 6273 6582 6402 6402 6402 95.2% 98% 102.8% 100 6402 6402 6402 99.2% 98% 102.8% 100% 6602 6402 6402 99.2% 98% 102.8% 100% 6602 6402 6402 99.0 AM 6:00 AM 9:00 AM 6:00 AM 6:00 AM 6:00 AM 5:00 PM 5:00 PM 6:00 AM 6:00 AM 6:00 AM 6:00 AM 5:4 430 415 6402 6402 6402 6402	300 289 326 305 <td></td> <td>396</td> <td>389</td> <td>415</td> <td></td> <td>400</td> <td></td> <td>400</td> <td></td>		396	389	415		400		400	
203 222 281 235 234 224 229 145 155 171 102 117 112 102 117 112 102 173 6532 6352 6273 6582 6352 6273 6582 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 99.2% 98% 102.8% 910 910 910 100 610% 910 100 610% 610% 524 430 610 524 430 610 524 430 610	203 222 281 235 281 235 281 235 <td></td> <td>300</td> <td>289</td> <td>326</td> <td></td> <td>305</td> <td></td> <td>305</td> <td></td>		300	289	326		305		305	
234 224 229 15 11 11 12 145 155 117 112 110 110 110 102 117 112 110 110 110 110 6352 6273 6582 6602 6402 6402 6402 6402 99.2% 98% 102.8% 100% 100% 100% 100% 100% 99.2% 98% 102.8% 100% 100% 100% 100% 100% 99.2% 98% 102.8% 100% 100% 100% 100% 100% 99.2% 43 43 6:00 AM 6:00 AM 6:00 AM 6:00 AM 500 PM 5:00 PM 5:00 PM 5:00 PM 5:00 PM 6:00 AM	234 224 229 10 23 23 23 15 11		203	222	281		235		235	
145 155 171 157 157 157 102 117 112 110 110 110 6352 6273 6582 6402 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.2% 98% 102.8% 100% 6402 6402 99.0 AM 6:00 AM 6:00 AM 6:00 AM 6:00 AM 5:00 PM 5:00 PM 5:00 PM 5:00 PM 6:00 AM 524 430 415 450 5:00 PM 5:00 PM	145 155 171 157 157 15 102 117 112 110 110 110 6352 6273 6382 6402 6402 6402 99.2% 98% 102.8% 6402 6402 6402 99.2% 98% 102.8% 100% 9602 6402 99.2% 98% 102.8% 100% 9602 6402 99.2% 98% 102.8% 100% 9602 6402 99.2% 98% 102.8% 100% 9602 6402 910 AM 610 AM 6100 AM 610 AM 610 AM 610 AM 910 AM 610 AM 6100 AM 610 AM 610 AM 610 AM 510 PM 510 PM 610 AM 510 PM 610 AM 610 AM 524 430 415 450 510 PM 510 PM 510 PM		234	224	229		229		229	
102 117 112 110 110 110 6352 6273 6582 6402 6402 6402 10 99.2% 98% 102.8% 6402 6402 6402 6402 99.2% 98% 102.8% 100% 9 9 9 99.2% 98% 102.8% 100% 9 9 9 99.2% 98% 102.8% 100% 9 9 9 910 AM 5:00 AM 9:00 AM 6:00 AM 6:00 AM 9 9 500 PM 5:00 PM 6:00 AM 5:00 PM 5:00 PM 9 9 524 430 415 450 9 9 9	102 117 112 110 110 110 6352 6273 6582 6402 6402 6402 6402 99.2% 98% 102.8% 100% 9 6402 6402 6402 99.2% 98% 102.8% 100% 9 100% 9 6402 <		145	155	171		157		157	
6352 6273 6582 6402 6402 6402 6402 99.2% 98% 102.8% 100% 2000	6352 6273 6882 6402 6402 6402 99.2% 98% 102.8% 200.1% 200.		102	117	112		110		110	
99.2% 98% 102.8% 102.8% 102.8% 102.8% 102.8% 100%	99.2% 98% 102.8% 101.6% 100 <th< td=""><td></td><td>6352</td><td>6273</td><td>6582</td><td></td><td>6402</td><td></td><td>6402</td><td></td></th<>		6352	6273	6582		6402		6402	
99.2% 98% 102.8% 100% 100% 6:00 AM 6:00 PM 5:00 PM 6:00 PM <td>99.2% 98% 102.8% 100% 100% 600 AM 610 AM</td> <td></td> <td>99.2%</td> <td>%86</td> <td>102.8%</td> <td></td> <td></td> <td></td> <td></td> <td></td>	99.2% 98% 102.8% 100% 100% 600 AM 610 AM		99.2%	%86	102.8%					
9:00 AM 6:00 AM 9:00 AM 6:00 AM 6:00 AM 6:00 AM 703 427 445 402 700 PM 6:00 PM 5:00 PM	9:00 AM 6:00 AM 9:00 AM 6:00 AM 6:00 AM 6:00 AM 7 415 6:00 AM 702 7 415 402 7 402 402 402 402 402 402 402 402 402 402		99.2%	88%	102.8%		100%			
403 427 445 402 402 5:00 PM 5:00 PM 5:00 PM 5:00 PM 5:00 PM 524 430 415 450 450	403 427 445 402 402 402 5:00 PM 5:00 PM 5:00 PM 5:00 PM 5:00 PM 524 430 415 450 450		9:00 AM	6:00 AM	9:00 AM		6:00 AM		6:00 AM	
5:00 PM 5:00 PM 6:00 PM 5:00 PM 5:00 PM 5:00 PM 5:00 PM 724 430 415 450 450	5:00 PM 5:00 PM 6:00 PM 5:00 PM 5:00 PM 524 430 415 450 450 450		403	427	445		402		402	
524 430 415 450 450	524 430 415 450 450		5:00 PM	5:00 PM	6:00 PM		5:00 PM		5:00 PM	
			524	430	415		450		450	

Type of report:	Tube Count - Volu	ume Data								
LOCATION: B	altimore-Wasing	șton Pkwy	NB Off Ram	p to Powder Mi	ll Rd					QC JOB #: 15027034
SPECIFIC LOC	ATION:									DIRECTION: NB
CITY/STATE: (Greenbelt, MD								DAT	E: Sep 17 2019 - Sep 19 2019
Start Time	Mon 17	Tue Sep 19	Wed 18 Sep 19	Thu 19 Sep 19	Fri	Average Weekday Hourly Traffic	Sat S	un	Average Week Hourly Traffic	Average Week Profile
12:00 AM		15	0	15		10			10	
01:00 AM		ъ	0	15		7			7	
02:00 AM		11	0	9		9			9	
03:00 AM		9	0	13		9			9	
04:00 AM		0	0	26		6			6	
05:00 AM		0	0	85		28			28	
06:00 AM		0	0	139		46	/		46	
07:00 AM		0	0	159		53			53	
08:00 AM		0	0	132		44			44	
00:00 AM		0	0	106		35			35	
10:00 AM		0	0	96		32			32	
11:00 AM		0	0	06		30			30	
12:00 PM		0	0	97		32			32	
01:00 PM		0	0	111		37			37	
02:00 PM		0	52	114		55			55	
03:00 PM		0	97	131		76			76	
04:00 PM		0	117	141		86			86	
05:00 PM		0	95	121		72		1	72	
06:00 PM		0	06	104		65		C	65	
07:00 PM		0	66	67		55			55	
08:00 PM		0	51	75		42			42	
09:00 PM		0	54	58		37	1 10 10 10	-	37	
10:00 PM		0	33	43		25	INIMIN		25	
11:00 PM		0	36	37		24			24	
Day Total		37	724	1981		912			912	
% Weekday Average		4.1%	79.4%	217.2%						
% Week		1 1%	70 A%	217 2%		100%		T		
Average		0/1.4	0/1-01	0/7.177		NOOT				
AM Peak	12	:00 AM	12:00 AM	7:00 AM		7:00 AM			7:00 AM	
Volume		15	0	159		53			53	
PM Peak	12	:00 PM	4:00 PM	4:00 PM		4:00 PM			4:00 PM	
Volume		0	117	141		86			86	
Comments:										
Report generat	ed on 9/25/2019 (6:31 AM						SOUF	RCE: Quality Counts, LLC	C (http://www.qualitycounts.net)

Page 260 of 876

		e Data						
LOCATION: F	owder Mill Rd East	of Poultry Rd						QC JOB #: 15027038
SPECIFIC LOC	ATION:							DIRECTION: EB
CITY/STATE:	Greenbelt, MD						DAT	E: Sep 17 2019 - Sep 19 2019
Start Time	Mon Tu 17 Sel	le Wed p 19 18 Sep 19	Thu 19 Sep 19	Fri	Average Weekday Hourly Traffic	Sat Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	17	7 17	12		15		15	
01:00 AM	9	13	14	_	11		11	
02:00 AM	11	1 7	6	_	6		6	
03:00 AM	4	9	80		9		9	
04:00 AM	17	7 18	22	_	19		19	
05:00 AM	50	0 49	50		50		50	
06:00 AM	12	9 108	113		117		117	
07:00 AM	25.	9 230	233		241		241	
08:00 AM	38	4 351	358		364		364	
00:00 AM	26	6 231	238		245		245	
10:00 AM	15	6 166	190		171		171	
11:00 AM	16	8 195	162		175		175	
12:00 PM	23	0 240	232		234		234	
01:00 PM	19.	i3 269	261		241		241	
02:00 PM	32.	5 330	307	4	321		321	
03:00 PM	45.	3 515	586		518		518	
04:00 PM	66.	9 613	741		674		674	
05:00 PM	67,	4 685	713	0	691		691	
06:00 PM	44.	5 484	421		450		450	
07:00 PM	21	6 219	247	,	227		227	
08:00 PM	12.	5 132	163		140		140	
M4 00:00	96	S 89	93		93	TA AN AL IN IN	93	
10:00 PM	50	9 48	53		50	INININIC	20	
11:00 PM	35	5 35	38		36		36	
Day Total	497	78 5050	5264		5098		5098	
% Weekday Average	97.6	5% 99.1%	103.3%					
% Week	9.76	5% 99.1%	103.3%		100%			
Average								
AM Peak	8:00	AM 8:00 AM	8:00 AM		8:00 AM		8:00 AM	
Volume	38	351	358		364		364	
PM Peak	5:00	PM 5:00 PM	4:00 PM		5:00 PM		5:00 PM	
	10	4	/4T		TEO		TEO	
Comments: Renort generat	od on 0/25/2010 6-3	1 000				5	I BCE. Ouslity Counts 11	(httm://www.culalitycounte.nat)

Page 261 of 876

Type of report:	: Tube Count - \	/olume Data	-						
LOCATION: S	Sunnyside Ave	btwn Tucke	er St and Tuck	er St					QC JOB #: 15027031
SPECIFIC LOC	CATION:								DIRECTION: EB
CITY/STATE:	Greenbelt, Mi	Q						DA	TE: Sep 17 2019 - Sep 19 2019
Start Time	Mon	Tue 17 Sep 19	Wed 18 Sep 19	Thu 19 Sep 19	Fri	Average Weekday Hourly Traffic	Sat Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM		20	24	37		27		27	
01:00 AM		30	23	26		26		26	
02:00 AM		11	10	13		11		11	
03:00 AM		22	25	30		26		26	
04:00 AM		77	76	68		74		74	
05:00 AM		155	171	161		162		162	
06:00 AM		283	259	314		285		285	
07:00 AM		516	497	457		490		490	
08:00 AM		637	520	593		583		583	
00:00 AM		432	377	347		385		385	
10:00 AM		307	314	319		313		313	
11:00 AM		335	323	312		323		323	
12:00 PM		391	381	414		395		395	
01:00 PM		392	356	377		375		375	
02:00 PM		399	352	400		384		384	
03:00 PM		451	518	535		501		501	
04:00 PM		579	548	570		566		566	
05:00 PM		603	550	629		594		594	
06:00 PM		447	446	403		432		432	
07:00 PM		286	316	282		295		295	
08:00 PM		171	199	209		193		193	
MG 00:60		157	143	147		149		149	
10:00 PM		86	96	86		89		68	
		16	çç	60		/c		/ና	
Day Total		6844	6579	6789		6735		6735	
% Weekday Average		101.6%	97.7%	100.8%					
% Week		101 6%	97 7%	100 8%		100%			
Average		0/0.101	0/1.10	0/0.00T		0/007			
AM Peak		8:00 AM	8:00 AM	8:00 AM		8:00 AM		8:00 AM	
Volume		637	520	593		583		583	
PM Peak		5:00 PM	5:00 PM	5:00 PM		5:00 PM		5:00 PM	
Volume		603	550	629		594		594	
Comments:									
Renort generat	red on 9/25/20	196:31 AM					Ŭ	OURCE: Ouality Counts, 11	C (http://www.gualitycounts.net)

Page 262 of 876

Type of report	: Tube Count - Volum	ie Data						
LOCATION: F	^o wder Mill Rd East	of Poultry Rd						QC JOB #: 15027038
SPECIFIC LO	CATION:							DIRECTION: WB
CITY/STATE:	Greenbelt, MD						DAT	E: Sep 17 2019 - Sep 19 2019
Start Time	Mon Tr 17 Se	ue Wed 3p 19 18 Sep 1	Thu 19 19 Sep 15	Fri	Average Weekday Hourly Traffic	Sat Sun	Average Week Hourly Traffic	Average Week Profile
12:00 AM	2	1 17	6		16		16	
01:00 AM	.,	5 9	7		7		7	
02:00 AM	.,	5 6	£		5		5	
03:00 AM	2	0 18	18		19		19	
04:00 AM	5	5 54	50		53		53	
05:00 AM	14	46 163	180		163		163	
06:00 AM	2;	73 246	267		262		262	
07:00 AM	36	52 340	392		365		365	
08:00 AM	35	34 344	338		355		355	
00:00 AM	22	24 251	251		242		242	
10:00 AM	15	87 202	208		199		199	
11:00 AM	15	85 212	217		205		205	
12:00 PM	2(J9 192	206		202		202	
01:00 PM	23	17 177	192		195		195	
02:00 PM	57	45 216	221		227		227	
03:00 PM	57	42 219	229		230		230	
04:00 PM	25	36 211	215		221		221	
05:00 PM	26	51 259	222		247		247	
06:00 PM	15	87 197	222		202		202	
07:00 PM	1	43 136	154		144		144	
08:00 PM	8	14 99	81		88		88	
MG 00:00	7	0 67	82		73		73	
10:00 PM	S	55 54	51		53		53	
11:00 PM	1	9 30	27		25		25	
Day Total	38	35 3719	3842		3798		3798	
% Weekday Average	10	1% 97.9%	101.2%					
% Week	10	1% 97.9%	101.2%		100%			
Average	0				0			
AM Peak	8:00	1 AM 8:00 AN	M 7:00 AM		7:00 AM		7:00 AM	
Volume	35	84 344	392		365		365	
PM Peak	5:00	DPM 5:00 PN	A 3:00 PM		5:00 PM		5:00 PM	
volume	71	662 10	677		247		247	
Comments:								
Report general	ted on 9/25/2019 6:3	32 AM				SOL	URCE: Ouality Counts. LLC	(http://www.gualitycounts.net)

12. APPENDIX D: CRITICAL LANE VOLUME (CLV) REPORTS

394

714

SB	1182	0.37	437	0	0.00	0	
	504	0.60	302				
							30
WB	508	0.55	279	0	0.00	0	
					CLV TOT	AL=	739

0.55

394

0

0.00

CLV TOTAL=

0

456

717

WB

CLV TOTAL=

CLV TOTAL= 1,010

CLV TOTAL=

		CRI	TICAL	. LAN	IE VO	DLUI DCe G	ME (C	LV s C	/) N	/IETH	IODO	LOG	Y			
		E/W R	oad: Po	wder Mil	Road		ee.ge	D)ate	of Cou	unt: 9/1	7/2019				
		N/S R	oad: So	il Consei	vation Ro	bad		I	Day	of Cou	unt: Tu	esday				
		Conditi	ions: Ex	tisting T	raffic					Anal	yst: WA	Ą				
	Peak: 6 Peak: 3	3:00 - 7:0 3:00 - 4:0	0 0													
	PC	OWDER	MILL ROA	١D								т		т	270	280
											_	L		L	47	31
															AM	PM
ſ	PM	ΔМ	٦													
	1 141															
	308	151	т		т —											
	355	254	R		R —					I	Ι		POV	NDER M	ILL ROA	D
										L	R					
																
							AM		2	L 07	15					
							PM		2 5	49	34					
Car	oacity	(Anal	veie			SO		ERV	ATIO	IN ROAL)					
Cal	bacity		Morning	Peak Ho	ır			1				Evening	Peak Ho	our		
		Thru Volu	mes	+ ()pposing L	efts	AM	1		1	Thru Volum	nes	+ (Opposing I	Lefts	PM
Dir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV		Dir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV
NB	0	0.00	0	0	0.00	0			NB	3	1.00	3	0	0.00	0	
	007	1 00	007		0.05	•	297			F 40	4.00	F 40	_	0.00	_	549
	297	1.00	297	0	0.00	0				549	1.00	549	0	0.00	0	
ĽΒ	151	1.00	151	47	1.00	4/	270		ΕB	308	1.00	308	31	1.00	31	339
WB	270	1.00	270	0	0.00	0			WB	280	1.00	280	0	0.00	0	

CLV TOTAL=

CLV TOTAL=

CLV TOTAL=

CLV TOTAL= 1,225

CLV TOTAL=

1,080

		CRI	ΓΙϹΑΙ		IE V(LV) N	IETH	IODO	LOG	Y			
		F/W P	oad: Pr	wder Mill	Road	ille U	eorge	з С П	oui at≏	of Cor	int: 9/1	17/2019				
		N/S R	oad: So	oil Conser	vation R	oad		ביכ)av	of Col	unt: Tu	esdav				
	(Conditi	ons: No	o Action				_		Anal	yst: W/	4				
	Peak: 6 Peak: 3	:00 - 7:0 :00 - 4:0	0													
	PC	WDER I	MILL RO	AD								T		т	304	315
											_	L		L	53	35
															AM	PM
	347 400	170 286	T R		T — R —		AM PM		L 33 61	 _ 35 19	 R 17 38		POV	NDER M	ILL ROA	D
						SO	L CONSI	ERVA		N ROAD)					
Cap	pacity	Anal	ysis					_								
			Mornin	g Peak Hou	ır] [Evening	g Peak Ho	ur		
	-	Thru Volur	nes	+ (Opposing	Lefts	AM	Ιſ	Ţ	Т	hru Volum	nes	+ (Opposing I	Lefts	PM
)ir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV		Dir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV
NB	0	0.00	0	0	0.00	0	335		NB	3	1.00	3	0	0.00	0	619
	335	1.00	335	0	0.00	0		┤┟		619	1.00	619	0	0.00	0	
EB	170	1.00	170	53	1.00	53	304		EB	347	1.00	347	35	1.00	35	382
٧٧B	304	1.00	304	U	0.00	U		1 1	٧٧B	315	1.00	315	U	0.00	U	

CLV TOTAL= 1,001

CLV TOTAL=

CLV TOTAL=

CLV TOTAL= 1,608

CLV TOTAL=

1,117

		CRIT	FICAL	. LAN	IE VC)LUI nce G	ME (C ieorge	LV) N s Cou	1ETH nty	IODO	LOG	Y			
	C	E/W Ro N/S Ro Conditio	oad: Pov oad: Soi ons: Act	wder Mill I Conser ion	Road vation Ro	bad	U	Date Day	of Cou of Cou Analy	unt: 9/1 unt: Tue yst: WA	7/2019 esday A				
	Peak: 6 Peak: 3	:00 - 7:00 :00 - 4:00)												
	PC	WDER N	IILL ROA	D							T		т	346	315
											L		L	53	35
														AM	РМ
	390 400	170 286	T R		T — R —				 L	 R		POV	VDER MI	LL ROA	AD
									-	R					
							AM PM	3. 6 [.]	55 19	38					
Сар	pacity	Analy	/sis			SO	IL CONSI	ERVATIO	N ROAD)					
		-	Morning	Peak Hou	ır						Evening	j Peak Ho	our		
	1	Thru Volum	nes	+ (pposing L	efts	AM		Т	hru Volum	ies	+ (Opposing L	efts	РМ
Dir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV	Dir	VOL	x LUF	= Total	VOL	x LUF	= Total	CLV
NB	0 335	0.00	0 335	0	0.00	0	335	NB	3 619	1.00	3 619	0	0.00	0	619
EB	170	1.00	170	53	1.00	53		EB	390	1.00	390	35	1.00	35	
WB	346	1.00	346	0	0.00	0	346	WB	315	1.00	315	0	0.00	0	425
				1	CLV TOT/	AL=	681	╽				ı	CLV TOTA	AL=	1,044

CLV TOTAL= 1,250

CLV TOTAL=

868

Transportation Impact Study

13. APPENDIX E: SYNCHRO REPORTS

	≯	\mathbf{r}	-	1	Ŧ	1		
Movement	FBI	FBR	NBI	NBT	SBT	SBR		
Lane Configurations		1	**	**	**	1		
Traffic Volume (vph)	0	93	94	1015	894	7		
Future Volume (vph)	0	93	94	1015	894	7		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	1000	4 0	6.0	4.0	7.0	7.0		
Lane Util Factor		1 00	0.0	0.95	0.95	1.00		
Frt		0.86	1 00	1.00	1 00	0.85		
Elt Protected		1.00	0.95	1.00	1.00	1.00		
Satd Flow (prot)		1536	3303	3406	3085	1380		
Elt Permitted		1 00	0.95	1 00	1 00	1 00		
Satd Flow (perm)		1536	3303	3406	3085	1380		
Peak-hour factor PHF	0.92	0.84	0.84	0.84	0.84	0.84		
Adi Flow (vph)	0.52	111	112	1208	1064	8		
RTOR Reduction (vph)	0	0	0	0	0	2		
Lane Group Flow (vph)	0	111	112	1208	1064	6		
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%		
Turn Type	_ /0	Free	Prot	NΔ	ΝA	Perm		
Protected Phases		1100	1	Free	_2_			
Permitted Phases		Free	•	1100	2	2		
Actuated Green G (s)		100.0	92	100 0	77 8	77.8		
Effective Green g (s)		100.0	9.2	100.0	77.8	77.8		
Actuated g/C Ratio		1 00	0.09	1 00	0.78	0.78		
Clearance Time (s)		1.00	6.0	1.00	7.0	7.0		
Vehicle Extension (s)			3.0		5.0	5.0		
Lane Grn Can (vnh)		1536	303	3406	2400	1073		
v/s Ratio Prot		1000	0.03	0.35	c0.34	1070		
v/s Ratio Perm		0.07	0.00	0.00	-00.0T	0.00		
v/c Ratio		0.07	0.37	0.35	0 44	0.00		
Uniform Delay d1		0.0	42 7	0.0	3.8	2.5		
Progression Factor		1.00	0.70	1.00	0.53	0.58		
Incremental Delay d2		0.1	07	0.3	0.5	0.0		
Delay (s)		0.1	30.4	0.3	2.5	1.4		
Level of Service		Α	C	Α	2.0 A	A		
Approach Delay (s)	0.1	,,	Ű.	2.8	2.5			
Approach LOS	A			A	Α			
Intersection Summary								
HCM 2000 Control Delav			2.6	H	CM 2000	Level of Servi		А
HCM 2000 Volume to Capacity	/ ratio		0.46					
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)	13	.0
Intersection Capacity Utilizatio	n		42.2%	IC	U Level	of Service		A
Analysis Period (min)			15					
c Critical Lane Group			-					

	٦	→	$\mathbf{\hat{z}}$	4	+	*	1	Ť	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1				5	ĥ			•	1
Traffic Volume (vph)	88	0	197	0	0	0	315	680	0	0	895	110
Future Volume (vph)	88	0	197	0	0	0	315	680	0	0	895	110
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1478				1687	1776			1529	1392
Flt Permitted	0.95		1.00				0.08	1.00			1.00	1.00
Satd. Flow (perm)	1626		1478				150	1776			1529	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	104	0	232	0	0	0	371	800	0	0	1053	129
RTOR Reduction (vph)	0	0	82	0	0	0	0	0	0	0	0	27
Lane Group Flow (vph)	104	0	150	0	0	0	371	800	0	0	1053	102
Heavy Vehicles (%)	11%	11%	2%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	18.5		60.0				171.6	171.6			130.1	148.6
Effective Green, g (s)	18.5		60.0				171.6	171.6			130.1	148.6
Actuated g/C Ratio	0.09		0.30				0.84	0.84			0.64	0.73
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	148		436				391	1500			979	1063
v/s Ratio Prot	c0.06		0.10				c0.16	0.45			c0.69	0.01
v/s Ratio Perm							0.64					0.06
v/c Ratio	0.70		0.34				0.95	0.53			1.08	0.10
Uniform Delay, d1	89.6		56.1				61.9	4.4			36.5	7.9
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	14.5		0.5				32.2	0.4			51.3	0.0
Delay (s)	104.2		56.6				94.1	4.8			87.8	7.9
Level of Service	F		E				F	А			F	A
Approach Delay (s)		71.3			0.0			33.1			79.1	
Approach LOS		E			A			С			E	
Intersection Summary												
HCM 2000 Control Delay			58.1	Н	CM 2000	Level of	Service		E			
HCM 2000 Volume to Capa	icity ratio		1.01									
Actuated Cycle Length (s)			203.1	S	um of lost	t time (s)			19.5			
Intersection Capacity Utiliza	ation		83.6%	IC	CU Level of	of Service	9		E			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		^	^	
Traffic Volume (veh/h)	73	757	0	881	770	0
Future Volume (veh/h)	73	757	0	881	770	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1767	0	1767	1752	0
Adj Flow Rate, veh/h	84	0	0	1013	885	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	9	9	0	9	10	0
Cap, veh/h	147		0	4026	2779	0
Arrive On Green	0.05	0.00	0.00	0.83	0.83	0.00
Sat Flow, veh/h	3264	1497	0	5141	3504	0
Grp Volume(v), veh/h	84	0	0	1013	885	0
Grp Sat Flow(s).veh/h/ln	1632	1497	0	1608	1664	0
Q Serve(g s), s	2.5	0.0	0.0	4.4	6.0	0.0
Cycle Q Clear(a c), s	2.5	0.0	0.0	4.4	6.0	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	147		0	4026	2779	0
V/C Ratio(X)	0.57		0.00	0.25	0.32	0.00
Avail Cap(c a), veh/h	881		0	4026	2779	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	46.8	0.0	0.0	1.7	1.9	0.0
Incr Delay (d2), s/veh	3.4	0.0	0.0	0.2	0.3	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/In	1.1	0.0	0.0	0.6	0.9	0.0
Unsig. Movement Delay, s/ve	h					
LnGrp Delav(d).s/veh	50.2	0.0	0.0	1.9	2.2	0.0
LnGrp LOS	D	0.0	A	A	A	A
Approach Vol. veh/h	84	Α		1013	885	
Approach Delay s/yeh	50.2	73		19	22	
Approach LOS	00.2 D			Α	Δ.2	
	D					
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		89.5		10.5		89.5
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s		61.0		27.0		61.0
Max Q Clear Time (g_c+I1), s	;	8.0		4.5		6.4
Green Ext Time (p_c), s		15.2		0.2		17.9
Intersection Summary						
HCM 6th Ctrl Delav			4.1			
HCM 6th LOS			A			
			П			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	€	*	1	1	1	Ŧ
Movement V	NBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ኘካ	11	441			***
Traffic Volume (veh/h)	456	717	396	0	0	864
Future Volume (veh/h)	456	717	396	0	0	864
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln 1	841	1841	1781	0	0	1693
Adj Flow Rate, veh/h	549	864	477	0	0	1041
Peak Hour Factor (0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh, %	4	4	8	0	0	14
Cap, veh/h 1	222	987	2483	0	0	2359
Arrive On Green (0.36	0.36	0.51	0.00	0.00	0.51
Sat Flow, veh/h 3	8401	2745	5184	0	0	4925
Grp Volume(v), veh/h	549	864	477	0	0	1041
Grp Sat Flow(s).veh/h/ln1	700	1373	1621	Ō	0	1540
Q Serve(q s), s	12.3	29.4	5.3	0.0	0.0	14.2
Cycle Q Clear(g_c), s	12.3	29.4	5.3	0.0	0.0	14.2
Prop In Lane	1.00	1.00	2.0	0.00	0.00	
Lane Grp Cap(c), veh/h 1	222	987	2483	0	0	2359
V/C Ratio(X)	0.45	0.88	0.19	0.00	0.00	0.44
Avail Cap(c, a) veh/h 1	394	1126	2483	0.00	0.00	2359
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1 00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) s/veh	24.5	29.9	13.3	0.0	0.0	15.5
Incr Delay (d2) s/veh	0.3	7.2	0.2	0.0	0.0	0.6
Initial Q Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/l	In4.8	10.1	1.0	0.0	0.0	<u>4</u> 7
Unsig Movement Delay	s/veh	10.1	1.7	0.0	0.0	/
InGrn Delav(d) s/veh	24 7	37.2	13.4	0.0	0.0	16 1
	с <u>т.</u> г	D	R	Δ	Δ	R
Approach Vol. voh/h 1	/12	U	/77	~	~	10/1
Approach Dolay shich 3	413		4//			1041
Approach LOS	52.5 C		13.4 D			10.1 D
Approach LOS	C		В			В
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc),	S	57.1		42.9		57.1
Change Period (Y+Rc), s		6.0		7.0		6.0
Max Green Setting (Gma	x), s	46.0		41.0		46.0
Max Q Clear Time (g_c+l	l1), s	16.2		31.4		7.3
Green Ext Time (p_c), s		23.0		4.5		13.2
Intersection Summary						
HCM 6th Ctrl Delav			23.5			
HCM 6th LOS			С			

۲ t ∢ Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 ٦ *** ۴ 朴朴ኈ đ ۴ ٦ Traffic Volume (veh/h) 113 66 1042 0 34 37 27 3 1 956 4 1 Future Volume (veh/h) 1 0 3 113 1 66 34 1042 37 27 956 4 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No 1826 Adj Sat Flow, veh/h/ln 907 907 1856 1856 1856 1826 1633 1633 1633 907 1826 Adj Flow Rate, veh/h 0 4 138 80 41 1271 0 33 1166 1 1 5 0.82 Peak Hour Factor 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 Percent Heavy Veh, % 67 67 67 3 3 3 5 5 5 18 18 18 47 Cap, veh/h 43 11 44 183 1 377 59 2791 2548 11 0.26 0.26 0.00 Arrive On Green 0.00 0.24 0.24 0.24 0.03 0.56 0.01 0.18 0.18 Sat Flow, veh/h 0 46 184 463 4 1572 1739 4985 1547 1555 4583 20 Grp Volume(v), veh/h 5 0 0 139 0 80 41 1271 0 33 756 415 Grp Sat Flow(s), veh/h/ln 231 467 1572 1739 1662 1547 1555 1486 1630 0 0 0 22.7 Q Serve(g_s), s 0.0 0.0 0.0 0.0 0.0 4.1 2.3 15.1 0.0 2.1 22.7 Cycle Q Clear(g_c), s 26.0 0.0 4.1 15.1 2.1 22.7 22.7 26.0 0.0 0.0 2.3 0.0 Prop In Lane 0.20 0.80 0.99 1.00 1.00 1.00 1.00 0.01 Lane Grp Cap(c), veh/h 103 47 906 0 0 193 0 377 59 2791 1653 V/C Ratio(X) 0.05 0.00 0.00 0.72 0.00 0.21 0.69 0.46 0.71 0.46 0.46 Avail Cap(c a), veh/h 0 174 156 906 103 0 0 193 377 2791 1653 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.33 Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.92 0.92 0.92 Uniform Delay (d), s/veh 30.5 0.0 0.0 39.4 0.0 30.4 47.8 13.0 0.0 49.1 27.4 27.4 Incr Delay (d2), s/veh 0.0 0.0 12.2 0.0 0.3 13.6 0.5 0.0 16.4 0.8 1.5 0.2 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr0.1 0.0 0.0 4.0 0.0 1.2 5.2 0.0 1.0 10.2 1.6 9.1 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 0.0 51.6 0.0 30.7 61.3 13.5 0.0 65.5 28.2 28.9 30.7 LnGrp LOS С А D А С Е В Е С С А 5 219 1312 Α 1204 Approach Vol, veh/h Approach Delay, s/veh 30.7 44.0 15.0 29.5 Approach LOS С D В С Timer - Assigned Phs 2 5 6 8 4 Phs Duration (G+Y+Rc), s8.4 61.6 30.0 62.0 30.0 8.0 Change Period (Y+Rc), s 5.0 6.0 6.0 6.0 5.0 6.0 Max Green Setting (Gmatto. G 49.0 24.0 10.0 49.0 24.0 Max Q Clear Time (g_c+I14),3s 24.7 28.0 4.1 17.1 28.0 Green Ext Time (p_c), s 0.0 0.0 0.0 0.0 20.6 27.4 Intersection Summary 23.7 HCM 6th Ctrl Delay HCM 6th LOS С

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	٩.	t.	Ŧ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	115	25	130	885	876	211
Future Volume (veh/h)	115	25	130	885	876	211
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00	-	-	1.00
Parking Bus. Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No			No	No	
Adj Sat Flow, veh/h/ln	1737	1737	1811	1811	1678	1678
Adj Flow Rate. veh/h	144	31	162	1106	1095	264
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh. %	11	11	6	6	15	15
Cap. veh/h	255	117	363	2721	2203	982
Arrive On Green	0.08	0.08	0.05	0.79	0.69	0.69
Sat Flow, veh/h	3209	1472	1725	3532	3272	1421
Grn Volume(v) veh/h	144	31	162	1106	1095	264
Grn Sat Flow(s) veh/h/l	n1605	1472	1725	1721	150/	1421
O Serve(a, s) s	/ 2	20	25	0.0	16.2	70
$(y_0) = (y_0), s$	+.J ∕\ 2	2.0	2.5	0.0	16.2	7.0
Prop In Lane	1.0	2.0	1.0	9.9	10.2	1.0
Lane Grn Can(a) yeb/b	1.00	117	1.00	2721	2203	001
V/C Patio(X)	0.57	0.07	0 45	0.41	0 50	90Z
v/O Rall $O(A)$	0.07	101	0.40	0.41	0.00	0.27
Avail Cap(C_a), veri/n	417	191	1 00	1 00	2203	90Z
	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)		1.00	0.94	0.94	1.00	1.00
Uniform Delay (d), s/vel	0.44.4	43.3	0.0	3.2	1.3	5.9
Incr Delay (d2), s/veh	2.0	1.2	0.8	0.4	0.8	0.7
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel	n/ini.8	0.8	0.7	2.2	4.6	1.9
Unsig. Movement Delay	y, s/veh			<u> </u>		<u> </u>
LnGrp Delay(d),s/veh	46.3	44.5	6.8	3.7	8.1	6.5
LnGrp LOS	D	D	A	A	A	A
Approach Vol, veh/h	175			1268	1359	
Approach Delay, s/veh	46.0			4.1	7.8	
Approach LOS	D			А	А	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s9.9	76.1		13.9		86.1
Change Period (Y+Rc)	s 5 0	7 0		6.0		7 0
Max Green Setting (Gr	1.2200.00	49.0		13.0		74.0
Max O Clear Time (o	+112.5	18.2		6.3		11 9
Green Ext Time (n_c)	s 0.4	26.1		0.3		43.6
Intersection Owners	т	20.1		0.0		40.0
Intersection Summary						
HCM 6th Ctrl Delay			8.5			
HCM 6th LOS			Α			

Intersection

Int Delay, s/veh	2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			्स
Traffic Vol, veh/h	13	12	761	7	20	992
Future Vol, veh/h	13	12	761	7	20	992
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	17	15	976	9	26	1272

Major/Minor	Minor1	Μ	lajor1	N	lajor2			
Conflicting Flow All	2305	981	0	0	985	0		
Stage 1	981	-	-	-	-	-		
Stage 2	1324	-	-	-	-	-		
Critical Hdwy	6.6	6.4	-	-	4.27	-		
Critical Hdwy Stg 1	5.6	-	-	-	-	-		
Critical Hdwy Stg 2	5.6	-	-	-	-	-		
Follow-up Hdwy	3.68	3.48	-	- 1	2.353	-		
Pot Cap-1 Maneuver	37	280	-	-	645	-		
Stage 1	337	-	-	-	-	-		
Stage 2	228	-	-	-	-	-		
Platoon blocked, %			-	-		-		
Mov Cap-1 Maneuver	r 32	280	-	-	645	-		
Mov Cap-2 Maneuver	r 32	-	-	-	-	-		
Stage 1	337	-	-	-	-	-		
Stage 2	197	-	-	-	-	-		

Approach	WB	NB	SB
HCM Control Delay, s	133.7	0	0.2
HCMLOS	F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 56	645	-	
HCM Lane V/C Ratio	-	- 0.572	0.04	-	
HCM Control Delay (s)	-	- 133.7	10.8	0	
HCM Lane LOS	-	- F	В	А	
HCM 95th %tile Q(veh)	-	- 2.3	0.1	-	

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	≯	→	$\mathbf{\hat{v}}$	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1	ľ	•	1	ľ	†	1	۲	∱1 ≱	
Traffic Volume (veh/h)	51	98	462	107	132	36	315	411	47	23	443	69
Future Volume (veh/h)	51	98	462	107	132	36	315	411	47	23	443	69
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	0.99		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1544	1544	1544	1796	1796	1796	1856	1856	1856	1796	1796	1796
Adj Flow Rate, veh/h	64	122	0	134	165	0	394	514	0	29	554	86
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	24	24	24	7	7	7	3	3	3	7	7	7
Cap, veh/h	184	308		417	656		513	1042		359	1082	168
Arrive On Green	0.20	0.20	0.00	0.13	0.37	0.00	0.17	0.56	0.00	0.37	0.37	0.37
Sat Flow, veh/h	1005	1544	1309	1711	1796	1522	1767	1856	1572	851	2962	458
Grp Volume(v), veh/h	64	122	0	134	165	0	394	514	0	29	318	322
Grp Sat Flow(s),veh/h/ln	1005	1544	1309	1711	1796	1522	1767	1856	1572	851	1706	1714
Q Serve(g_s), s	8.9	10.3	0.0	0.0	9.7	0.0	19.7	25.3	0.0	3.4	21.9	22.1
Cycle Q Clear(g_c), s	18.5	10.3	0.0	0.0	9.7	0.0	19.7	25.3	0.0	3.4	21.9	22.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.27
Lane Grp Cap(c), veh/h	184	308		417	656		513	1042		359	624	626
V/C Ratio(X)	0.35	0.40		0.32	0.25		0.77	0.49		0.08	0.51	0.51
Avail Cap(c_a), veh/h	184	308		417	656		513	1042		359	624	626
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	60.1	52.4	0.0	47.6	33.4	0.0	23.9	20.0	0.0	31.4	37.3	37.3
Incr Delay (d2), s/veh	5.2	3.8	0.0	2.0	0.9	0.0	10.6	1.7	0.0	0.4	3.0	3.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.5	4.3	0.0	4.5	4.4	0.0	9.4	11.1	0.0	0.7	9.7	9.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	65.3	56.2	0.0	49.6	34.3	0.0	34.5	21.7	0.0	31.8	40.2	40.3
LnGrp LOS	<u> </u>	E		D	С		С	С		С	D	D
Approach Vol, veh/h		186	А		299	А		908	А		669	
Approach Delay, s/veh		59.3			41.1			27.3			39.9	
Approach LOS		E			D			С			D	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	29.5	61.0	25.0	35.0		90.5		60.0				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	25.0	55.0	20.0	* 30		84.5		54.5				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			36.3									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations
Lane Configurations Image: Configuration in the image: Configuration
Traffic Vol, veh/h 19 0 1 2 4 1 45 441 3 0 515 39 Future Vol, veh/h 19 0 1 2 4 1 45 441 3 0 515 39 Conflicting Peds, #/hr 0
Future Vol, veh/h 19 0 1 2 4 1 45 441 3 0 515 39 Conflicting Peds, #/hr 0 <
Conflicting Peds, #/hr 0
Sign ControlStopStopStopStopStopStopFree
RT Channelized - - None - - None Storage Length - - - 50 - - - - - - - - None - None - None - - None - - None - - None - None - None - None - None - - None - </td
Storage Length
Veh in Median Storage. # - 0 0 0 0 -
Grade, % - 0 0 0 0 -
Peak Hour Factor 95 95 95 95 95 95 95 95 95 95 95 95 95
Heavy Vehicles, % 70 70 70 67 67 67 9 9 9 21 21 21
Mvmt Flow 20 0 1 2 4 1 47 464 3 0 542 41

Major/Minor	Minor2		I	Vinor1			Major1			Ν	lajor2			
Conflicting Flow All	1125	1124	563	1121	1141	464	583	0	()	467	0	0	
Stage 1	563	563	-	558	558	-	-	-		-	-	-	-	
Stage 2	562	561	-	563	583	-	-	-		-	-	-	-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-		-	4.31	-	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-		-	-	-	-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-		-	2.389	-	-	
Pot Cap-1 Maneuver	136	155	417	138	153	484	958	-		-	1002	-	-	
Stage 1	409	414	-	415	420	-	-	-		-	-	-	-	
Stage 2	409	415	-	412	408	-	-	-		-	-	-	-	
Platoon blocked, %								-		-		-	-	
Mov Cap-1 Maneuver	126	145	417	131	143	484	958	-		-	1002	-	-	
Mov Cap-2 Maneuver	126	145	-	131	143	-	-	-		-	-	-	-	
Stage 1	382	414	-	388	392	-	-	-		-	-	-	-	
Stage 2	377	388	-	411	408	-	-	-		-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	37.7	29.3	0.8	0	
HCM LOS	E	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	958	-	-	131	139	484	1002	-	-
HCM Lane V/C Ratio	0.049	-	-	0.161	0.045	0.002	-	-	-
HCM Control Delay (s)	9	0	-	37.7	32.1	12.5	0	-	-
HCM Lane LOS	А	А	-	Е	D	В	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	0.6	0.1	0	0	-	-

ntersection	
ntersection Delay, s/veh	9.1
ntersection LOS	Α

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		Ę	eî		¥		
Traffic Vol, veh/h	2	144	280	0	0	0	
Future Vol, veh/h	2	144	280	0	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	6	6	2	2	2	2	
Mvmt Flow	2	169	329	0	0	0	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	8.4		9.5		0		
HCM LOS	А		А		-		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	0%
Vol Thru, %	99%	100%	100%
Vol Right, %	0%	0%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	146	280	0
LT Vol	2	0	0
Through Vol	144	280	0
RT Vol	0	0	0
Lane Flow Rate	172	329	0
Geometry Grp	1	1	1
Degree of Util (X)	0.203	0.372	0
Departure Headway (Hd)	4.249	4.061	5.006
Convergence, Y/N	Yes	Yes	Yes
Сар	836	883	0
Service Time	2.315	2.103	3.006
HCM Lane V/C Ratio	0.206	0.373	0
HCM Control Delay	8.4	9.5	8
HCM Lane LOS	А	А	Ν
HCM 95th-tile Q	0.8	1.7	0

0.5					
NBL	NBR	SET	SER	NWL	NWT
<u>۲</u>		4			↑
17	0	136	8	0	266
17	0	136	8	0	266
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
,#0	-	0	-	-	0
0	-	0	-	-	0
74	74	74	74	74	74
2	2	4	4	2	2
23	0	184	11	0	359
	0.5 NBL 17 17 0 Stop - 0 ,# 0 0 74 2 23	0.5 NBL NBR 17 0 17 0 17 0 0 0 Stop Stop Stop Stop - None 0 - ,# 0 - 0 - 74 74 2 2 23 0	0.5 NBL NBR SET 17 0 136 17 0 136 17 0 136 0 0 0 Stop Stop Free None - 0 - ,# 0 - 0 - ,# 0 - 0 - 0 - ,# 0 - 0 - 0 - 10 0 - 0 - 0 - 10 0 - 0 - 10 0 - 10 0 - 10 136 0 - 136 0 - 14 0 - 14 14 14 14 14 14 14 14 14 14	0.5 NBL NBR SET SER 17 0 136 8 17 0 136 8 17 0 136 8 17 0 136 8 0 0 0 0 Stop Stop Free Free None - None - 0 - 0 - # 0 - 0 - # 0 - 0 - 74 74 74 74 2 2 4 4 23 0 184 11	0.5 NBL NBR SET SER NWL 17 0 136 8 0 17 0 136 8 0 17 0 136 8 0 17 0 136 8 0 17 0 136 8 0 0 0 0 0 0 0 Stop Stop Free Free Free None - None - - 0 - 0 - - - # 0 - 0 - - - # 0 - 0 - - - # 0 - 0 - - - # 0 - 0 - - - # 1 0 184 11 0

Major/Minor	Minor1	Maj	jor1	Maj	or2	
Conflicting Flow All	549	-	0	0	-	-
Stage 1	190	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	497	0	-	-	0	-
Stage 1	842	0	-	-	0	-
Stage 2	707	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 497	-	-	-	-	-
Mov Cap-2 Maneuver	r 497	-	-	-	-	-
Stage 1	842	-	-	-	-	-
Stage 2	707	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	12.6	0	0
HCMLOS	В		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	497	-	-	-
HCM Lane V/C Ratio	0.046	-	-	-
HCM Control Delay (s)	12.6	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.1	-	-	-

Intersection						
Int Delay, s/veh	3.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	1	•	el 👘		Y	
Traffic Vol, veh/h	4	151	276	139	121	17
Future Vol, veh/h	4	151	276	139	121	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	6	6	3	3	2	2
Mvmt Flow	5	201	368	185	161	23
Major/Minor	Maior1	1	Maior2	1	Minor2	

Conflicting Flow All	553	0	-	0	672	461
Stage 1	-	-	-	-	461	-
Stage 2	-	-	-	-	211	-
Critical Hdwy	4.16	-	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	2.254	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	997	-	-	-	421	600
Stage 1	-	-	-	-	635	-
Stage 2	-	-	-	-	824	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	997	-	-	-	419	600
Mov Cap-2 Maneuver	· _	-	-	-	419	-
Stage 1	-	-	-	-	632	-
Stage 2	-	-	-	-	824	-
			14/5			
Approach	EB		WB		SB	
HCM Control Delay, s	0.2		0		19.2	
HCM LOS					С	
Minor Lane/Major Myr	nt	FBI	FRT	WRT	WBR	SBI n1
Capacity (vob/b)	in	007				/35
		997	-	-	-	400
HCM Control Dolou (a	.)	0.005	-	-	-	10.2
HCM Long LOS)	0.0 A	-	-	-	19.2
HOM OF the Office Office		A	-	-	-	0 2.4
	1)	U	-	-	-	Z. I

Intersection	
Int Delay, s/veh	21.3

Int Delay, s/veh	
------------------	--

Movement	FBI	FBT	FBR	WBI	WBT	WBR	NBI	NBT	NBR	SBI	SBT	SBR
Lane Configurations		¢	LBIX	3	1		1102			<u> </u>	4	0.0.1
Traffic Vol, veh/h	0	182	90	75	277	0	0	0	0	223	1	138
Future Vol, veh/h	0	182	90	75	277	0	0	0	0	223	1	138
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	4	4	4	2	2	2	2	2	2	1	1	1
Mvmt Flow	0	239	118	99	364	0	0	0	0	293	1	182

Major/Minor I	Major1		Ν	/lajor2				Minor2			
Conflicting Flow All	-	0	0	357	0	0		860	919	364	
Stage 1	-	-	-	-	-	-		562	562	-	
Stage 2	-	-	-	-	-	-		298	357	-	
Critical Hdwy	-	-	-	4.12	-	-		6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-		5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-		5.41	5.51	-	
Follow-up Hdwy	-	-	-	2.218	-	-		3.509	4.009	3.309	
Pot Cap-1 Maneuver	0	-	-	1202	-	0		328	272	683	
Stage 1	0	-	-	-	-	0		573	511	-	
Stage 2	0	-	-	-	-	0		755	630	-	
Platoon blocked, %		-	-		-						
Mov Cap-1 Maneuver	-	-	-	1202	-	-		301	0	683	
Mov Cap-2 Maneuver	-	-	-	-	-	-		301	0	-	
Stage 1	-	-	-	-	-	-		573	0	-	
Stage 2	-	-	-	-	-	-		693	0	-	
Approach	EB			WB				SE			
HCM Control Delay, s	0			1.8				56.4			
HCM LOS								F	:		
Minor Lane/Major Mvm	nt	EBT	EBR	WBL	WBT	SBLn1	SBLn2				
Capacity (veh/h)		-	-	1202	-	301	683				
HCM Lane V/C Ratio		-	-	0.082	-	0.975	0.268				
HCM Control Delay (s)		_	_	83	_	83.9	12.2				

	HCM Control Delay (s) -	-	8.3	-	83.9	12.2
ICM Lane LOS A - F B	HCM Lane LOS -	-	А	-	F	В
ICM 95th %tile Q(veh) 0.3 - 10 1.1	HCM 95th %tile Q(veh) -	-	0.3	-	10	1.1

Intersection												
Int Delay, s/veh	3.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1			ef 👘		٦	ef 👘				
Traffic Vol, veh/h	82	323	0	0	299	268	53	3	82	0	0	0
Future Vol, veh/h	82	323	0	0	299	268	53	3	82	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	0	0	0	2	2	2
Mvmt Flow	104	409	0	0	378	339	67	4	104	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	717	0	-	-	-	0	1165	1334	409	
Stage 1	-	-	-	-	-	-	617	617	-	
Stage 2	-	-	-	-	-	-	548	717	-	
Critical Hdwy	4.12	-	-	-	-	-	6.4	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.4	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	5.5	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.5	4	3.3	
Pot Cap-1 Maneuver	884	-	0	0	-	-	217	155	647	
Stage 1	-	-	0	0	-	-	542	484	-	
Stage 2	-	-	0	0	-	-	583	437	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	884	-	-	-	-	-	191	0	647	
Mov Cap-2 Maneuver	-	-	-	-	-	-	191	0	-	
Stage 1	-	-	-	-	-	-	478	0	-	
Stage 2	-	-	-	-	-	-	583	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	1.9			0			20.1			
HCM LOS							С			
Minor Lane/Major Mvn	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		191	647	884	-	-	-			
HCM Lane V/C Ratio		0.351	0.166	0.117	-	-	-			
HCM Control Delay (s))	33.7	11.7	9.6	-	-	-			
HCM Lane LOS		D	В	А	-	-	-			
HCM 95th %tile Q(veh)	1.5	0.6	0.4	-	-	-			

	→	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	5	1
Traffic Volume (veh/h)	151	254	47	270	297	15
Future Volume (veh/h)	151	254	47	270	297	15
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	204	0	64	365	401	0
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, %	1	1	2	2	1	1
Cap, veh/h	712		297	1122	479	
Arrive On Green	0.38	0.00	0.17	0.60	0.27	0.00
Sat Flow, veh/h	1885	1598	1781	1870	1795	1598
Grp Volume(v) veh/h	204	0	64	365	401	0
Grn Sat Flow(s) veh/h/ln	1885	1598	1781	1870	1795	1598
O Serve(a, s) s	6.8	0.0	2.8	87	19.0	0.0
Cvcle O Clear(a, c) s	6.8	0.0	2.0	8.7	19.0	0.0
Pron In Lane	0.0	1 00	1 00	0.1	1 00	1 00
Lane Grn Can(c) veh/h	712	1.00	297	1122	479	1.00
V/C Ratio(X)	0.29		0.22	0.33	0.84	
Avail Cap(c, a) veh/h	712		297	1122	479	
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Unstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d) s/yeb	19.5	0.00	32.4	8.0	31.00	0.00
Incr Delay (d2) s/veh	10.0	0.0	1.7	0.5	15.9	0.0
Initial \cap Delay(d3) eluph	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/lp	3.0	0.0	1.3	3.4	0.0	0.0
Unsig Movement Delay, shud	5.0 h	0.0	1.5	3.4	9.9	0.0
InGro Delay(d) shuch	20 5	0.0	3/1	0.7	171	0.0
LINGIP Delay(u), 5/Vell	20.5	0.0	J4.1	9.1 A	47.1	0.0
	004	٨	U	A 400	404	٨
Approach Vol, ven/n	204	A		429	401	A
Approach Delay, s/veh	20.5			13.4	47.1	
Approach LOS	С			В	D	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		60.0		30.0	20.0	40.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		54.0		24.0	15.0	34.0
Max Q Clear Time (g c+l1), s		10.7		21.0	4.8	8.8
Green Ext Time (p_c), s		6.4		0.5	0.1	2.7
Intersection Summarv						
HCM 6th Ctrl Delay			27.0			
HCM 6th LOS			21.3			
			U			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	1	1	Ŧ	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	203	101	971	1078	9			
Future Volume (vph)	0	203	101	971	1078	9			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frpb. ped/bikes		0.99	1.00	1.00	1.00	1.00			
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd, Flow (prot)		1591	3099	3195	3406	1524			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd, Flow (perm)		1591	3099	3195	3406	1524			
Peak-hour factor PHF	0 94	0.94	0.94	0.94	0.94	0.94			
Adi Flow (vph)	0.04	216	107	1033	1147	10			
RTOR Reduction (vnh)	0	0	0	000	0	2			
Lane Group Flow (vph)	0	216	107	1033	1147	8			
Confl Peds (#/hr)	U	1	107	1000	1171	U			
Heavy Vehicles (%)	2%	2%	13%	13%	6%	6%			
	270	Eroo	Drot	NIA	NIA	Borm			
Protected Phases		TICC	1	Eroo	2	r enn			
Protected Phases		Eroo	1	Fiee	2	2			
Actuated Groop G (c)		100.0	0.2	100.0	77.8	2 77 8			
Effective Green, G (S)		100.0	9.2	100.0	77.9	77.8			
Actuated a/C Patio		1 00.0	9.2	1.00	0.70	0.79			
Clearance Time (a)		1.00	0.09	1.00	0.70	0.76			
Vehicle Extension (s)			3.0		7.0 5.0	7.0 5.0			
		1501	3.0	2405	0040	1105			
Lane Grp Cap (vpn)		1591	200	3195	2049	1100			
V/S Ratio Prot		0.44	0.03	0.32	CU.34	0.04			
v/s Ratio Perm		0.14	0.00	0.00	0.40	0.01			
V/C Katio		0.14	0.38	0.32	0.43	0.01			
Uniform Delay, d'I		0.0	42.7	0.0	3.7	2.5			
Progression Factor		1.00	0.62	1.00	0.18	0.02			
Incremental Delay, d2		0.2	0.8	0.3	0.5	0.0			
Delay (s)		0.2	27.4	0.3	1.1	0.1			
Level of Service	0.0	A	C	A	A	A			
Approach Delay (s)	0.2			2.8	1.1				
Approach LUS	A			A	A				
Intersection Summary									
HCM 2000 Control Delay			1.8	Н	CM 2000	Level of Service	ce	A	
HCM 2000 Volume to Capac	ity ratio		0.44						
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)		13.0	
Intersection Capacity Utilizat	ion		53.5%	IC	U Level o	of Service		А	
Analysis Period (min)			15						

c Critical Lane Group

	٭	-	$\mathbf{\hat{z}}$	4	+	*	1	Ť	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ		1				ľ	el el			†	1
Traffic Volume (vph)	170	0	373	0	0	0	291	912	0	0	789	139
Future Volume (vph)	170	0	373	0	0	0	291	912	0	0	789	139
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	1667			1673	1498
Flt Permitted	0.95		1.00				0.08	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				140	1667			1673	1498
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	183	0	401	0	0	0	313	981	0	0	848	149
RTOR Reduction (vph)	0	0	53	0	0	0	0	0	0	0	0	46
Lane Group Flow (vph)	183	0	348	0	0	0	313	981	0	0	848	103
Confl. Peds. (#/hr)							1					1
Confl. Bikes (#/hr)												1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		. 14					16			2	. 4
Permitted Phases			4				16					2
Actuated Green, G (s)	22.1		63.7				116.7	116.7			75.1	97.2
Effective Green, g (s)	22.1		63.7				116.7	116.7			75.1	97.2
Actuated g/C Ratio	0.15		0.42				0.77	0.77			0.49	0.64
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	255		613				441	1281			827	1023
v/s Ratio Prot	c0.10		0.24				0.16	c0.59			c0.51	0.01
v/s Ratio Perm							0.38					0.05
v/c Ratio	0.72		0.57				0.71	0.77			1.03	0.10
Uniform Delay, d1	61.9		33.5				42.5	9.9			38.4	10.5
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	9.6		1.2				5.2	2.8			37.9	0.1
Delay (s)	71.4		34.8				47.7	12.7			76.3	10.5
Level of Service	E		С				D	В			E	В
Approach Delay (s)		46.3			0.0			21.1			66.4	
Approach LOS		D			А			С			E	
Intersection Summary												
HCM 2000 Control Dolay			12.0		CM 2000	Loval of	Sonvico					
HCM 2000 Volume to Conce	city ratio		42.0	N		Level OI	Genvice		U			
Actuated Cycle Length (c)			151.92	C.	um of loci	t time (c)			10.5			
Intersection Canacity Litiliza	tion		81.2%			of Service	2		19.5 D			
Analysis Period (min)			15	iC.			,		U			
			10									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	44	
Traffic Volume (veh/h)	95	905	0	1454	1067	0
Future Volume (veh/h)	95	905	0	1454	1067	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	104	0	0	1598	1173	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	7	7	0	8	5	0
Cap, veh/h	168		0	4034	2878	0
Arrive On Green	0.05	0.00	0.00	0.83	0.83	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grp Volume(v). veh/h	104	0	0	1598	1173	0
Grp Sat Flow(s).veh/h/ln	1659	1522	0	1621	1735	0
Q Serve(a s), s	3.1	0.0	0.0	8.3	8.7	0.0
Cycle Q Clear(a c), s	3.1	0.0	0.0	8.3	8.7	0.0
Prop In Lane	1.00	1.00	0.00	5.5		0.00
Lane Grp Cap(c), veh/h	168		0	4034	2878	0
V/C Ratio(X)	0.62		0.00	0.40	0.41	0.00
Avail Cap(c_a), veh/h	896		0	4034	2878	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d) s/veh	46.5	0.0	0.0	22	22	0.0
Incr Delay (d2), s/veh	37	0.0	0.0	0.3	0.4	0.0
Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln	1.3	0.0	0.0	1.2	14	0.0
Unsig Movement Delay s/ve	h	0.0	0.0	1.2	1.4	0.0
InGrn Delay(d) s/veh	50.2	0.0	0.0	25	26	0.0
	D	0.0	Δ	Δ	Δ	Δ
Approach Vol. veh/h	10/	٨	<u></u>	1508	1173	<u></u>
Approach Delay, s/yeh	50.2	Л		2.5	26	
Approach LOS	JU.Z			2.5	2.0	
Apploach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		88.9		11.1		88.9
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	;	61.0		27.0		61.0
Max Q Clear Time (g_c+l1), s	5	10.7		5.1		10.3
Green Ext Time (p_c), s		22.4		0.3		32.2
Intersection Summary						
HCM 6th Ctrl Delay			4.3			
HCM 6th LOS			Δ			
			А			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

¥		*	1	1	1	Ŧ
Movement WF	BL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	5	11	441			***
Traffic Volume (veh/h) 50	04	508	680	0	0	1182
Future Volume (veh/h) 50	04	508	680	0	0	1182
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT) 1.0	00	1.00		1.00	1.00	
Parking Bus, Adj 1.0	00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach N	No		No			No
Adj Sat Flow, veh/h/ln 172	22	1722	1767	0	0	1841
Adj Flow Rate, veh/h 54	48	552	739	0	0	1285
Peak Hour Factor 0.9	92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	12	12	9	0	0	4
Cap, veh/h 83	39	677	2925	0	0	3047
Arrive On Green 0.2	26	0.26	0.61	0.00	0.00	0.61
Sat Flow, veh/h 318	82	2569	5141	0	0	5356
Grp Volume(v), veh/h 54	48	552	739	0	0	1285
Grp Sat Flow(s).veh/h/ln159	91	1284	1608	Ō	0	1675
Q Serve(q s), s 15	5.3	20.2	7.1	0.0	0.0	13.5
Cycle Q Clear(a c), s 15	5.3	20.2	7.1	0.0	0.0	13.5
Prop In Lane 1.(00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h 83	39	677	2925	0	0	3047
V/C Ratio(X)	65	0.82	0.25	0.00	0.00	0.42
Avail Cap(c, a) veh/h 114	45	925	2925	0.00	0.00	3047
HCM Platoon Ratio 1 (00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) 1 (00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) s/veb 32	8 8	34.5	91	0.0	0.0	10.4
Incr Delay (d2) s/veh	9	4 1	0.2	0.0	0.0	0.4
Initial Q Delay(d3) s/veh 0	0 (0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/lr5	5.8	6.4	2.3	0.0	0.0	4 5
Unsig Movement Delay s/	veh	J.7	2.0	0.0	0.0	-1.0
InGrn Delay(d) s/veh 33	36	38.7	94	0.0	0.0	10.8
LinGrn LOS	 С	оо.7 П	Δ	Δ	Δ	R
Approach Vol. voh/h 110	00	U	720	~	~	1295
Approach Delay shot 26	2		01			1200
Approach LOS).Z D		9.4			10.0 D
Approach LOS	U		A			D
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		66.6		33.4		66.6
Change Period (Y+Rc), s		6.0		7.0		6.0
Max Green Setting (Gmax)	, S	51.0		36.0		51.0
Max Q Clear Time (g_c+I1)), S	15.5		22.2		9.1
Green Ext Time (p_c), s		30.2		4.2		21.8
Intersection Summary						
HCM 6th Ctrl Delay			19.4			
HCM 6th LOS			В			

۲ t ∢ Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 ٦ *** 1 朴朴ኈ đ 1 ٦ Traffic Volume (veh/h) 143 0 177 16 999 1187 2 5 1 77 19 96 Future Volume (veh/h) 5 1 16 143 0 77 19 999 177 96 1187 2 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No 1707 Adj Sat Flow, veh/h/ln 1900 1826 1900 1900 1796 1796 1796 1707 1826 1826 1707 Adj Flow Rate, veh/h 5 17 154 0 83 20 1074 0 103 1276 1 2 0.93 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 0 0 0 7 7 7 13 13 13 5 5 5 288 2628 132 3180 Cap, veh/h 44 26 74 169 0 35 5 Arrive On Green 0.21 0.00 0.19 0.19 0.21 0.00 0.19 0.02 0.56 0.03 0.20 0.20 Sat Flow, veh/h 0 137 388 513 0 1517 1626 4661 1447 1739 5140 8 Grp Volume(v), veh/h 23 0 0 154 0 83 20 1074 0 103 825 453 Grp Sat Flow(s), veh/h/ln 524 513 0 1517 1626 1554 1447 1739 1662 1824 0 0 0.0 4.7 13.1 5.9 Q Serve(g_s), s 0.0 0.0 0.0 0.0 1.2 0.0 21.5 21.5 Cycle Q Clear(g_c), s 21.0 0.0 4.7 13.1 21.5 21.5 21.0 0.0 0.0 1.2 0.0 5.9 Prop In Lane 0.22 0.74 1.00 1.00 1.00 1.00 1.00 0.00 Lane Grp Cap(c), veh/h 154 288 2628 132 1129 0 0 180 0 35 2056 V/C Ratio(X) 0.15 0.00 0.00 0.86 0.00 0.29 0.58 0.41 0.78 0.40 0.40 Avail Cap(c a), veh/h 154 0 288 325 2628 348 0 0 180 2056 1129 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.33 Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.93 0.93 0.93 Uniform Delay (d), s/veh 34.0 43.4 47.9 0.0 0.0 0.0 34.7 48.5 12.4 0.0 23.7 23.7 Incr Delay (d2), s/veh 0.0 0.0 31.4 0.0 0.5 14.2 0.5 0.0 8.8 0.5 1.0 0.4 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr0.5 0.0 0.0 5.3 0.0 1.8 0.6 4.2 0.0 2.9 10.7 9.6 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 0.0 74.8 0.0 35.2 62.7 12.8 0.0 56.7 24.3 24.7 34.5 LnGrp LOS С А А Е А D Е В Е С С 23 237 1094 A 1381 Approach Vol, veh/h Approach Delay, s/veh 34.5 61.0 13.7 26.8 Approach LOS С Е В С Timer - Assigned Phs 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.1 67.9 25.0 12.6 62.4 25.0 Change Period (Y+Rc), s 5.0 6.0 6.0 5.0 6.0 6.0 Max Green Setting (Gma20.6 44.0 19.0 20.0 44.0 19.0 Max Q Clear Time (g_c+I13,2s 23.5 23.0 7.9 15.1 23.0 Green Ext Time (p_c), s 0.0 0.0 0.2 0.0 18.3 22.9 Intersection Summary 24.6 HCM 6th Ctrl Delay HCM 6th LOS С

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

-	٠	\mathbf{F}	٩.	1	Ŧ	~
Movement E	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	55	1	5	**	**	1
Traffic Volume (veh/h)	192	78	74	913	1040	140
Future Volume (veh/h)	192	78	74	913	1040	140
Initial Q (Qb) veh	0	0	0	0	0	0
Ped-Bike Adi(A nhT) 1	1 00	1 00	1 00	v		1 00
Parking Bus Adi 1	1 00	1.00	1.00	1 00	1.00	1.00
Work Zone On Annroach	No	1.00	1.00	No	No	1.00
Adi Sat Flow veh/h/ln 1	781	1781	1678	1678	1826	1826
Adi Flow Rate veh/h	209	85	80	992	1130	152
Peak Hour Factor	1 92	0.92	0 92	0.92	0.92	0 92
Percent Heavy Veh %	λ.5Ζ Ω	0.5Z Q	15	15	0.5Z	0.9Z
Can yeh/h	300	129	340	2/122	2372	1050
Arrivo On Croon	300	130	0.049	240Z	2010	0.60
Arrive On Green 0	J.09	0.09	0.04	U./Ŏ	0.00	0.00
Sat Flow, veh/h 32	291	1510	1598	3272	3561	1547
Grp Volume(v), veh/h	209	85	80	992	1130	152
Grp Sat Flow(s),veh/h/In16	646	1510	1598	1594	1735	1547
Q Serve(g_s), s	6.2	5.4	1.3	10.0	15.3	3.4
Cycle Q Clear(g_c), s	6.2	5.4	1.3	10.0	15.3	3.4
Prop In Lane 1	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	300	138	349	2482	2373	1059
V/C Ratio(X)	0.70	0.62	0.23	0.40	0.48	0.14
Avail Cap(c, a) veh/h	823	377	469	2482	2373	1059
HCM Platoon Ratio 1	1 00	1 00	1 00	1 00	1 00	1 00
Linstream Filter(I) 1	1 00	1.00	0.96	0.96	1.00	1.00
Uniform Delay (d) shuch (1/1 1	1.00	5.0	3 6	7 /	5.5
Inor Dolay (d2), s/vel14	י יי .ו יי	40.0	0.2 0.2	0.5	0.7	0.0
Inci Delay (d2), s/ven	2.9	4.4	0.3	0.0	0.7	0.3
	0.0	0.0	0.0	0.0	0.0	0.0
%IIE BackOtQ(50%), veh/li	12.6	2.2	0.3	2.2	4.8	1.0
Unsig. Movement Delay, s	s/veh					
LnGrp Delay(d),s/veh 4	17.0	48.2	5.5	4.0	8.1	5.8
LnGrp LOS	D	D	Α	Α	Α	А
Approach Vol, veh/h	294			1072	1282	
Approach Delay, s/veh 4	17.3			4.1	7.8	
Approach LOS	D			А	A	
	-					
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	s9.5	75.4		15.1		84.9
Change Period (Y+Rc), s	5.0	7.0		6.0		7.0
Max Green Setting (Gma)	k2,.G	45.0		25.0		62.0
Max Q Clear Time (q c+l	13,35	17.3		8.2		12.0
Green Ext Time (p c) s	0.1	23.7		1.0		33.8
Intersection Summary						
HCM 6th Ctrl Delay			10.7			
HCM 6th LOS			В			

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			f,			र्च	
Traffic Vol, veh/h	0	0	0	18	0	9	0	1024	58	28	855	0
Future Vol, veh/h	0	0	0	18	0	9	0	1024	58	28	855	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	20	0	10	0	1151	65	31	961	0

Major/Minor	Mino	r1	1	Major1		I	Major2			
Conflicting Flow All	22	07 2207	1184	-	0	0	1216	0	0	
Stage 1	11	34 1184		-	-	-	-	-	-	
Stage 2	10	23 1023	i –	-	-	-	-	-	-	
Critical Hdwy	6.	14 6.54	6.24	-	-	-	4.16	-	-	
Critical Hdwy Stg 1	5.	14 5.54		-	-	-	-	-	-	
Critical Hdwy Stg 2	5.	14 5.54		-	-	-	-	-	-	
Follow-up Hdwy	3.5	36 4.036	3.336	-	-	-	2.254	-	-	
Pot Cap-1 Maneuver		48 44	228	0	-	-	560	-	0	
Stage 1	2	38 261	-	0	-	-	-	-	0	
Stage 2	3	14 311	-	0	-	-	-	-	0	
Platoon blocked, %					-	-		-		
Mov Cap-1 Maneuver		42 0	228	-	-	-	560	-	-	
Mov Cap-2 Maneuver		42 0) –	-	-	-	-	-	-	
Stage 1	2	38 C	- (-	-	-	-	-	-	
Stage 2	3)3 (- (-	-	-	-	-	-	
Approach	۷	/B		NB			SB			
HCM Control Delay, s	121	.4		0			0.4			
HCM LOS		F								
Minor Lane/Major Mvmt	NBT NBRWBL	n <mark>1 S</mark> BL	. SBT							
Capacity (veh/h)		58 560) –							
HCM Lane V/C Ratio	0.5	23 0.056	i –							

	-	- 0.523	0.000	-		
HCM Control Delay (s)	-	- 121.4	11.8	0		
HCM Lane LOS	-	- F	В	А		
HCM 95th %tile Q(veh)	-	- 2.1	0.2	-		

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	Ť	1	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	<u> </u>	•	1	7	•	1	۲	A12	
Traffic Volume (veh/h)	217	331	319	71	152	39	329	472	146	86	408	100
Future Volume (veh/h)	217	331	319	71	152	39	329	472	146	86	408	100
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	244	372	0	80	171	0	370	530	0	97	458	112
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	189	327		328	710		476	920		332	979	238
Arrive On Green	0.19	0.19	0.00	0.16	0.39	0.00	0.16	0.54	0.00	0.35	0.35	0.35
Sat Flow, veh/h	1099	1693	1434	1753	1841	1560	1612	1693	1434	853	2768	672
Grp Volume(v), veh/h	244	372	0	80	171	0	370	530	0	97	286	284
Grp Sat Flow(s),veh/h/ln	1099	1693	1434	1753	1841	1560	1612	1693	1434	853	1735	1705
Q Serve(g_s), s	20.2	30.0	0.0	1.9	9.8	0.0	21.9	32.4	0.0	13.3	19.8	20.1
Cycle Q Clear(g_c), s	30.0	30.0	0.0	1.9	9.8	0.0	21.9	32.4	0.0	16.1	19.8	20.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.39
Lane Grp Cap(c), veh/h	189	327		328	710		476	920		332	614	603
V/C Ratio(X)	1.29	1.14		0.24	0.24		0.78	0.58		0.29	0.47	0.47
Avail Cap(c_a), veh/h	189	327		328	710		476	920		332	614	603
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	70.1	62.8	0.0	55.0	32.3	0.0	25.6	23.6	0.0	38.8	38.9	39.0
Incr Delay (d2), s/veh	164.1	93.0	0.0	1.8	0.8	0.0	11.8	2.6	0.0	2.2	2.5	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	16.2	21.3	0.0	2.9	4.7	0.0	9.7	13.3	0.0	3.0	8.9	8.9
Unsig. Movement Delay, s/veh	1											
LnGrp Delay(d),s/veh	234.2	155.8	0.0	56.8	33.1	0.0	37.4	26.2	0.0	41.0	41.4	41.6
LnGrp LOS	F	F		E	С		D	С		D	D	<u> </u>
Approach Vol, veh/h		616	А		251	А		900	А		667	
Approach Delay, s/veh		186.9			40.7			30.8			41.4	
Approach LOS		F			D			С			D	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	29.5	61.0	30.0	35.0		90.5		65.0				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	25.0	55.0	25.0	* 30		84.5		59.5				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			74.2									
HCM 6th LOS			Е									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्भ	1		र्च	1		4	
Traffic Vol, veh/h	20	2	5	2	1	2	26	551	3	1	600	27
Future Vol, veh/h	20	2	5	2	1	2	26	551	3	1	600	27
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	21	2	5	2	1	2	27	574	3	1	625	28

Major/Minor	Minor2		Ν	Minor1			Major1			Μ	lajor2			
Conflicting Flow All	1272	1272	639	1273	1283	574	653	0	()	577	0	0	
Stage 1	641	641	-	628	628	-	-	-		-	-	-	-	
Stage 2	631	631	-	645	655	-	-	-		-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-		-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-		- 2	2.281	-	-	
Pot Cap-1 Maneuver	131	153	442	146	167	522	866	-		-	963	-	-	
Stage 1	431	440	-	474	479	-	-	-		-	-	-	-	
Stage 2	437	444	-	464	466	-	-	-		-	-	-	-	
Platoon blocked, %								-		-		-	-	
Mov Cap-1 Maneuver	125	146	442	138	159	522	866	-		-	963	-	-	
Mov Cap-2 Maneuver	125	146	-	138	159	-	-	-		-	-	-	-	
Stage 1	411	439	-	452	457	-	-	-		-	-	-	-	
Stage 2	414	424	-	455	465	-	-	-		-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	35.4	23.1	0.4	0	
HCM LOS	E	С			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	866	-	-	146	144	522	963	-	-
HCM Lane V/C Ratio	0.031	-	-	0.193	0.022	0.004	0.001	-	-
HCM Control Delay (s)	9.3	0	-	35.4	30.6	11.9	8.7	0	-
HCM Lane LOS	А	А	-	Е	D	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	0.7	0.1	0	0	-	-

19.4
<u>^</u>

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	et		¥		
Traffic Vol, veh/h	5	595	241	5	8	2	
Future Vol, veh/h	5	595	241	5	8	2	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	2	2	3	3	0	0	
Mvmt Flow	6	684	277	6	9	2	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	23.3		10.3		9.2		
HCM LOS	С		В		А		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	80%
Vol Thru, %	99%	98%	0%
Vol Right, %	0%	2%	20%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	600	246	10
LT Vol	5	0	8
Through Vol	595	241	0
RT Vol	0	5	2
Lane Flow Rate	690	283	11
Geometry Grp	1	1	1
Degree of Util (X)	0.817	0.365	0.019
Departure Headway (Hd)	4.266	4.645	5.993
Convergence, Y/N	Yes	Yes	Yes
Сар	848	778	596
Service Time	2.28	2.663	4.045
HCM Lane V/C Ratio	0.814	0.364	0.018
HCM Control Delay	23.3	10.3	9.2
HCM Lane LOS	С	В	А
HCM 95th-tile Q	9.1	1.7	0.1

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ef –			↑	- ሽ	
Traffic Vol, veh/h	552	44	0	216	27	0
Future Vol, veh/h	552	44	0	216	27	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	, 0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles. %	2	2	3	3	2	2
Mymt Flow	657	52	0	257	32	0
Grade, % Peak Hour Factor Heavy Vehicles, % Mvmt Flow	84 84 2 657	- 84 2 52	- 84 3 0	0 84 3 257	0 84 2 32	- 84 2 0

Major/Minor	Major1	Ма	ijor2	Ν	/linor1		 	
Conflicting Flow All	0	0	-	-	940	-		
Stage 1	-	-	-	-	683	-		
Stage 2	-	-	-	-	257	-		
Critical Hdwy	-	-	-	-	6.42	-		
Critical Hdwy Stg 1	-	-	-	-	5.42	-		
Critical Hdwy Stg 2	-	-	-	-	5.42	-		
Follow-up Hdwy	-	-	-	-	3.518	-		
Pot Cap-1 Maneuver	-	-	0	-	293	0		
Stage 1	-	-	0	-	502	0		
Stage 2	-	-	0	-	786	0		
Platoon blocked, %	-	-		-				
Mov Cap-1 Maneuver	r -	-	-	-	293	-		
Mov Cap-2 Maneuver	r -	-	-	-	293	-		
Stage 1	-	-	-	-	502	-		
Stage 2	-	-	-	-	786	-		
Approach	EB		WB		NB			
HCM Control Delay, s	s 0		0		18.8			
HCM LOS					С			

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	293	-	-	-
HCM Lane V/C Ratio	0.11	-	-	-
HCM Control Delay (s)	18.8	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

Intersection

Int Delay, s/veh 17.4 EBL EBT WBT WBR SBL SBR Movement ¥ Lane Configurations ٦ ŧ Þ 469 230 266 Traffic Vol, veh/h 18 135 8 Future Vol, veh/h 18 469 230 135 266 8 0 Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Free Free Free Free Stop Stop RT Channelized -None -None -None Storage Length 50 0 -_ --Veh in Median Storage, # -0 0 -0 -Grade, % 0 0 0 ---Peak Hour Factor 92 92 92 92 92 92 Heavy Vehicles, % 2 2 4 4 2 2 Mvmt Flow 20 510 250 147 289 9

Major/Minor	Major1	Ν	/lajor2		Minor2		
Conflicting Flow All	397	0	-	0	874	324	
Stage 1	-	-	-	-	324	-	
Stage 2	-	-	-	-	550	-	
Critical Hdwy	4.12	-	-	-	6.42	6.22	
Critical Hdwy Stg 1	-	-	-	-	5.42	-	
Critical Hdwy Stg 2	-	-	-	-	5.42	-	
Follow-up Hdwy	2.218	-	-	-	3.518	3.318	
Pot Cap-1 Maneuver	1162	-	-	-	320	717	
Stage 1	-	-	-	-	733	-	
Stage 2	-	-	-	-	578	-	
Platoon blocked, %		-	-	-			
Mov Cap-1 Maneuver	1162	-	-	-	315	717	
Mov Cap-2 Maneuver	· -	-	-	-	315	-	
Stage 1	-	-	-	-	721	-	
Stage 2	-	-	-	-	578	-	
Approach	FB		WB		SB		
HCM Control Delay	0.3		0		71		
HCM LOS	0.0		U		F		
Minor Lane/Major Mvi	mt	EBL	EBT	WBI	WBR	SBLn1	
Capacity (veh/h)		1162	-	-	-	320	
HCM Lane V/C Ratio		0.017	-	-	-	0.931	
HCM Control Delay (s	5)	8.2	-	-	-	71	
HCM Lane LOS		Α	-	-	-	F	
HCM 95th %tile Q(vel	n)	0.1	-	-	-	9.3	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ef 👘		۲	1					ኘ	eî 👘	
Traffic Vol, veh/h	0	623	126	125	256	0	0	0	0	254	2	120
Future Vol, veh/h	0	623	126	125	256	0	0	0	0	254	2	120
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	3	3	3	0	0	0	2	2	2
Mvmt Flow	0	663	134	133	272	0	0	0	0	270	2	128

Major/Minor	Major1		1	Major2			Min	or2				
Conflicting Flow All	-	0	0	797	0 0		12	268	1335	272		
Stage 1	-	-	-	-			Ę	538	538	-		
Stage 2	-	-	-	-			7	730	797	-		
Critical Hdwy	-	-	-	4.13			6	.42	6.52	6.22		
Critical Hdwy Stg 1	-	-	-	-			5	.42	5.52	-		
Critical Hdwy Stg 2	-	-	-	-			5	.42	5.52	-		
Follow-up Hdwy	-	-	-	2.227			3.5	518	4.018	3.318		
Pot Cap-1 Maneuver	0	-	-	821	- 0		~ 1	186	154	767		
Stage 1	0	-	-	-	- 0		Ę	585	522	-		
Stage 2	0	-	-	-	- 0		2	177	399	-		
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	821			~ 1	156	0	767		
Mov Cap-2 Maneuver	-	-	-	-			~ 1	156	0	-		
Stage 1	-	-	-	-			Ę	585	0	-		
Stage 2	-	-	-	-			2	100	0	-		
Approach	EB			WB				SB				
HCM Control Delay, s	0			3.4			27	7.2				
HCM LOS								F				
Minor Lane/Major Mvr	nt	EBT	EBR	WBL	WBT SBLn1	SBLn2						
Capacity (veh/h)		-	-	821	- 156	767						
HCM Lane V/C Ratio		-	-	0.162	- 1.732	0.169						
HCM Control Delay (s	;)	-	-	10.2	-\$ 405.2	10.6						
HCM Lane LOS	,	-	-	В	- F	В						
HCM 95th %tile Q(veh	ו)	-	-	0.6	- 19.5	0.6						
Notes												
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30	00s +: Con	nputatior	Not Defined *	: All	major	/olume i	n platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑			4		<u>۲</u>	4				
Traffic Vol, veh/h	217	629	0	0	309	484	62	3	41	0	0	0
Future Vol, veh/h	217	629	0	0	309	484	62	3	41	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	1	1	1	0	0	0
Mvmt Flow	238	691	0	0	340	532	68	3	45	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	872	0	-	-	-	0	1773	2039	691	
Stage 1	-	-	-	-	-	-	1167	1167	-	
Stage 2	-	-	-	-	-	-	606	872	-	
Critical Hdwy	4.12	-	-	-	-	-	6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.51	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.509	4.009	3.309	
Pot Cap-1 Maneuver	773	-	0	0	-	-	92	57	446	
Stage 1	-	-	0	0	-	-	297	269	-	
Stage 2	-	-	0	0	-	-	546	369	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	773	-	-	-	-	-	~ 64	0	446	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 64	0	-	
Stage 1	-	-	-	-	-	-	206	0	-	
Stage 2	-	-	-	-	-	-	546	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	3			0			146.6			
HCM LOS							F			
Minor Lane/Major Mvr	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		64	446	773	-	-	-			
HCM Lane V/C Ratio		1.065	0.108	0.308	-	-	-			
HCM Control Delay (s)	240.6	14.1	11.7	-	-	-			
HCM Lane LOS	•	F	В	В	-	-	-			
HCM 95th %tile Q(veh	ו)	5.3	0.4	1.3	-	-	-			
Notes										
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 30)0s	+: Com	putatio	n Not D	efined	*: All major volume in platoon
	-	\mathbf{r}	1	-	1	1				
------------------------------	------	--------------	------	------	-------	------				
Movement	EBT	EBR	WBL	WBT	NBL	NBR				
Lane Configurations	•	1	5	•	٦	1				
Traffic Volume (veh/h)	308	355	31	280	549	34				
Future Volume (veh/h)	308	355	31	280	549	34				
Initial Q (Qb), veh	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	No			No	No					
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1885	1885				
Adj Flow Rate, veh/h	350	0	35	318	624	0				
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88				
Percent Heavy Veh, %	3	3	3	3	1	1				
Cap, veh/h	701		295	1113	479					
Arrive On Green	0.38	0.00	0.17	0.60	0.27	0.00				
Sat Flow, veh/h	1856	1572	1767	1856	1795	1598				
Grp Volume(v), veh/h	350	0	35	318	624	0				
Grp Sat Flow(s).veh/h/ln	1856	1572	1767	1856	1795	1598				
Q Serve(g s), s	13.0	0.0	1.5	7.4	24.0	0.0				
Cycle Q Clear(q c), s	13.0	0.0	1.5	7.4	24.0	0.0				
Prop In Lane		1.00	1.00		1.00	1.00				
Lane Grp Cap(c), veh/h	701		295	1113	479					
V/C Ratio(X)	0.50		0.12	0.29	1.30					
Avail Cap(c a), veh/h	701		295	1113	479					
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00				
Uniform Delay (d), s/veh	21.5	0.0	31.9	8.7	33.0	0.0				
Incr Delay (d2), s/veh	2.5	0.0	0.8	0.6	151.1	0.0				
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/In	5.9	0.0	0.7	2.8	29.9	0.0				
Unsig. Movement Delay, s/veh	1									
LnGrp Delay(d),s/veh	24.0	0.0	32.7	9.3	184.1	0.0				
LnGrp LOS	С		С	А	F					
Approach Vol, veh/h	350	А		353	624	А				
Approach Delay, s/veh	24.0			11.7	184.1					
Approach LOS	С			В	F					
Timer - Assigned Phs		2		4	5	6				
Phs Duration (G+Y+Rc), s		60.0		30.0	20.0	40.0				
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0				
Max Green Setting (Gmax), s		54.0		24.0	15.0	34.0				
Max Q Clear Time (g_c+I1), s		9.4		26.0	3.5	15.0				
Green Ext Time (p_c), s		5.4		0.0	0.0	4.4				
Intersection Summary										
HCM 6th Ctrl Delay			96.0							
HCM 6th LOS			F							

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{r}	1	1	Ļ	<			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	183	124	1292	1051	8			
Future Volume (vph)	0	183	124	1292	1051	8			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1536	3303	3406	3085	1380			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)		1536	3303	3406	3085	1380			
Peak-hour factor, PHF	0.92	0.84	0.84	0.84	0.84	0.84			
Adj. Flow (vph)	0	218	148	1538	1251	10			
RTOR Reduction (vph)	0	0	0	0	0	2			
Lane Group Flow (vph)	0	218	148	1538	1251	8			
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%			
Turn Type		Free	Prot	NA	NA	Perm			
Protected Phases			1	Free	2				
Permitted Phases		Free				2			
Actuated Green, G (s)		100.0	10.0	100.0	77.0	77.0			
Effective Green, g (s)		100.0	10.0	100.0	77.0	77.0			
Actuated g/C Ratio		1.00	0.10	1.00	0.77	0.77			
Clearance Time (s)			6.0		7.0	7.0			
Vehicle Extension (s)			3.0		5.0	5.0			
Lane Grp Cap (vph)		1536	330	3406	2375	1062			
/s Ratio Prot			0.04	0.45	c0.41				
//s Ratio Perm		0.14				0.01			
v/c Ratio		0.14	0.45	0.45	0.53	0.01			
Uniform Delay, d1		0.0	42.4	0.0	4.4	2.7			
Progression Factor		1.00	0.63	1.00	0.04	0.00			
Incremental Delay, d2		0.2	0.9	0.4	0.6	0.0			
Delay (s)		0.2	27.4	0.4	0.7	0.0			
Level of Service		Α	С	Α	Α	А			
Approach Delay (s)	0.2			2.8	0.7				
Approach LOS	Α			А	А				
Intersection Summary									
HCM 2000 Control Delay			1.8	Н	CM 2000	Level of Servi	се	A	
HCM 2000 Volume to Capacity	/ ratio		0.55						
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)		13.0	
Intersection Capacity Utilization	n		46.6%	IC	U Level o	of Service		А	
Analysis Period (min)			15						
c Critical Lane Group									

	≯	-	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1				5	1.			*	1
Traffic Volume (vph)	109	0	287	0	0	0	544	875	0	0	1066	207
Future Volume (vph)	109	0	287	0	0	0	544	875	0	0	1066	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	1776			1529	1392
Flt Permitted	0.95		1.00				0.03	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				54	1776			1529	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	128	0	338	0	0	0	640	1029	0	0	1254	244
RTOR Reduction (vph)	0	0	44	0	0	0	0	0	0	0	0	15
Lane Group Flow (vph)	128	0	294	0	0	0	640	1029	0	0	1254	229
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		. 14				1	16			2	. 4
Permitted Phases			4				16					2
Actuated Green, G (s)	12.5		70.5				184.0	184.0			126.0	138.5
Effective Green, g (s)	12.5		70.5				184.0	184.0			126.0	138.5
Actuated g/C Ratio	0.06		0.34				0.88	0.88			0.60	0.66
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	97		456				448	1559			919	963
v/s Ratio Prot	c0.08		0.22				c0.35	0.58			0.82	0.01
v/s Ratio Perm							c0.91					0.15
v/c Ratio	1.32		0.64				1.43	0.66			1.36	0.24
Uniform Delay, d1	98.5		58.9				74.6	3.7			41.8	14.3
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	199.1		3.1				205.4	1.1			171.1	0.2
Delay (s)	297.6		62.0				280.0	4.8			212.8	14.4
Level of Service	F		E				F	А			F	В
Approach Delay (s)		126.7			0.0			110.3			180.5	
Approach LOS		F			А			F			F	
Intersection Summary												
HCM 2000 Control Delay			141.4	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.45									
Actuated Cycle Length (s)			209.5	S	um of lost	t time (s)			19.5			
Intersection Capacity Utilization	ation		106.4%	IC	CU Level of	of Service	9		G			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{r}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1		***	44	
Traffic Volume (veh/h)	120	887	0	1233	971	0
Future Volume (veh/h)	120	887	0	1233	971	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1767	0	1767	1752	0
Adj Flow Rate, veh/h	138	0	0	1417	1116	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	9	9	0	9	10	0
Cap, veh/h	204		0	3942	2721	0
Arrive On Green	0.06	0.00	0.00	0.82	0.82	0.00
Sat Flow, veh/h	3264	1497	0	5141	3504	0
Grp Volume(v). veh/h	138	0	0	1417	1116	0
Grp Sat Flow(s).veh/h/ln	1632	1497	0	1608	1664	0
Q Serve(a s), s	4.1	0.0	0.0	7.6	9.2	0.0
Cycle Q Clear(a c), s	4.1	0.0	0.0	7.6	9.2	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	204		0	3942	2721	0
V/C Ratio(X)	0.68		0.00	0.36	0.41	0.00
Avail Cap(c_a), veh/h	522		0	3942	2721	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.9	0.0	0.0	2.4	2.5	0.0
Incr Delay (d2), s/veh	3.9	0.0	0.0	0.3	0.5	0.0
Initial Q Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	0.0	0.0	1.3	1.6	0.0
Unsig. Movement Delay, s/ve	eh			•		
InGro Delav(d) s/veh	49 7	0.0	0.0	26	30	0.0
	D	0.0	A	 A	A	A
Approach Vol. veh/h	138	Δ		1417	1116	
Approach Delay, s/yeb	/0.7	Л		26	3.0	
Approach LOS				2.0	Δ	
	U			Л	Л	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.7		12.3		87.7
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	3	72.0		16.0		72.0
Max Q Clear Time (g_c+I1), s	S	11.2		6.1		9.6
Green Ext Time (p_c), s		22.4		0.3		30.8
Intersection Summary						
HCM 6th Ctrl Delay			5.2			
HCM 6th LOS			Δ			
			Л			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	≮	*	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	55	11	441			***
Traffic Volume (veh/h)	548	846	566	0	0	1068
Future Volume (veh/h)	548	846	566	0	0	1068
Initial Q (Qh) veh	0	0	0	0	Ő	0
Ped-Bike Adi(A nhT)	1.00	1.00		1.00	1.00	v
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Annroac	ch No		No			No
Adi Sat Flow, veh/h/ln	1841	1841	1781	0	0	1693
Adi Flow Rate veh/h	660	1019	682	0	0	1287
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh %	0.00	0.00	0.00	0.00	0.00	1/
Cap yoh/h	1/10	11/6	2201	0	0	2002
Arrive On Groop	0 / 2	0 42	0 15	0 00	0 00	0 15
Anive On Green	0.42	0.42	0.45	0.00	0.00	0.45
Sat Flow, ven/n	3401	2745	5184	0	0	4925
Grp Volume(v), veh/h	660	1019	682	0	0	1287
Grp Sat Flow(s),veh/h/li	n1700	1373	1621	0	0	1540
Q Serve(g_s), s	14.0	34.4	8.9	0.0	0.0	21.1
Cycle Q Clear(g_c), s	14.0	34.4	8.9	0.0	0.0	21.1
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h	1419	1146	2201	0	0	2092
V/C Ratio(X)	0.47	0.89	0.31	0.00	0.00	0.62
Avail Cap(c_a), veh/h	1564	1263	2201	0	0	2092
HCM Platoon Ratio	1 00	1.00	1 00	1 00	1 00	1 00
LInstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) shual	h 21 1	27 0	17 4	0.00	0.00	20.8
Incr Delay (d2) shuch	0.2	76	0.4	0.0	0.0	20.0 1 /
Initial O Delay (uz), S/Vell	0.2	1.0	0.4	0.0	0.0	0.0
Mila Delay(03),S/Ver	I U.U	0.0	0.0	0.0	0.0	0.0
%IIE BACKOTQ(50%),Vel	1/110.3	11.6	3.2	0.0	0.0	1.3
Unsig. Movement Delay	y, s/veh		4 -			0C <i>t</i>
LnGrp Delay(d),s/veh	21.3	34.6	17.8	0.0	0.0	22.1
LnGrp LOS	С	С	В	A	A	С
Approach Vol, veh/h	1679		682			1287
Approach Delay, s/veh	29.4		17.8			22.1
Approach LOS	С		В			С
		•				•
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)), S	51.3		48.7		51.3
Change Period (Y+Rc),	S	6.0		7.0		6.0
Max Green Setting (Gm	nax), s	41.0		46.0		41.0
Max Q Clear Time (g_c	+l1), s	23.1		36.4		10.9
Green Ext Time (p_c), s	S	16.2		5.3		16.5
Intersection Summary						
HCM 6th Ctrl Delay			24.7			
HCM 6th LOS			С.			
			U			

メッシュナ ベナ イントナイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्रभ	1	ሻ	*††	1	۳.	44¢-		
Traffic Volume (veh/h)	1	0	3	127	1	82	38	1332	42	31	1198	5	
Future Volume (veh/h)	1	0	3	127	1	82	38	1332	42	31	1198	5	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	۱	No			No			No			No		
Adj Sat Flow, veh/h/ln ´	1159	1159	1159	1856	1856	1856	1826	1826	1826	1633	1633	1633	
Adj Flow Rate, veh/h	1	0	4	155	1	100	46	1624	0	38	1461	6	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Percent Heavy Veh, %	50	50	50	3	3	3	5	5	5	18	18	18	
Cap, veh/h	43	14	57	183	1	376	63	2778		51	2539	10	
Arrive On Green	0.26	0.00	0.24	0.26	0.24	0.24	0.04	0.56	0.00	0.01	0.18	0.18	
Sat Flow, veh/h	0	59	236	463	3	1569	1739	4985	1547	1555	4584	19	
Grp Volume(v), veh/h	5	0	0	156	0	100	46	1624	0	38	947	520	
Grp Sat Flow(s),veh/h/In	295	0	0	466	0	1569	1739	1662	1547	1555	1486	1630	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.2	2.6	21.4	0.0	2.4	29.1	29.1	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.2	2.6	21.4	0.0	2.4	29.1	29.1	
Prop In Lane	0.20		0.80	0.99		1.00	1.00		1.00	1.00		0.01	
Lane Grp Cap(c), veh/h	120	0	0	193	0	376	63	2778		51	1647	903	
V/C Ratio(X)	0.04	0.00	0.00	0.81	0.00	0.27	0.73	0.58		0.75	0.58	0.58	
Avail Cap(c_a), veh/h	120	0	0	193	0	376	122	2778		124	1647	903	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.88	0.88	0.88	
Uniform Delay (d), s/veh	30.5	0.0	0.0	40.7	0.0	30.8	47.7	14.5	0.0	49.1	30.1	30.1	
Incr Delay (d2), s/veh	0.1	0.0	0.0	22.0	0.0	0.4	15.1	0.9	0.0	17.5	1.3	2.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/	/In0.1	0.0	0.0	5.0	0.0	2.0	1.4	7.4	0.0	1.2	11.8	13.2	
Unsig. Movement Delay,	s/veh												
LnGrp Delay(d),s/veh	30.6	0.0	0.0	62.7	0.0	31.2	62.9	15.4	0.0	66.5	31.4	32.5	
LnGrp LOS	С	A	A	E	A	С	E	В		E	С	С	
Approach Vol, veh/h		5			256			1670	А		1505		
Approach Delay, s/veh		30.6			50.4			16.7			32.7		
Approach LOS		С			D			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc),	s8.6	61.4		30.0	8.3	61.7		30.0					
Change Period (Y+Rc), s	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gma	ax) , G	52.0		24.0	8.0	51.0		24.0					
Max Q Clear Time (g_c+	l14),6s	31.1		28.0	4.4	23.4		28.0					
Green Ext Time (p_c), s	0.0	19.6		0.0	0.0	26.2		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			26.2										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	٩.	Ť	Ŧ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	354	63	220	1071	996	352
Future Volume (veh/h)	354	63	220	1071	996	352
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No			No	No	
Adi Sat Flow, veh/b/ln	1737	1737	1811	1811	1678	1678
Adi Flow Rate veh/h	442	79	275	1339	1245	440
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veb %	11	11	00.0 A	00.0 A	15	15
Can yeh/h	51/	226	211	2442	1815	800
Arrivo On Croon	0.16	200	0.00	244J 0 71	0 57	009
Anive On Green	0.10	0.10	1705	0./1	0.57	1404
Sat Flow, ven/n	3209	1472	1725	3532	3272	1421
Grp Volume(v), veh/h	442	79	275	1339	1245	440
Grp Sat Flow(s),veh/h/l	n1605	1472	1725	1721	1594	1421
Q Serve(g_s), s	13.4	4.8	6.6	18.5	27.6	19.3
Cycle Q Clear(g_c), s	13.4	4.8	6.6	18.5	27.6	19.3
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	n 514	236	311	2443	1815	809
V/C Ratio(X)	0.86	0.34	0.88	0.55	0.69	0.54
Avail Cap(c, a) veh/h	578	265	431	2443	1815	809
HCM Platoon Ratio	1 00	1 00	1.00	1 00	1 00	1 00
Linstream Filter(I)	1.00	1.00	0.90	0.00	1.00	1.00
Uniform Delay (d) alua	h / 0 0	37.2	20.03	6.0	15.00	12 /
liner Dolou (d2), s/vel	140.9	01.0	20.0	0.9	10.2	13.4
incr Delay (d2), s/ven	11.5	0.0	13.4	0.0	2.1	2.0
Initial Q Delay(d3),s/vel	n U.U	0.0	0.0	0.0	0.0	0.0
%Ile BackOfQ(50%),ve	n/1no.0	1.7	4.7	5.5	9.4	6.1
Unsig. Movement Delay	y, s/veh					
LnGrp Delay(d),s/veh	52.4	38.1	33.4	7.7	17.4	16.1
LnGrp LOS	D	D	С	<u>A</u>	B	B
Approach Vol, veh/h	521			1614	1685	
Approach Delay, s/veh	50.3			12.1	17.0	
Approach LOS	D			B	B	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc)), \$ 4.1	63.9		22.0		78.0
Change Period (Y+Rc).	s 5.0	7.0		6.0		7.0
Max Green Setting (Gr	na k6. G	48.0		18.0		69.0
Max Q Clear Time (q. c	+118 6	29.6		15.4		20.5
Green Ext Time (n. c)	s 0.5	17 3		۳.01 ۵ D		<u>41</u> 7
$(p_0), $	0.0	11.0		0.0		71.7
Intersection Summary						
HCM 6th Ctrl Delav			19.5			
HCM 6th LOS			В			

Intersection

Int Delay, s/veh	22.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			्
Traffic Vol, veh/h	15	14	976	8	23	1259
Future Vol, veh/h	15	14	976	8	23	1259
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	19	18	1251	10	29	1614

Major/Minor	Minor1	Ν	/lajor1		Major2		
Conflicting Flow All	2928	1256	0	0	1261	0	
Stage 1	1256	-	-	-	-	-	
Stage 2	1672	-	-	-	-	-	
Critical Hdwy	6.6	6.4	-	-	4.27	-	
Critical Hdwy Stg 1	5.6	-	-	-	-	-	
Critical Hdwy Stg 2	5.6	-	-	-	-	-	
Follow-up Hdwy	3.68	3.48	-	-	2.353	-	
Pot Cap-1 Maneuver	~ 14	192	-	-	503	-	
Stage 1	246	-	-	-	-	-	
Stage 2	151	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	~ 6	192	-	-	503	-	
Mov Cap-2 Maneuver	~ 6	-	-	-	-	-	
Stage 1	246	-	-	-	-	-	
Stage 2	67	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, \$	1753.5		0		0.2		
HCM LOS	F						
Minor Lane/Major Mv	mt	NBT	NBRWI	BLn1	SBL	SBT	
Capacity (veh/h)		-	-	11	503	-	
HCM Lane V/C Ratio		-	-	3.38	0.059	-	
HCM Control Delay (s	3)	-	\$ 17	753.5	12.6	0	
HCM Lane LOS		-	-	F	В	А	
HCM 95th %tile Q(vel	h)	-	-	5.7	0.2	-	
Notes							

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	-	$\mathbf{\hat{z}}$	∢	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	<u> </u>	•	1	۲	•	1	۲	A12≽	
Traffic Volume (veh/h)	57	110	550	187	149	41	409	520	61	26	545	78
Future Volume (veh/h)	57	110	550	187	149	41	409	520	61	26	545	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	138	0	234	186	0	511	650	0	32	681	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	242	442		322	586		557	1098		245	787	113
Arrive On Green	0.25	0.25	0.00	0.04	0.32	0.00	0.28	0.61	0.00	0.31	0.31	0.31
Sat Flow, veh/h	1147	1796	1522	1767	1856	1572	1711	1796	1522	645	2575	370
Grp Volume(v), veh/h	71	138	0	234	186	0	511	650	0	32	388	391
Grp Sat Flow(s),veh/h/ln	1147	1796	1522	1767	1856	1572	1711	1796	1522	645	1467	1478
Q Serve(g_s), s	8.2	9.4	0.0	0.0	11.5	0.0	35.8	33.2	0.0	5.5	37.5	37.6
Cycle Q Clear(g_c), s	19.7	9.4	0.0	0.0	11.5	0.0	35.8	33.2	0.0	5.5	37.5	37.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	242	442		322	586		557	1098		245	448	452
V/C Ratio(X)	0.29	0.31		0.73	0.32		0.92	0.59		0.13	0.86	0.87
Avail Cap(c_a), veh/h	242	442		322	586		557	1098		245	448	452
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	55.3	46.4	0.0	58.4	39.2	0.0	39.0	17.8	0.0	38.2	49.3	49.3
Incr Delay (d2), s/veh	3.0	1.8	0.0	13.4	1.4	0.0	22.5	2.3	0.0	1.1	19.4	19.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.6	4.5	0.0	9.9	5.5	0.0	15.2	13.8	0.0	0.9	16.1	16.2
Unsig. Movement Delay, s/veh	50.4	(0.0		74.0	10.0	• •	04 5					
LnGrp Delay(d),s/veh	58.4	48.2	0.0	71.8	40.6	0.0	61.5	20.2	0.0	39.3	68.8	68.8
LnGrp LOS	E	D		E	D		E	C		D	E	<u> </u>
Approach Vol, veh/h		209	A		420	A		1161	A		811	
Approach Delay, s/veh		51./			58.0			38.4			67.6	
Approach LOS		D			E			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	46.0	52.0	10.5	42.0		98.0		52.5				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	41.5	46.0	5.5	* 37		92.0		47.0				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			51.7									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्च	1		र्च	1		4	
Traffic Vol, veh/h	21	0	1	2	5	1	51	554	3	0	626	44
Future Vol, veh/h	21	0	1	2	5	1	51	554	3	0	626	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	70	70	70	67	67	67	9	9	9	21	21	21
Mvmt Flow	22	0	1	2	5	1	54	583	3	0	659	46

Major/Minor	Minor2			Minor1			Major1		Ν	/lajor2			
Conflicting Flow All	1378	1376	682	1374	1396	583	705	0	0	586	0	0	
Stage 1	682	682	-	691	691	-	-	-	-	-	-	-	
Stage 2	696	694	-	683	705	-	-	-	-	-	-	-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-	-	4.31	-	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-	-	2.389	-	-	
Pot Cap-1 Maneuver	88	106	351	90	104	409	861	-	-	902	-	-	
Stage 1	347	361	-	346	360	-	-	-	-	-	-	-	
Stage 2	340	356	-	350	355	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	78	96	351	83	94	409	861	-	-	902	-	-	
Mov Cap-2 Maneuver	78	96	-	83	94	-	-	-	-	-	-	-	
Stage 1	315	361	-	314	327	-	-	-	-	-	-	-	
Stage 2	303	323	-	349	355	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	66.3	43.7	0.8	0	
HCM LOS	F	E			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	WBLn2	SBL	SBT	SBR
Capacity (veh/h)	861	-	-	81	91	409	902	-	-
HCM Lane V/C Ratio	0.062	-	-	0.286	0.081	0.003	-	-	-
HCM Control Delay (s)	9.5	0	-	66.3	48	13.8	0	-	-
HCM Lane LOS	А	А	-	F	Е	В	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	1	0.3	0	0	-	-

10.6
В

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	eî 🗧		Y		
Traffic Vol, veh/h	2	170	381	0	0	0	
Future Vol, veh/h	2	170	381	0	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	6	6	2	2	2	2	
Mvmt Flow	2	200	448	0	0	0	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	8.9		11.3		0		
HCM LOS	А		В		-		

Lane	EBLn1	WBLn1	SBLn1	1
Vol Left, %	1%	0%	0%	ó
Vol Thru, %	99%	100%	100%	, 0
Vol Right, %	0%	0%	0%	ó
Sign Control	Stop	Stop	Stop)
Traffic Vol by Lane	172	381	0)
LT Vol	2	0	0)
Through Vol	170	381	0)
RT Vol	0	0	0)
Lane Flow Rate	202	448	0)
Geometry Grp	1	1	1	1
Degree of Util (X)	0.244	0.508	0)
Departure Headway (Hd)	4.336	4.084	5.318	3
Convergence, Y/N	Yes	Yes	Yes	S
Сар	815	879	0)
Service Time	2.428	2.137	3.318	3
HCM Lane V/C Ratio	0.248	0.51	0)
HCM Control Delay	8.9	11.3	8.3	3
HCM Lane LOS	А	В	Ν	١
HCM 95th-tile Q	1	2.9	0)

0.4					
NBL	NBR	SET	SER	NWL	NWT
- ሽ		- î>			↑
16	0	161	9	0	366
16	0	161	9	0	366
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
,#0	-	0	-	-	0
0	-	0	-	-	0
74	74	74	74	74	74
2	2	4	4	2	2
22	0	218	12	0	495
	0.4 NBL 16 16 0 Stop - 0 ,# 0 0 74 2 22	0.4 NBL NBR 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 17 None 0 - 17 74 17 2 17 0	0.4 NBL NBR SET 16 0 161 16 0 161 16 0 161 16 0 0 Stop Stop Free None - 0 - ,# 0 - 0 - ,# 0 - 0 - 0 - ,# 0 - 0 - 0 - 0 - 0 - 0 - 10 - 0 - 0 - 10 - 0 - 0 - 10 -	0.4 NBL NBR SET SER 16 0 161 9 16 0 161 9 16 0 161 9 16 0 161 9 0 0 0 0 Stop Stop Free Free None - None - 0 - 0 - # 0 - 0 - 74 74 74 74 4 2 2 4 4 22 0 218 12	0.4 NBL NBR SET SER NWL 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 0 0 0 0 0 0 Stop Stop Free Free Free 0 - 0 - - 0 - 0 - - 10 - 0 - - 74 74 74 74 74 2 2 4 4 2 22 0 218 12 0

Major/Minor	Minor1	Maj	jor1	Maj	jor2	
Conflicting Flow All	719	-	0	0	-	-
Stage 1	224	-	-	-	-	-
Stage 2	495	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	395	0	-	-	0	-
Stage 1	813	0	-	-	0	-
Stage 2	613	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 395	-	-	-	-	-
Mov Cap-2 Maneuver	r 395	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	613	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	14.6	0	0
HCM LOS	В		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	395	-	-	-
HCM Lane V/C Ratio	0.055	-	-	-
HCM Control Delay (s)	14.6	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Approach	EB	WB	SB	
HCM Control Delay, s	0.3	0	31.1	
HCM LOS			D	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	869	-	-	- 338
HCM Lane V/C Ratio	0.008	-	-	- 0.611
HCM Control Delay (s)	9.2	-	-	- 31.1
HCM Lane LOS	А	-	-	- D
HCM 95th %tile Q(veh)	0	-	-	- 3.8

Intersection													
Int Delay, s/veh	50.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		- ሽ	•					- ኘ	4		
Traffic Vol, veh/h	0	211	103	85	329	0	0	0	0	251	1	204	
Future Vol, veh/h	0	211	103	85	329	0	0	0	0	251	1	204	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-	
Veh in Median Storage	, # -	0	-	-	0	-	-	16974	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76	
Heavy Vehicles, %	4	4	4	2	2	2	2	2	2	1	1	1	
Mvmt Flow	0	278	136	112	433	0	0	0	0	330	1	268	

Major1		Ν	/lajor2					Minor2					
-	0	0	414	0	0			1003	1071	433			
-	-	-	-	-	-			657	657	-			
-	-	-	-	-	-			346	414	-			
-	-	-	4.12	-	-			6.41	6.51	6.21			
-	-	-	-	-	-			5.41	5.51	-			
-	-	-	-	-	-			5.41	5.51	-			
-	-	-	2.218	-	-			3.509	4.009	3.309			
0	-	-	1145	-	0			~ 270	222	625			
0	-	-	-	-	0			518	463	-			
0	-	-	-	-	0			719	595	-			
	-	-		-									
-	-	-	1145	-	-			~ 244	0	625			
-	-	-	-	-	-			~ 244	0	-			
-	-	-	-	-	-			518	0	-			
-	-	-	-	-	-			649	0	-			
EB			WB					SB					
0			1.7					129.6					
								F					
nt	EBT	EBR	WBL	WBT	SBLn1	SBLn2							
-	-	-	1145	_	244	625							
	-	-	0.098	-	1.354	0.432							
)	-	-	8.5	-	223.1	15.1							
/	-	-	A	-	F	С							
ı)	-	-	0.3	-	17.8	2.2							
pacity	\$: De	lav exc	eeds 30)0s	+: Com	putation N	Not Defined	*: All	maior	/olume i	n platoon		
	Major1 	Major1 - - - - - - - - 0 - 0 - 0 - 0 - - 0 -	Major1 N - 0 0 - - - - - - - - - - - - - - - 0 - - 0 - - 0 - - 0 - - 0 - - - - - - - - 0 - - - - - 0 - - - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 10 - - 10 - - 10 - -	Major1 Major2 - 0 0 414 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - 1145 - - 0 - - - - - - -	Major1 Major2 - 0 0 414 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - 1145 - 0 - - 1145 - - - - - - - - - - - - - - -	Major1 Major2 - 0 0 414 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.218 - - - - 0 - - 1145 0 0 0 - - 0 0 - - 0 - - 0 - - 0 - - - 0 - - 0 -	Major1 Major2 - 0 0 414 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - 1145 - 0 0 - - - 0 - - - - - 1145 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	Major1 Major2 - 0 0 414 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 - - 1145 - 0 0 - - - 0 - - - 1145 - - - - - - - - - - - - - - - - - - - - - 0 1.7 - - - - etb WBL WBT SBLn1 SBLn2 - - - - 1145 - 244 625 <t< td=""><td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 - - - - - 657 - - - - - 641 - - - - 5.41 - - - - 5.41 - - 2.218 - 3.509 0 - 1145 0 ~270 0 - - 0 719 - - 0 719 - - 145 - ~244 - - - - 244 - - - - 649 EB WB WB SB 0 1.7 129.6 - - 1.45 - 244 625 - - 0.098 1.354 0.432) - - <t< td=""><td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 - - - - - 657 657 - - - - 346 414 - - - - 6.41 6.51 - - - - 5.41 5.51 - - - - 5.41 5.51 - - 2.218 - - 3.509 4.009 0 - 1145 - 0 ~270 222 0 - - - 0 719 595 - - - - - 244 0 - - - - - 244 0 - - - - - 518 0 - - - - - 54</td></t<><td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - - 657 657 - - - - - - 346 414 - - - - - 5.41 5.51 - - - - - 5.41 5.51 - - - 2.218 - - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - - 0 719 595 - - - - - - 244 0 - - - - - - - 649 0 - ret - 1.354 0.432<td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - 657 657 - - - - - 346 414 - - - 4.12 - - 6.41 6.51 6.21 - - - - 5.41 5.51 - - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - 1145 - ~244 0 - - - 1145 - ~244 0 - - - - - 649 0 - - - - - 625 - - 6</td><td>Major1 Major2 Minor2 - 0 0 1003 1071 433 - - - - 657 657 - - - - - 657 657 - - - - - 641 6.21 - - - - 5.41 5.51 - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 -270 222 625 0 - - 0 719 595 - - - 1145 - - 224 0 625 - - 1145 - - 244 0 - - - 1145 - - 244 0 - - - - - - 518 0 - - - - - - - 649 - -</td></td></td></t<>	Major1 Major2 Minor2 - 0 0 414 0 0 1003 - - - - - 657 - - - - - 641 - - - - 5.41 - - - - 5.41 - - 2.218 - 3.509 0 - 1145 0 ~270 0 - - 0 719 - - 0 719 - - 145 - ~244 - - - - 244 - - - - 649 EB WB WB SB 0 1.7 129.6 - - 1.45 - 244 625 - - 0.098 1.354 0.432) - - <t< td=""><td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 - - - - - 657 657 - - - - 346 414 - - - - 6.41 6.51 - - - - 5.41 5.51 - - - - 5.41 5.51 - - 2.218 - - 3.509 4.009 0 - 1145 - 0 ~270 222 0 - - - 0 719 595 - - - - - 244 0 - - - - - 244 0 - - - - - 518 0 - - - - - 54</td></t<> <td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - - 657 657 - - - - - - 346 414 - - - - - 5.41 5.51 - - - - - 5.41 5.51 - - - 2.218 - - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - - 0 719 595 - - - - - - 244 0 - - - - - - - 649 0 - ret - 1.354 0.432<td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - 657 657 - - - - - 346 414 - - - 4.12 - - 6.41 6.51 6.21 - - - - 5.41 5.51 - - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - 1145 - ~244 0 - - - 1145 - ~244 0 - - - - - 649 0 - - - - - 625 - - 6</td><td>Major1 Major2 Minor2 - 0 0 1003 1071 433 - - - - 657 657 - - - - - 657 657 - - - - - 641 6.21 - - - - 5.41 5.51 - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 -270 222 625 0 - - 0 719 595 - - - 1145 - - 224 0 625 - - 1145 - - 244 0 - - - 1145 - - 244 0 - - - - - - 518 0 - - - - - - - 649 - -</td></td>	Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 - - - - - 657 657 - - - - 346 414 - - - - 6.41 6.51 - - - - 5.41 5.51 - - - - 5.41 5.51 - - 2.218 - - 3.509 4.009 0 - 1145 - 0 ~270 222 0 - - - 0 719 595 - - - - - 244 0 - - - - - 244 0 - - - - - 518 0 - - - - - 54	Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - - 657 657 - - - - - - 346 414 - - - - - 5.41 5.51 - - - - - 5.41 5.51 - - - 2.218 - - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - - 0 719 595 - - - - - - 244 0 - - - - - - - 649 0 - ret - 1.354 0.432 <td>Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - 657 657 - - - - - 346 414 - - - 4.12 - - 6.41 6.51 6.21 - - - - 5.41 5.51 - - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - 1145 - ~244 0 - - - 1145 - ~244 0 - - - - - 649 0 - - - - - 625 - - 6</td> <td>Major1 Major2 Minor2 - 0 0 1003 1071 433 - - - - 657 657 - - - - - 657 657 - - - - - 641 6.21 - - - - 5.41 5.51 - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 -270 222 625 0 - - 0 719 595 - - - 1145 - - 224 0 625 - - 1145 - - 244 0 - - - 1145 - - 244 0 - - - - - - 518 0 - - - - - - - 649 - -</td>	Major1 Major2 Minor2 - 0 0 414 0 0 1003 1071 433 - - - - 657 657 - - - - - 346 414 - - - 4.12 - - 6.41 6.51 6.21 - - - - 5.41 5.51 - - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 ~270 222 625 0 - - 0 518 463 - 0 - - 0 719 595 - - - 1145 - ~244 0 - - - 1145 - ~244 0 - - - - - 649 0 - - - - - 625 - - 6	Major1 Major2 Minor2 - 0 0 1003 1071 433 - - - - 657 657 - - - - - 657 657 - - - - - 641 6.21 - - - - 5.41 5.51 - - - 2.218 - 3.509 4.009 3.309 0 - 1145 0 -270 222 625 0 - - 0 719 595 - - - 1145 - - 224 0 625 - - 1145 - - 244 0 - - - 1145 - - 244 0 - - - - - - 518 0 - - - - - - - 649 - -

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1			ef 👘		٦	ef 👘				
Traffic Vol, veh/h	98	364	0	0	337	302	77	3	92	0	0	0
Future Vol, veh/h	98	364	0	0	337	302	77	3	92	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	0	0	0	2	2	2
Mvmt Flow	124	461	0	0	427	382	97	4	116	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	809	0	-	-	-	0	1327	1518	461	
Stage 1	-	· -	-	-	-	-	709	709	-	
Stage 2	-	· -	-	-	-	-	618	809	-	
Critical Hdwy	4.12	-	-	-	-	-	6.4	6.5	6.2	
Critical Hdwy Stg 1	-		-	-	-	-	5.4	5.5	-	
Critical Hdwy Stg 2	-	· -	-	-	-	-	5.4	5.5	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.5	4	3.3	
Pot Cap-1 Maneuver	817	-	0	0	-	-	173	120	605	
Stage 1	-		0	0	-	-	491	440	-	
Stage 2	-	· -	0	0	-	-	542	396	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	817	-	-	-	-	-	147	0	605	
Mov Cap-2 Maneuver	-		-	-	-	-	147	0	-	
Stage 1	-	· -	-	-	-	-	416	0	-	
Stage 2	-	· -	-	-	-	-	542	0	-	
Approach	EB	i i		WB			NB			
HCM Control Delay, s	2.2			0			37.2			
HCM LOS							Е			
Minor Lane/Major Mvn	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		147	605	817	-	-	-			
HCM Lane V/C Ratio		0.663	0.199	0.152	-	-	-			
HCM Control Delay (s))	67.9	12.4	10.2	-	-	-			
HCM Lane LOS		F	В	В	-	-	-			
HCM 95th %tile Q(veh)	3.7	0.7	0.5	-	-	-			

	-	\mathbf{F}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	ሻ	1
Traffic Volume (veh/h)	170	286	53	304	335	17
Future Volume (veh/h)	170	286	53	304	335	17
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	230	0	72	411	453	0
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, %	1	1	2	2	1	1
Cap, veh/h	503		198	810	778	
Arrive On Green	0.27	0.00	0.11	0.43	0.43	0.00
Sat Flow, veh/h	1885	1598	1781	1870	1795	1598
Grp Volume(v). veh/h	230	0	72	411	453	0
Grp Sat Flow(s).veh/h/ln	1885	1598	1781	1870	1795	1598
Q Serve(q_s), s	9.2	0.0	3.4	14.4	17.2	0.0
Cycle Q Clear(a c). s	9.2	0.0	3.4	14.4	17.2	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h	503		198	810	778	
V/C Ratio(X)	0.46		0.36	0.51	0.58	
Avail Cap(c a), veh/h	503		198	810	778	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	27.6	0.0	37.1	18.5	19.3	0.0
Incr Delay (d2), s/veh	3.0	0.0	5.1	2.3	3.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	4.4	0.0	1.7	6.3	7.2	0.0
Unsig. Movement Delay, s/veh	1					
LnGrp Delay(d).s/veh	30.5	0.0	42.2	20.8	22.5	0.0
LnGrp LOS	С		D	С	С	
Approach Vol. veh/h	230	А	_	483	453	А
Approach Delay s/veh	30.5	<i>, , , , , , , , , ,</i>		24.0	22.5	
Approach LOS	C			C	C	
	Ŭ				-	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		45.0		45.0	15.0	30.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		39.0		39.0	10.0	24.0
Max Q Clear Time (g_c+l1), s		16.4		19.2	5.4	11.2
Green Ext Time (p_c), s		5.9		1.8	0.0	2.1
Intersection Summary						
HCM 6th Ctrl Delay			24.7			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{i}	•	1	Ŧ	1			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	274	198	1205	1431	10			
Future Volume (vph)	0	274	198	1205	1431	10			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util, Factor		1.00	0.97	0.95	0.95	1.00			
Frpb. ped/bikes		0.99	1.00	1.00	1.00	1.00			
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd, Flow (prot)		1591	3099	3195	3406	1524			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd, Flow (perm)		1591	3099	3195	3406	1524			
Peak-hour factor PHF	0.94	0.94	0.94	0.94	0.94	0.94			
Adi Flow (vph)	0.54	291	211	1282	1522	11			
RTOR Reduction (vph)	0	231	211	1202	1022	3			
Lane Group Flow (vph)	0	291	211	1282	1522	8			
Confl Peds (#/br)	U	201	211	1202	1522	0			
Heavy Vehicles (%)	2%	2%	13%	13%	6%	6%			
	2 /0	Z /0	Drot	1070 NIA	070 NIA	Dorm			
Protected Disease		Fiee	1	Eroo	1NA 2	Feilii			
Protected Phases		Free	I	Fiee	2	0			
Actuated Crean C (a)		100.0	10.1	100.0	74.0	Z 74.0			
Effective Creen, g (s)		100.0	12.1	100.0	74.9	74.9			
Actuated a/C Datia		100.0	12.1	100.0	74.9	74.9			
		1.00	0.12	1.00	0.75	0.75			
Vehicle Extension (s)			0.0		7.0	7.0			
		4504	3.0	0405	5.0	5.0			
Lane Grp Cap (vph)		1591	3/4	3195	2551	1141			
v/s Ratio Prot		0.40	0.07	0.40	c0.45	0.04			
v/s Ratio Perm		0.18				0.01			
v/c Ratio		0.18	0.56	0.40	0.60	0.01			
Uniform Delay, d1		0.0	41.5	0.0	5.7	3.2			
Progression Factor		1.00	0.53	1.00	0.18	0.11			
Incremental Delay, d2		0.3	1.6	0.3	0.7	0.0			
Delay (s)		0.3	23.4	0.3	1.8	0.3			
Level of Service		A	С	A	A	A			
Approach Delay (s)	0.3			3.6	1.8				
Approach LOS	Α			A	A				
Intersection Summary									
HCM 2000 Control Delay			2.4	Н	CM 2000	Level of Service)	A	
HCM 2000 Volume to Capacity	ratio		0.60						
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)	13	.0	
Intersection Capacity Utilization	n		64.1%	IC	U Level o	of Service		С	
Analysis Period (min)			15						

c Critical Lane Group

	≯	→	$\mathbf{\hat{z}}$	4	+	*	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ		1				5	ĥ			•	1
Traffic Volume (vph)	276	0	615	0	0	0	428	1113	0	0	998	172
Future Volume (vph)	276	0	615	0	0	0	428	1113	0	0	998	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	1667			1673	1497
Flt Permitted	0.95		1.00				0.04	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				69	1667			1673	1497
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adi, Flow (vph)	297	0	661	0	0	0	460	1197	0	0	1073	185
RTOR Reduction (vph)	0	0	50	0	0	0	0	0	0	0	0	26
Lane Group Flow (vph)	297	0	611	0	0	0	460	1197	0	0	1073	159
Confl. Peds. (#/hr)		•	•••	•	•	•	1		•	, The second sec		1
Confl. Bikes (#/hr)							·					1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		nt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	1.6			2	4
Permitted Phases	•		4				16					2
Actuated Green G (s)	20.5		61.5				131.0	131.0			90.0	110 5
Effective Green g (s)	20.5		61.5				131.0	131.0			90.0	110.5
Actuated g/C Ratio	0.12		0.37				0.80	0.80			0.55	0.67
Clearance Time (s)	6.5		0.07				6.5	0.00			6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grn Can (vnh)	218		546				372	1327			915	1064
v/s Ratio Prot	c0 17		c0 42				0.26	0.72			0.64	0.02
v/s Ratio Perm	00.17		00. 4 2				c0.72	0.72			0.04	0.02
v/c Ratio	1.36		1 12				1 24	0.90			1 17	0.00
Uniform Delay, d1	72.0		51.5				60.5	12.1			37.2	9 9
Progression Factor	1 00		1 00				1 00	1 00			1 00	1 00
Incremental Delay, d2	189.8		75.5				127.6	8.8			89.3	0.1
Delay (s)	261.8		127.0				188.1	20.9			126.6	9.1
Level of Service	201.0 F		127.0 F				100.1 F	20.5 C			120.0 F	Δ
Approach Delay (s)		168.8	•		0.0			67.3			109.4	Л
Approach LOS		100.0 F			Δ			07.0 F			105.4 F	
Approach 200		I			Л			L			I	
Intersection Summary												
HCM 2000 Control Delay			106.1	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.29									
Actuated Cycle Length (s)			164.5	S	um of lost	t time (s)			19.5			
Intersection Capacity Utilizat	ion		105.7%	IC	U Level o	of Service)		G			
Analysis Period (min)			15									

c Critical Lane Group

	٠	\mathbf{r}	1	1	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	44	
Traffic Volume (veh/h)	137	1118	0	1788	1460	0
Future Volume (veh/h)	137	1118	0	1788	1460	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	151	0	0	1965	1604	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	7	7	0	8	5	0
Cap, veh/h	217		0	3961	2826	0
Arrive On Green	0.07	0.00	0.00	0.81	0.81	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grp Volume(v). veh/h	151	0	0	1965	1604	0
Grp Sat Flow(s).veh/h/ln	1659	1522	0	1621	1735	Ū
Q Serve(a s), s	4.5	0.0	0.0	12.6	16.0	0.0
Cycle Q Clear(a, c), s	4.5	0.0	0.0	12.6	16.0	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	217		0	3961	2826	0
V/C Ratio(X)	0.69		0.00	0.50	0.57	0.00
Avail Cap(c, a), veh/h	398		0	3961	2826	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.7	0.0	0.0	2.9	3.2	0.0
Incr Delay (d2) s/veh	4 0	0.0	0.0	0.4	0.8	0.0
Initial Q Delay(d3) s/veh	0.0	0.0	0.0	0.1	0.0	0.0
%ile BackOfQ(50%) veh/ln	1.9	0.0	0.0	2.1	3.0	0.0
Unsig Movement Delay s/ve	h	0.0	0.0	2.1	0.0	0.0
InGrn Delay(d) s/veh	49.7	0.0	0.0	33	40	0.0
LinGrn LOS	 П	0.0	Δ	Δ	Δ	Δ
Approach Vol. yoh/h	151	٨	~	1065	1604	
Approach Delay, shich	/0.7	A		1900	1004	
Approach LOS	49.7			۵.S ۸	4.0	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	;	76.0		12.0		76.0
Max Q Clear Time (g_c+l1), s	3	18.0		6.5		14.6
Green Ext Time (p_c), s		37.5		0.2		46.6
Intersection Summary						
HCM 6th Ctrl Delay			5.5			
HCM 6th LOS			Δ			
			А			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	€	*	t.	1	1	Ŧ
Movement N	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	55	11	441			***
Traffic Volume (veh/h)	666	602	930	0	0	1539
Future Volume (veh/h)	666	602	930	0	0	1539
Initial Q (Qb) veh	0	002	000	0	0	0
Ped-Bike Adi(A nhT)	1.00	1.00	v	1.00	1.00	v
Parking Bus Adi	1.00	1.00	1 00	1.00	1.00	1 00
Work Zone On Annroach	No.	1.00	No	1.00	1.00	No
Adi Sat Flow veh/h/ln 1	1722	1722	1767	0	0	1841
Adi Flow Rate veh/h	724	654	1011	0	0	1673
Peak Hour Factor	0.92	0.92	0.92	0 92	0 92	0 92
Percent Heavy Veh %	12	12	0.5Z Q	0.52	0.52	0.5Z
Can veh/h	972	785	3 2723	0	0	2837
Arrive On Groop	0.21	0.21	0.56	0 00	0.00	0.56
Anive On Gleen	0.01	0.01	0.00	0.00	0.00	0.00
Sat Flow, ven/n 3	70102	2009	5141	0	0	0300
Grp Volume(v), veh/h	724	654	1011	0	0	1673
Grp Sat Flow(s),veh/h/In1	1591	1284	1608	0	0	1675
Q Serve(g_s), s	20.5	23.7	11.5	0.0	0.0	21.7
Cycle Q Clear(g_c), s	20.5	23.7	11.5	0.0	0.0	21.7
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h	972	785	2723	0	0	2837
V/C Ratio(X)	0.74	0.83	0.37	0.00	0.00	0.59
Avail Cap(c a), veh/h 1	1177	950	2723	0	0	2837
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) s/veh	31.2	32.4	12.0	0.0	0.0	14.2
Incr Delay (d2) s/veh	2.1	5.5	0.1	0.0	0.0	ΛQ
Initial O Delay (u2), sivel	2.1	0.0	0.4	0.0	0.0	0.9
	0.0	7.6	0.0	0.0	0.0	0.0
Weige May and Date	ŏ. Yili	0.1	J.Ö	0.0	0.0	1.5
Unsig. Movement Delay,	s/veh	07.0	40.4	0.0	0.0	45.4
LnGrp Delay(d),s/veh	33.3	37.8	12.4	0.0	0.0	15.1
LnGrp LOS	С	D	В	A	A	В
Approach Vol, veh/h 1	1378		1011			1673
Approach Delay, s/veh	35.5		12.4			15.1
Approach LOS	D		В			В
Timer - Assigned Phs		2		4		6
Phs Duration (C+V+Po)	\$	62.5		37.5		62.5
Change Deried (V De)	3	6.0		57.5		02.0 6 0
Change Period (Y+KC), S)) -	0.0		1.0		0.0
Max Green Setting (Gma	ax), s	50.0		37.0		50.0
Max Q Clear Time (g_c+	I1), s	23.7		25.7		13.5
Green Ext Time (p_c), s		25.2		4.8		26.4
Intersection Summary						
HCM 6th Ctrl Delay			21.3			
HCM 6th LOS			С			

メッシュー イイ イントレイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्र	1	<u>۲</u>	^	1	<u>۲</u>	ተተ ጮ		
Traffic Volume (veh/h)	6	1	18	161	0	88	21	1320	199	116	1590	2	
Future Volume (veh/h)	6	1	18	161	0	88	21	1320	199	116	1590	2	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	า	No			No			No			No		
Adj Sat Flow, veh/h/ln	1900	1900	1900	1796	1796	1796	1707	1707	1707	1826	1826	1826	
Adj Flow Rate, veh/h	6	1	19	173	0	95	23	1419	0	125	1710	2	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	0	7	7	7	13	13	13	5	5	5	
Cap, veh/h	44	27	72	189	0	364	38	2331		156	2912	3	
Arrive On Green	0.26	0.24	0.24	0.26	0.00	0.24	0.02	0.50	0.00	0.03	0.19	0.19	
Sat Flow, veh/h	0	111	301	487	0	1518	1626	4661	1447	1739	5142	6	
Grp Volume(v), veh/h	26	0	0	173	0	95	23	1419	0	125	1105	607	
Grp Sat Flow(s), veh/h/ln	411	0	0	487	0	1518	1626	1554	1447	1739	1662	1825	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.1	1.4	21.9	0.0	7.1	30.4	30.4	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.1	1.4	21.9	0.0	7.1	30.4	30.4	
Prop In Lane	0.23		0.73	1.00		1.00	1.00		1.00	1.00		0.00	
Lane Grp Cap(c), veh/h	151	0	0	199	0	364	38	2331		156	1882	1034	
V/C Ratio(X)	0.17	0.00	0.00	0.87	0.00	0.26	0.60	0.61		0.80	0.59	0.59	
Avail Cap(c_a), veh/h	151	0	0	199	0	364	98	2331		243	1882	1034	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.83	0.83	0.83	
Uniform Delay (d), s/veh	31.0	0.0	0.0	41.2	0.0	30.8	48.4	18.0	0.0	47.6	30.0	30.0	
Incr Delay (d2), s/veh	0.5	0.0	0.0	31.5	0.0	0.4	14.1	1.2	0.0	8.3	1.1	2.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	/In0.5	0.0	0.0	5.9	0.0	1.9	0.7	7.4	0.0	3.5	13.6	15.2	
Unsig. Movement Delay,	, s/veh												
LnGrp Delay(d),s/veh	31.5	0.0	0.0	72.7	0.0	31.2	62.4	19.1	0.0	56.0	31.1	32.0	
LnGrp LOS	С	A	Α	E	Α	С	E	В		E	С	С	
Approach Vol, veh/h		26			268			1442	А		1837		
Approach Delay, s/veh		31.5			58.0			19.8			33.1		
Approach LOS		С			E			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc),	, s7.4	62.6		30.0	14.0	56.0		30.0					
Change Period (Y+Rc),	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gma	ax 6 , G	53.0		24.0	14.0	45.0		24.0					
Max Q Clear Time (g_c+	-113,45	32.4		28.0	9.1	23.9		28.0					
Green Ext Time (p_c), s	0.0	20.0		0.0	0.1	19.6		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			29.6										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	٠	t	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	388	229	181	1042	1247	387
Future Volume (veh/h)	388	229	181	1042	1247	387
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A nhT)	1.00	1.00	1.00	v	Ũ	1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No	1.00	1.00	No	No	
Adi Sat Flow veh/h/ln	1781	1781	1678	1678	1826	1826
Adi Flow Rate veh/h	422	249	197	1133	1355	421
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veb %	8	8	15	15	5	5
Can veh/h	592	272	256	2100	1975	881
Arrive On Green	0.12	0.18	0.07	0.60	0.57	0.57
Sat Flow, yoh/h	3201	1510	1502	3070	3561	15/7
	3291	1010	1090	3212	4055	1047
Grp Volume(v), veh/h	422	249	197	1133	1355	421
Grp Sat Flow(s),veh/h/l	n1646	1510	1598	1594	1735	1547
Q Serve(g_s), s	12.1	16.2	4.8	17.1	27.6	16.1
Cycle Q Clear(g_c), s	12.1	16.2	4.8	17.1	27.6	16.1
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	n 592	272	256	2199	1975	881
V/C Ratio(X)	0.71	0.92	0.77	0.52	0.69	0.48
Avail Cap(c a), veh/h	592	272	366	2199	1975	881
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.92	0.92	1.00	1.00
Uniform Delay (d) s/ve	h 38 6	40.3	18 7	7.5	15.2	12 7
Incr Delay (d2) s/veh	4 0	33.4	57	0.8	2.0	19
Initial () Delay(d3) e/val	μ.Ο η.Ο	0.0	0.0	0.0	0.0	0.0
	h/la⊑ 1	0.0 Q /	2.0	1.0	10.0	0.0 E /
Ville DaukOlQ(30%),Ve	11/11 0 .1	0.4	3.0	4.9	10.1	5.4
Unsig. Wovement Delay	y, s/ven	70 7	04.4	0.0	47.0	14.0
LnGrp Delay(d),s/veh	42.6	73.7	24.4	8.3	17.2	14.6
LnGrp LOS	D	E	С	A	В	В
Approach Vol, veh/h	671			1330	1776	
Approach Delay, s/veh	54.1			10.6	16.6	
Approach LOS	D			В	В	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc) \$21	63.9		24.0		76.0
Change Period (V+Po)	ς 5 Π	7.0		6.0		70
Max Green Sotting (Cr	, 3 J.U ha1k∦ Թ	50.0		18.0		0.0
Max O Clear Time (c	101.44,05	50.0 20.6		10.0		10.4
iviax Q Clear Time (g_c	;+110),85	29.0		18.2		19.1
Green Ext Time (p_c),	s 0.3	19.5		0.0		38.0
Intersection Summary						
HCM 6th Ctrl Delav			21.2			
HCM 6th LOS			С			

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\$			et F			ŧ	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1087	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1087	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	36	1221	0

Major/Minor		Minor1		N	1ajor1		Ν	Major2			
Conflicting Flow All		2817	2817	1524	-	0	0	1560	0	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		1293	1293	-	-	-	-	-	-	-	
Critical Hdwy		6.44	6.54	6.24	-	-	-	4.16	-	-	
Critical Hdwy Stg 1		5.44	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.44	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy		3.536	4.036	3.336	-	-	-	2.254	-	-	
Pot Cap-1 Maneuver		~ 19	18	144	0	-	-	413	-	0	
Stage 1		196	178	-	0	-	-	-	-	0	
Stage 2		255	231	-	0	-	-	-	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		~ 14	0	144	-	-	-	413	-	-	
Mov Cap-2 Maneuver		~ 14	0	-	-	-	-	-	-	-	
Stage 1		196	0	-	-	-	-	-	-	-	
Stage 2		186	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		\$ 739.6			0			0.4			
HCM LOS		F									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT							
Capacity (veh/h)	-	- 20	413	-							
HCM Lane V/C Ratio	-	- 1.685	0.087	-							
HCM Control Delay (s)	-	-\$ 739.6	14.5	0							
HCM Lane LOS	-	- F	В	А							
HCM 95th %tile Q(veh)	-	- 4.5	0.3	-							
Notes											
~: Volume exceeds capacity	\$: De	lay exceeds 3	00s	+: Comp	outation	Not Defin	ed	*: All r	najor vol	ume in	platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	→	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	•	1	5	•	1	٦	•	1	۲	∱1 }	
Traffic Volume (veh/h)	244	373	413	92	171	44	413	592	231	97	518	113
Future Volume (veh/h)	244	373	413	92	171	44	413	592	231	97	518	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	419	0	103	192	0	464	665	0	109	582	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	395	557		212	724		501	906		223	695	151
Arrive On Green	0.33	0.33	0.00	0.04	0.39	0.00	0.26	0.54	0.00	0.25	0.25	0.25
Sat Flow, veh/h	1078	1693	1434	1753	1841	1560	1612	1693	1434	752	2833	617
Grp Volume(v), veh/h	274	419	0	103	192	0	464	665	0	109	356	353
Grp Sat Flow(s),veh/h/ln	1078	1693	1434	1753	1841	1560	1612	1693	1434	752	1735	1715
Q Serve(g_s), s	35.8	34.2	0.0	5.5	10.9	0.0	35.6	46.6	0.0	20.1	30.2	30.4
Cycle Q Clear(g_c), s	36.7	34.2	0.0	5.5	10.9	0.0	35.6	46.6	0.0	21.7	30.2	30.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.36
Lane Grp Cap(c), veh/h	395	557		212	724		501	906		223	425	420
V/C Ratio(X)	0.69	0.75		0.49	0.27		0.93	0.73		0.49	0.84	0.84
Avail Cap(c_a), veh/h	395	557		212	724		501	906		223	425	420
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	47.6	46.4	0.0	38.9	31.8	0.0	39.3	27.5	0.0	53.1	55.6	55.6
Incr Delay (d2), s/veh	9.7	9.1	0.0	7.8	0.9	0.0	25.6	5.2	0.0	7.5	17.5	18.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	10.6	15.8	0.0	3.1	5.2	0.0	14.8	19.6	0.0	4.3	15.2	15.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	57.3	55.5	0.0	46.7	32.7	0.0	65.0	32.8	0.0	60.5	73.0	73.6
LnGrp LOS	E	E		D	С		E	С		E	E	<u> </u>
Approach Vol, veh/h		693	А		295	А		1129	А		818	
Approach Delay, s/veh		56.2			37.6			46.0			71.6	
Approach LOS		E			D			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	45.0	44.0	10.0	56.0		89.0		66.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0		5.0				
Max Green Setting (Gmax), s	40.5	38.0	5.5	51.0		83.0		61.0				
Max Q Clear Time (g_c+l1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			54.7									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			- 4	1		्र	1		- 🗘	
Traffic Vol, veh/h	23	2	6	2	1	2	29	681	3	1	734	30
Future Vol, veh/h	23	2	6	2	1	2	29	681	3	1	734	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	709	3	1	765	31

Major/Minor	Minor2		I	Minor1			Major1		I	Major2			
Conflicting Flow All	1555	1555	781	1556	1567	709	796	0	0	712	0	0	
Stage 1	783	783	-	769	769	-	-	-	-	-	-	-	
Stage 2	772	772	-	787	798	-	-	-	-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-	-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-	-	2.281	-	-	
Pot Cap-1 Maneuver	83	102	365	93	112	438	763	-	-	856	-	-	
Stage 1	358	377	-	397	413	-	-	-	-	-	-	-	
Stage 2	364	381	-	388	401	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	78	95	365	85	104	438	763	-	-	856	-	-	
Mov Cap-2 Maneuver	78	95	-	85	104	-	-	-	-	-	-	-	
Stage 1	335	376	-	371	386	-	-	-	-	-	-	-	
Stage 2	338	356	-	378	400	-	-	-	-	-	-	-	
•										0.5			

Approach	EB	WB	NB	SB	
HCM Control Delay, s	63	32.9	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	763	-	-	93	91	438	856	-	-
HCM Lane V/C Ratio	0.04	-	-	0.347	0.034	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	63	46	13.3	9.2	0	-
HCM Lane LOS	А	А	-	F	Е	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-

45.6
Е

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	el el		¥		
Traffic Vol, veh/h	6	737	284	6	9	2	
Future Vol, veh/h	6	737	284	6	9	2	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	2	2	3	3	0	0	
Mvmt Flow	7	847	326	7	10	2	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	59.3		11.7		9.7		
HCM LOS	F		В		А		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	82%
Vol Thru, %	99%	98%	0%
Vol Right, %	0%	2%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	743	290	11
LT Vol	6	0	9
Through Vol	737	284	0
RT Vol	0	6	2
Lane Flow Rate	854	333	13
Geometry Grp	1	1	1
Degree of Util (X)	1.029	0.446	0.023
Departure Headway (Hd)	4.336	4.82	6.446
Convergence, Y/N	Yes	Yes	Yes
Сар	837	747	552
Service Time	2.357	2.851	4.523
HCM Lane V/C Ratio	1.02	0.446	0.024
HCM Control Delay	59.3	11.7	9.7
HCM Lane LOS	F	В	А
HCM 95th-tile Q	19.4	2.3	0.1

Intersection						
Int Delay, s/veh	0.7					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			↑	- ሽ	
Traffic Vol, veh/h	689	50	0	255	30	0
Future Vol, veh/h	689	50	0	255	30	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	. 0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles. %	2	2	3	3	2	2
Mymt Flow	820	60	0	304	36	0
	020	00	v	001	00	v

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0 -	- 1154	-	
Stage 1	-		- 850	-	
Stage 2	-		- 304	-	
Critical Hdwy	-		- 6.42	-	
Critical Hdwy Stg 1	-		- 5.42	-	
Critical Hdwy Stg 2	-		- 5.42	-	
Follow-up Hdwy	-		- 3.518	-	
Pot Cap-1 Maneuver	-	- 0	- 218	0	
Stage 1	-	- 0	- 419	0	
Stage 2	-	- 0	- 748	0	
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuver	· -		- 218	-	
Mov Cap-2 Maneuver	· -		- 218	-	
Stage 1	-		- 419	-	
Stage 2	-		- 748	-	
Approach	EB	WB	NB		
HCM Control Dology		0	04.7		

HCM LOS C	HCM Control Delay, s	0	0	24.7	
	HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	218	-	-	-
HCM Lane V/C Ratio	0.164	-	-	-
HCM Control Delay (s)	24.7	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.6	-	-	-

Intersection						
Int Delay, s/veh	52.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	۲.	•	el 👘		Y	
Traffic Vol, veh/h	20	595	271	152	300	9
Future Vol, veh/h	20	595	271	152	300	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	4	4	2	2
Mvmt Flow	22	647	295	165	326	10

Major/Minor	Major1	Ν	lajor2	Mi	nor2				
Conflicting Flow All	460	0	-	0 1	1069	378			
Stage 1	-	-	-	-	378	-			
Stage 2	-	-	-	-	691	-			
Critical Hdwy	4.12	-	-	-	6.42	6.22			
Critical Hdwy Stg 1	-	-	-	-	5.42	-			
Critical Hdwy Stg 2	-	-	-	-	5.42	-			
Follow-up Hdwy	2.218	-	-	- 3	5.518	3.318			
Pot Cap-1 Maneuver	1101	-	-	- ~	· 245	669			
Stage 1	-	-	-	-	693	-			
Stage 2	-	-	-	-	497	-			
Platoon blocked, %		-	-	-					
Mov Cap-1 Maneuver	1101	-	-	- ~	· 240	669			
Mov Cap-2 Maneuver	-	-	-	- ~	· 240	-			
Stage 1	-	-	-	-	679	-			
Stage 2	-	-	-	-	497	-			
Approach	EB		WB		SB				
HCM Control Delay, s	0.3		0	2	29.8				
HCM LOS					F				
Minor Lane/Major Mvr	nt	EBL	EBT	WBT V	NBR S	SBLn1			
Capacity (veh/h)		1101	-	-	-	245			
HCM Lane V/C Ratio		0.02	-	-	-	1.371			
HCM Control Delay (s)	8.3	-	-	-	229.8			
HCM Lane LOS	,	А	-	-	-	F			
HCM 95th %tile Q(veh	ı)	0.1	-	-	-	18.3			
Notes									
~: Volume exceeds ca	pacity	\$: De	ay exc	eeds 300)s -	+: Comp	outation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		et		ľ	•					1	et F	
Traffic Vol, veh/h	0	752	159	141	291	0	0	0	0	286	2	144
Future Vol, veh/h	0	752	159	141	291	0	0	0	0	286	2	144
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	3	3	3	0	0	0	2	2	2
Mvmt Flow	0	800	169	150	310	0	0	0	0	304	2	153

Major/Minor	Major1		N	Major2			Minor2				
Conflicting Flow All	-	0	0	969	0 0)	1495	1579	310		
Stage 1	-	-	-	-			610	610	-		
Stage 2	-	-	-	-			885	969	-		
Critical Hdwy	-	-	-	4.13			6.42	6.52	6.22		
Critical Hdwy Stg 1	-	-	-	-			5.42	5.52	-		
Critical Hdwy Stg 2	-	-	-	-			5.42	5.52	-		
Follow-up Hdwy	-	-	-	2.227		•	3.518	4.018	3.318		
Pot Cap-1 Maneuver	0	-	-	707	- 0	1	~ 135	109	730		
Stage 1	0	-	-	-	- 0		542	485	-		
Stage 2	0	-	-	-	- C	1	403	332	-		
Platoon blocked, %		-	-		-						
Mov Cap-1 Maneuver	· -	-	-	707			~ 106	0	730		
Mov Cap-2 Maneuver	-	-	-	-			~ 106	0	-		
Stage 1	-	-	-	-			542	0	-		
Stage 2	-	-	-	-			318	0	-		
Approach	EB			WB			SB				
HCM Control Delay, s	0			3.7			\$ 619.4				
HCM LOS							F				
Minor Lane/Maior Myr	nt	EBT	EBR	WBL	WBT SBLn1	SBLn2					
Capacity (veh/h)	-	-	-	707	- 106	730					
HCM Lane V/C Ratio		-	-	0.212	- 2.87	0.213					
HCM Control Delay (s	;)	_	-	11.5	-\$ 929.9	11.3					
HCM Lane LOS	·)	-	-	В	- F	B					
HCM 95th %tile Q(veh	ר)	-	-	0.8	- 28.8	0.8					
Notes											
~: Volume exceeds ca	anacity	\$ De	lav exc	eeds 3	00s + Cor	nnutation	Not Defined *· Al	Imaiory	volume i	n nlatoon	
	puony	ψ. De		0003 0		nputation	Not Defined . Al	major		n platoon	

Intersection

Int Delay, s/veh

					WDT			NDT		0.01	0.D.T	000
Movement	EBL	EBT	EBR	WBL	WBI	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>	↑			- 1 2		- ሽ	- 1 +				
Traffic Vol, veh/h	294	709	0	0	348	545	73	3	46	0	0	0
Future Vol, veh/h	294	709	0	0	348	545	73	3	46	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	1	1	1	0	0	0
Mvmt Flow	323	779	0	0	382	599	80	3	51	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	981	0	-	-	-	0	2107	2406	779	
Stage 1	-	-	-	-	-	-	1425	1425	-	
Stage 2	-	-	-	-	-	-	682	981	-	
Critical Hdwy	4.12	-	-	-	-	-	6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.51	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.509	4.009	3.309	
Pot Cap-1 Maneuver	704	-	0	0	-	-	~ 57	33	397	
Stage 1	-	-	0	0	-	-	223	202	-	
Stage 2	-	-	0	0	-	-	504	329	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	704	-	-	-	-	-	~ 31	0	397	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 31	0	-	
Stage 1	-	-	-	-	-	-	121	0	-	
Stage 2	-	-	-	-	-	-	504	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	4.2			0		ţ	599.3			
HCM LOS							F			
Minor Lane/Major Mvn	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		31	397	704	-	-	-			
HCM Lane V/C Ratio		2.588	0.136	0.459	-	-	-			
HCM Control Delay (s)	5 991.1	15.5	14.4	-	-	-			
HCM Lane LOS	,	F	С	В	-	-	-			
HCM 95th %tile Q(veh	ı)	9.4	0.5	2.4	-	-	-			
Notes										
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 30)0s	+: Com	putatio	n Not D	efined	*: All major volume in platoon

	→	\mathbf{F}	•	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	†	5	7
Traffic Volume (veh/h)	347	400	35	315	619	38
Future Volume (veh/h)	347	400	35	315	619	38
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1885	1885
Adj Flow Rate, veh/h	394	0	40	358	703	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	3	3	3	3	1	1
Cap, veh/h	536		98	742	838	
Arrive On Green	0.29	0.00	0.06	0.40	0.47	0.00
Sat Flow, veh/h	1856	1572	1767	1856	1795	1598
Grp Volume(v), veh/h	394	0	40	358	703	0
Grp Sat Flow(s).veh/h/ln	1856	1572	1767	1856	1795	1598
Q Serve(a s), s	17.3	0.0	2.0	12.9	30.9	0.0
Cycle Q Clear(q_c), s	17.3	0.0	2.0	12.9	30.9	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Gro Cap(c), veh/h	536		98	742	838	
V/C Ratio(X)	0.74		0.41	0.48	0.84	
Avail Cap(c, a), veh/h	536		98	742	838	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d) s/yeh	28.9	0.0	41.1	20.1	21.0	0.0
Incr Delay (d2) s/veh	87	0.0	12.1	22	9.9	0.0
Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln	8.6	0.0	12	5.7	13.8	0.0
Unsig Movement Delay s/veh	0.0	0.0	1.2	0.7	10.0	0.0
InGrn Delay(d) s/veh	37.6	0.0	53 1	22.3	30.9	0.0
InGrp LOS	07.0 D	0.0	D	C	С.00	0.0
Approach Vol. veh/h	30/	٨		308	703	٨
Approach Delay, s/yeb	37.6	~		25 /	30.0	~
Approach LOS	ס. <i>ז</i> ר			23.4	50.9	
	U			U	U	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		42.0		48.0	10.0	32.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		36.0		42.0	5.0	26.0
Max Q Clear Time (g_c+I1), s		14.9		32.9	4.0	19.3
Green Ext Time (p_c), s		4.8		2.3	0.0	2.5
Intersection Summary						
HCM 6th Ctrl Delay			31.2			
HCM 6th LOS			C			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{r}	•	1	Ŧ	∢			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	183	124	1615	1051	8			
Future Volume (vph)	0	183	124	1615	1051	8			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1536	3303	3406	3085	1380			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)		1536	3303	3406	3085	1380			
Peak-hour factor. PHF	0.92	0.84	0.84	0.84	0.84	0.84			
Adj. Flow (vph)	0	218	148	1923	1251	10			
RTOR Reduction (vph)	0	0	0	0	0	2			
Lane Group Flow (vph)	0	218	148	1923	1251	8			
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%			
Turn Type		Free	Prot	NA	NA	Perm			
Protected Phases			1	Free	2				
Permitted Phases		Free				2			
Actuated Green, G (s)		100.0	10.0	100.0	77.0	77.0			
Effective Green, g (s)		100.0	10.0	100.0	77.0	77.0			
Actuated g/C Ratio		1.00	0.10	1.00	0.77	0.77			
Clearance Time (s)			6.0		7.0	7.0			
Vehicle Extension (s)			3.0		5.0	5.0			
Lane Grp Cap (vph)		1536	330	3406	2375	1062			
v/s Ratio Prot			0.04	0.56	0.41				
v/s Ratio Perm		0.14				0.01			
v/c Ratio		0.14	0.45	0.56	0.53	0.01			
Uniform Delay, d1		0.0	42.4	0.0	4.4	2.7			
Progression Factor		1.00	0.60	1.00	0.04	0.00			
Incremental Delay, d2		0.2	0.8	0.5	0.6	0.0			
Delay (s)		0.2	26.0	0.5	0.7	0.0			
Level of Service		А	С	А	А	А			
Approach Delay (s)	0.2			2.4	0.7				
Approach LOS	Α			А	Α				
Intersection Summary									
HCM 2000 Control Delay			1.6	H	CM 2000	Level of Servi	ce	A	
HCM 2000 Volume to Capacit	ty ratio		0.65						
Actuated Cycle Length (s)			100.0	Si	um of lost	t time (s)		13.0	
Intersection Capacity Utilization	on		48.0%	IC	U Level o	of Service		А	
Analysis Period (min)			15						
c Critical Lane Group									

	≯	→	$\mathbf{\hat{z}}$	4	+	*	•	t	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1				5	ĥ			•	1
Traffic Volume (vph)	169	0	287	0	0	0	544	1198	0	0	1066	207
Future Volume (vph)	169	0	287	0	0	0	544	1198	0	0	1066	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	1776			1529	1392
Flt Permitted	0.95		1.00				0.03	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				54	1776			1529	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	199	0	338	0	0	0	640	1409	0	0	1254	244
RTOR Reduction (vph)	0	0	44	0	0	0	0	0	0	0	0	15
Lane Group Flow (vph)	199	0	294	0	0	0	640	1409	0	0	1254	229
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	12.5		70.5				184.0	184.0			126.0	138.5
Effective Green, g (s)	12.5		70.5				184.0	184.0			126.0	138.5
Actuated g/C Ratio	0.06		0.34				0.88	0.88			0.60	0.66
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	97		456				448	1559			919	963
v/s Ratio Prot	c0.12		0.22				c0.35	0.79			0.82	0.01
v/s Ratio Perm							c0.91					0.15
v/c Ratio	2.05		0.64				1.43	0.90			1.36	0.24
Uniform Delay, d1	98.5		58.9				74.6	7.5			41.8	14.3
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	507.0		3.1				205.4	7.7			171.1	0.2
Delay (s)	605.5		62.0				280.0	15.3			212.8	14.4
Level of Service	F		E				F	В			H	В
Approach Delay (s)		263.4			0.0			98.0			180.5	
Approach LOS		F			A			F			F	
Intersection Summary												
HCM 2000 Control Delay			150.0	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.50									
Actuated Cycle Length (s)			209.5	S	um of lost	t time (s)			19.5			
Intersection Capacity Utilization	ation		109.8%	IC	CU Level of	of Service)		Н			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1		***	44	
Traffic Volume (veh/h)	222	887	0	1250	971	0
Future Volume (veh/h)	222	887	0	1250	971	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1767	0	1767	1752	0
Adj Flow Rate, veh/h	255	0	0	1437	1116	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	9	9	0	9	10	0
Cap, veh/h	328		0	3759	2594	0
Arrive On Green	0.10	0.00	0.00	0.78	0.78	0.00
Sat Flow, veh/h	3264	1497	0	5141	3504	0
Grp Volume(v), veh/h	255	0	0	1437	1116	0
Grp Sat Flow(s).veh/h/ln	1632	1497	0	1608	1664	0
Q Serve(q_s), s	7.6	0.0	0.0	9.4	11.1	0.0
Cycle Q Clear(q_c), s	7.6	0.0	0.0	9.4	11.1	0.0
Prop In Lane	1.00	1.00	0.00	J . I		0.00
Lane Grp Cap(c), veh/h	328		0	3759	2594	0
V/C Ratio(X)	0.78		0.00	0.38	0.43	0.00
Avail Cap(c, a), veh/h	522		0.00	3759	2594	0.00
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d) s/veh	43.9	0.0	0.0	3.5	37	0.0
Incr Delay (d2) s/yeh	4.0	0.0	0.0	0.3	0.5	0.0
Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln	3.2	0.0	0.0	2.0	2.5	0.0
Unsig Movement Delay s/ve	≥h	0.0	0.0	2.0	2.0	0.0
InGro Delay(d) s/veb	47.8	0.0	0.0	3.8	42	0.0
	ס. <i>ו</i> ד ח	0.0	Δ	Δ	4.2	Δ
	255	۸	<u></u>	1/27	1116	
Approach Vol, ven/m	200	A		20	1110	
Approach LOS	47.0			J.0 A	4.2	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		83.9		16.1		83.9
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	6	72.0		16.0		72.0
Max Q Clear Time (q c+l1).	S	13.1		9.6		11.4
Green Ext Time (p c), s		22.2		0.4		31.0
Intersection Summarv						
HCM 6th Ctrl Delay			79			
HCM 6th LOS			1.5			
			А			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	≮	*	t	۲	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ካካ	11	441			***
Traffic Volume (veh/h)	548	1050	685	0	0	1068
Future Volume (veh/h)	548	1050	685	0	0	1068
Initial Q (Qb) veh	0	0	0	0	Õ	0
Ped-Bike Adi(A nhT)	1 00	1 00		1 00	1 00	v
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1 00
Work Zone On Annroad	sh No	1.00	No	1.00	1.00	No
Adi Sat Flow, veh/h/ln	18/11	1841	1781	٥	0	1693
Adi Flow Rate veh/h	660	1265	825	0	0	1095
Poak Hour Easter	000	0.93	020	0 83	0 83	0 83
	0.03	0.03	0.03	0.05	0.03	0.03
Percent Heavy Ven, %	4	4	0 4004	0	U	1004
Cap, ven/n	1564	1263	1994	0	0	1894
Arrive On Green	0.46	0.46	0.41	0.00	0.00	0.41
Sat Flow, veh/h	3401	2745	5184	0	0	4925
Grp Volume(v), veh/h	660	1265	825	0	0	1287
Grp Sat Flow(s),veh/h/l	n1700	1373	1621	0	0	1540
Q Serve(g_s), s	13.0	46.0	12.1	0.0	0.0	22.8
Cycle Q Clear(q c). s	13.0	46.0	12.1	0.0	0.0	22.8
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Can(c) veh/h	1564	1263	1994	0	0	1894
V/C Ratio(X)	0.42	1 00	0 / 1	0.00	0 00	0.68
$\sqrt{C} \operatorname{Railo}(X)$	1561	1262	1004	0.00	0.00	100/
HCM Distant Datio	1.004	1203	1994	1.00	1 00	1 00
	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/ve	n 18.1	27.0	21.0	0.0	0.0	24.1
Incr Delay (d2), s/veh	0.2	25.7	0.6	0.0	0.0	2.0
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve	h/ln4.8	18.1	4.4	0.0	0.0	8.1
Unsig. Movement Delay	y, s/veh					
LnGrp Delay(d),s/veh	18.3	52.7	21.6	0.0	0.0	26.1
LnGrp LOS	В	F	С	А	А	С
Approach Vol. veh/h	1925		825			1287
Annroach Delay s/yeh	<u>4</u> 0 0		21.6			26.1
Approach LOS	40.9 D		21.0			20.1
Approach 205	U		U			
Timer - Assigned Phs	\	2		4		6
Phs Duration (G+Y+Rc)), S	47.0		53.0		47.0
Change Period (Y+Rc),	S	6.0		7.0		6.0
Max Green Setting (Gm	ıax), s	41.0		46.0		41.0
Max Q Clear Time (q c	+l1), s	24.8		48.0		14.1
Green Ext Time (p c), s	5	14.8		0.0		17.9
Intersection Summary						
			20.0			
			32.2			
HCM 6th LOS			С			

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्रभ	1	ኘ	*††	1	٦	朴朴。		
Traffic Volume (veh/h)	1	0	3	127	1	82	38	1655	42	31	1198	5	
Future Volume (veh/h)	1	0	3	127	1	82	38	1655	42	31	1198	5	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1159	1159	1159	1856	1856	1856	1826	1826	1826	1633	1633	1633	
Adj Flow Rate, veh/h	1	0	4	155	1	100	46	2018	0	38	1461	6	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Percent Heavy Veh, %	50	50	50	3	3	3	5	5	5	18	18	18	
Cap, veh/h	43	14	57	183	1	376	63	2778		51	2539	10	
Arrive On Green	0.26	0.00	0.24	0.26	0.24	0.24	0.04	0.56	0.00	0.01	0.18	0.18	
Sat Flow, veh/h	0	59	236	463	3	1569	1739	4985	1547	1555	4584	19	
Grp Volume(v), veh/h	5	0	0	156	0	100	46	2018	0	38	947	520	
Grp Sat Flow(s), veh/h/lr	n 295	0	0	466	0	1569	1739	1662	1547	1555	1486	1630	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.2	2.6	30.1	0.0	2.4	29.1	29.1	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.2	2.6	30.1	0.0	2.4	29.1	29.1	
Prop In Lane	0.20		0.80	0.99		1.00	1.00		1.00	1.00		0.01	
Lane Grp Cap(c), veh/h	120	0	0	193	0	376	63	2778		51	1647	903	
V/C Ratio(X)	0.04	0.00	0.00	0.81	0.00	0.27	0.73	0.73		0.75	0.58	0.58	
Avail Cap(c_a), veh/h	120	0	0	193	0	376	122	2778		124	1647	903	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.88	0.88	0.88	
Uniform Delay (d), s/veh	n 30.5	0.0	0.0	40.7	0.0	30.8	47.7	16.5	0.0	49.1	30.1	30.1	
Incr Delay (d2), s/veh	0.1	0.0	0.0	22.0	0.0	0.4	15.1	1.7	0.0	17.5	1.3	2.3	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In0.1	0.0	0.0	5.0	0.0	2.0	1.4	10.5	0.0	1.2	11.8	13.2	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	30.6	0.0	0.0	62.7	0.0	31.2	62.9	18.2	0.0	66.5	31.4	32.5	
LnGrp LOS	С	A	A	E	A	С	E	В		E	С	С	
Approach Vol, veh/h		5			256			2064	А		1505		
Approach Delay, s/veh		30.6			50.4			19.1			32.7		
Approach LOS		С			D			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)	, s8.6	61.4		30.0	8.3	61.7		30.0					
Change Period (Y+Rc),	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gm	ax) ,G	52.0		24.0	8.0	51.0		24.0					
Max Q Clear Time (g_c-	+114),6s	31.1		28.0	4.4	32.1		28.0					
Green Ext Time (p_c), s	0.0	19.6		0.0	0.0	18.7		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			26.6										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.
	≯	\mathbf{F}	1	1	Ŧ	<
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	55	1	5	**	**	1
Traffic Volume (veh/h)	354	63	220	1394	996	352
Future Volume (veh/h)	354	63	220	1394	996	352
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00		-	1.00
Parking Bus. Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	h No			No	No	
Adi Sat Flow, veh/h/ln	1737	1737	1811	1811	1678	1678
Adi Flow Rate, veh/h	442	79	275	1742	1245	440
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh %	11	11	6	6	15	15
Can veh/h	514	236	311	2443	1815	809
Arrive On Green	0 16	0.16	0.00	0 71	0.57	0.57
Sat Flow, yoh/h	3200	1/170	1725	2522	3070	1/01
	3209	14/2	075	4740	3212	1421
Grp Volume(v), veh/h	442	/9	2/5	1/42	1245	440
Grp Sat Flow(s),veh/h/ln	1605	1472	1725	1721	1594	1421
Q Serve(g_s), s	13.4	4.8	6.6	29.7	27.6	19.3
Cycle Q Clear(g_c), s	13.4	4.8	6.6	29.7	27.6	19.3
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	514	236	311	2443	1815	809
V/C Ratio(X)	0.86	0.34	0.88	0.71	0.69	0.54
Avail Cap(c_a), veh/h	578	265	431	2443	1815	809
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.80	0.80	1.00	1.00
Uniform Delay (d), s/veh	140.9	37.3	20.0	8.5	15.2	13.4
Incr Delay (d2) s/veh	11.5	0.8	12.2	1 4	21	2.6
Initial O Delay(d3) e/veh		0.0	0.0	0.0	0.0	0.0
	1 0.0	17	0.0	0.0	0.0	0.0 6 1
/one DackOlQ(00%),Ven		1.7	4.0	0.9	9.4	0.1
Unsig. Wovement Delay	, s/veh	20.4	20.0	40.0	474	10.4
LnGrp Delay(d),s/veh	52.4	38.1	32.2	10.0	1/.4	16.1
LnGrp LOS	D	D	C	A	B	B
Approach Vol, veh/h	521			2017	1685	
Approach Delay, s/veh	50.3			13.0	17.0	
Approach LOS	D			В	В	
	4	0		4		<u>^</u>
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc)	, 1 54.1	63.9		22.0		78.0
Change Period (Y+Rc),	s 5.0	7.0		6.0		7.0
Max Green Setting (Gm	a 1 ¢6,.©	48.0		18.0		69.0
Max Q Clear Time (g_c+	+118),6s	29.6		15.4		31.7
Green Ext Time (p_c), s	0.5	17.3		0.6		36.0
Intersection Summary						
HCM 6th Ctrl Delay			19.2			
HCM 6th LOS			R			
			U			

Intersection

Int Delay, s/veh	122.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			्
Traffic Vol, veh/h	15	14	1359	8	23	1259
Future Vol, veh/h	15	14	1359	8	23	1259
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	19	18	1742	10	29	1614

Major/Minor	Minor1	Ν	Major1		Major2	
Conflicting Flow All	3419	1747	0	0	1752	0
Stage 1	1747	-	-	-	-	-
Stage 2	1672	-	-	-	-	-
Critical Hdwy	6.6	6.4	-	-	4.27	-
Critical Hdwy Stg 1	5.6	-	-	-	-	-
Critical Hdwy Stg 2	5.6	-	-	-	-	-
Follow-up Hdwy	3.68	3.48	-	-	2.353	-
Pot Cap-1 Maneuver	~ 7	96	-	-	322	-
Stage 1	139	-	-	-	-	-
Stage 2	151	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	· ~ 1	96	-	-	322	-
Mov Cap-2 Maneuver	· ~1	-	-	-	-	-
Stage 1	139	-	-	-	-	-
Stage 2	~ 19	-	-	-	-	-
Annroach	W/R		NR		SB	
HCM Control Delay&d	1305 3		0		03	
HCM LOS	1000.0 F		U		0.5	
	1					
Minor Lane/Major Mv	mt	NBT	NBRWI	BLn1	SBL	SBT
Capacity (veh/h)		-	-	2	322	-
HCM Lane V/C Ratio		-	- 1	18.59	0.092	-
HCM Control Delay (s	5)	-	\$ 113	305.3	17.3	0
HCM Lane LOS		-	-	F	С	А

Notes

~: Volume exceeds capacity

HCM 95th %tile Q(veh)

\$: Delay exceeds 300s +: Computation Not Defined

-

6.5

0.3

*: All major volume in platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	-	\mathbf{F}	∢	←	•	1	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	٢	•	1	1	•	1	ľ	↑ ĵ≽	
Traffic Volume (veh/h)	57	178	550	187	149	41	409	520	444	60	545	78
Future Volume (veh/h)	57	178	550	187	149	41	409	520	444	60	545	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	222	0	234	186	0	511	650	0	75	681	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	242	442		257	586		557	1098		245	787	113
Arrive On Green	0.25	0.25	0.00	0.04	0.32	0.00	0.28	0.61	0.00	0.31	0.31	0.31
Sat Flow, veh/h	1147	1796	1522	1767	1856	1572	1711	1796	1522	645	2575	370
Grp Volume(v), veh/h	71	222	0	234	186	0	511	650	0	75	388	391
Grp Sat Flow(s),veh/h/ln	1147	1796	1522	1767	1856	1572	1711	1796	1522	645	1467	1478
Q Serve(g_s), s	8.2	16.0	0.0	3.2	11.5	0.0	35.8	33.2	0.0	13.7	37.5	37.6
Cycle Q Clear(g_c), s	19.7	16.0	0.0	3.2	11.5	0.0	35.8	33.2	0.0	13.7	37.5	37.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	242	442		257	586		557	1098		245	448	452
V/C Ratio(X)	0.29	0.50		0.91	0.32		0.92	0.59		0.31	0.86	0.87
Avail Cap(c_a), veh/h	242	442		257	586		557	1098		245	448	452
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	55.3	48.8	0.0	64.2	39.2	0.0	39.0	17.8	0.0	41.1	49.3	49.3
Incr Delay (d2), s/veh	3.0	4.0	0.0	37.1	1.4	0.0	22.5	2.3	0.0	3.2	19.4	19.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/in	2.6	1.1	0.0	11.4	5.5	0.0	15.2	13.8	0.0	2.4	16.1	16.2
Unsig. Movement Delay, s/veh	50.4	50.0	0.0	101.0	10.0		04 5			44.0		
LnGrp Delay(d),s/veh	58.4	52.9	0.0	101.3	40.6	0.0	61.5	20.2	0.0	44.3	68.8	68.8
LnGrp LOS	E	D		<u> </u>	<u>D</u>		<u> </u>	C		D	<u>E</u>	<u> </u>
Approach Vol, veh/h		293	A		420	A		1161	A		854	
Approach Delay, s/veh		54.2			74.4			38.4			66.6	
Approach LOS		D			E			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	46.0	52.0	10.5	42.0		98.0		52.5				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	41.5	46.0	5.5	* 37		92.0		47.0				
Max Q Clear Time (g_c+l1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			54.5									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्च	1		र्च	1		4	
Traffic Vol, veh/h	21	0	1	2	5	1	51	554	3	0	660	44
Future Vol, veh/h	21	0	1	2	5	1	51	554	3	0	660	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	70	70	70	67	67	67	9	9	9	21	21	21
Mvmt Flow	22	0	1	2	5	1	54	583	3	0	695	46

Major/Minor	Minor2			Minor1			Major1			Ν	lajor2			
Conflicting Flow All	1414	1412	718	1410	1432	583	741	0	(0	586	0	0	
Stage 1	718	718	-	691	691	-	-	-		-	-	-	-	
Stage 2	696	694	-	719	741	-	-	-		-	-	-	-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-		-	4.31	-	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-		-	-	-	-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-		-	2.389	-	-	
Pot Cap-1 Maneuver	82	100	334	84	98	409	835	-		-	902	-	-	
Stage 1	330	346	-	346	360	-	-	-		-	-	-	-	
Stage 2	340	356	-	333	340	-	-	-		-	-	-	-	
Platoon blocked, %								-		-		-	-	
Mov Cap-1 Maneuver	72	90	334	78	89	409	835	-		-	902	-	-	
Mov Cap-2 Maneuver	72	90	-	78	89	-	-	-		-	-	-	-	
Stage 1	298	346	-	313	325	-	-	-		-	-	-	-	
Stage 2	302	322	-	332	340	-	-	-		-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	73.1	46.1	0.8	0	
HCM LOS	F	E			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	835	-	-	75	86	409	902	-	-
HCM Lane V/C Ratio	0.064	-	-	0.309	0.086	0.003	-	-	-
HCM Control Delay (s)	9.6	0	-	73.1	50.7	13.8	0	-	-
HCM Lane LOS	А	А	-	F	F	В	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	1.1	0.3	0	0	-	-

Intersection		
Intersection Delay, s/veh	74.6	
Intersection LOS	F	

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	el el		¥		
Traffic Vol, veh/h	487	170	381	365	0	0	
Future Vol, veh/h	487	170	381	365	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	6	6	2	2	2	2	
Mvmt Flow	573	200	448	429	0	0	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	72.8		76.1		0		
HCM LOS	F		F		-		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	74%	0%	0%
Vol Thru, %	26%	51%	100%
Vol Right, %	0%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	657	746	0
LT Vol	487	0	0
Through Vol	170	381	0
RT Vol	0	365	0
Lane Flow Rate	773	878	0
Geometry Grp	1	1	1
Degree of Util (X)	1.061	1.081	0
Departure Headway (Hd)	5.052	4.434	7.334
Convergence, Y/N	Yes	Yes	Yes
Сар	727	807	0
Service Time	3.052	2.521	5.334
HCM Lane V/C Ratio	1.063	1.088	0
HCM Control Delay	72.8	76.1	10.3
HCM Lane LOS	F	F	Ν
HCM 95th-tile Q	19.8	22.4	0

0.4					
NBL	NBR	SET	SER	NWL	NWI
<u>۲</u>		ef 👘			↑
16	0	161	9	0	731
16	0	161	9	0	731
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
,#0	-	0	-	-	0
0	-	0	-	-	0
74	74	74	74	74	74
2	2	4	4	2	2
22	0	218	12	0	988
	0.4 NBL 16 16 0 Stop - 0 ,# 0 0 74 2 22	0.4 NBL NBR 16 0 16 0 16 0 0 0 Stop Stop - None 0 - ,# 0 - 0 - 74 74 2 2 22 0	0.4 NBL NBR SET 16 0 161 16 0 161 16 0 161 0 0 0 Stop Stop Free None - 0 - ,# 0 - 0 - ,# 0 - 0 - 0 - ,# 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.4 NBL NBR SET SER NBL 0 161 9 16 0 161 9 16 0 161 9 16 0 161 9 0 0 0 0 Stop Stop Free Free None - None 0 - 0 - # 0 - 0 - # 0 - 0 - 74 74 74 74 22 0 218 12	0.4 NBL NBR SET SER NWL 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 0 0 0 0 0 0 Stop Stop Free Free Free 0 - - - - 0 - 0 - - - 0 - 0 - - - 74 74 74 74 74 2 2 4 4 2 22 0 218 12 0

Major/Minor	Minor1	Maj	or1	Maj	or2	
Conflicting Flow All	1212	-	0	0	-	-
Stage 1	224	-	-	-	-	-
Stage 2	988	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	201	0	-	-	0	-
Stage 1	813	0	-	-	0	-
Stage 2	361	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 201	-	-	-	-	-
Mov Cap-2 Maneuver	r 201	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	361	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	25.1	0	0
HCM LOS	D		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	201	-	-	-
HCM Lane V/C Ratio	0.108	-	-	-
HCM Control Delay (s)	25.1	-	-	-
HCM Lane LOS	D	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

ntersection						
Int Delay, s/veh	23.1					
Movement	EDI	EDT			CDI	000
	EBL	EBI	WBI	WBR	SBL	SBK
Lane Configurations	j	T	740	457	1	40
Traπic Vol, ven/n	5	1/8	742	157	130	19
Future Vol, veh/h	5	1/8	/42	157	136	19
Conflicting Peds, #/hr	- 0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	50	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	75	75	75	75	75	75
Heavy Vehicles, %	6	6	3	3	2	2
Mymt Flow	7	237	989	209	181	25
	•	201	000	200	101	20
Major/Minor	Major1	Ν	Major2		Minor2	
Conflicting Flow All	1198	0	-	0	1345	1094
Stage 1	-	-	-	-	1094	-
Stage 2	-	-	-	-	251	-
Critical Hdwy	4 16	-	-	-	6.42	6 22
Critical Hdwy Sta 1	4.10	_	_	_	5.42	0.22
Critical Hduny Stg 1	-	-	-	-	5.42	-
	-	-	-	-	0.4Z	-
Follow-up Hawy	2.254	-	-	-	3.518	3.318
Pot Cap-1 Maneuver	569	-	-	-	~ 167	260
Stage 1	-	-	-	-	321	-
Stage 2	-	-	-	-	791	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	569	-	-	-	~ 165	260
Mov Cap-2 Maneuver	-	-	-	-	~ 165	-
Stage 1	_	_	_	-	317	_
Stage 2					701	
Slage 2	-	-	-	-	131	-
Approach	EB		WB		SB	
HCM Control Delay s	0.3		0		184 1	
HCM LOS	0.0		U		F	
					- 1	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		569	_	-	-	173
HCM Lane V/C Ratio		0.012	_		_	1 1 9 5
HCM Control Dolay (c)	١	11 /				1.155
HCM Long LOC)	П.4	-	-	-	104.1
	1	В	-	-	-	
HOW 95th %tile Q(veh)	U	-	-	-	11.2
Notes						
~: Volume exceeds ca	pacity	\$: De	elav exc	ceeds 3	00s	+: Com

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦	Ť					۲	4	
Traffic Vol, veh/h	0	211	103	85	626	0	0	0	0	251	1	272
Future Vol, veh/h	0	211	103	85	626	0	0	0	0	251	1	272
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	4	4	4	2	2	2	2	2	2	1	1	1
Mvmt Flow	0	278	136	112	824	0	0	0	0	330	1	358

Major/Minor	Major1		1	Major2				Minor2				
Conflicting Flow All	-	0	0	414	0	0		1394	1462	824		_
Stage 1	-	-	-	-	-	-		1048	1048	-		
Stage 2	-	-	-	-	-	-		346	414	-		
Critical Hdwy	-	-	-	4.12	-	-		6.41	6.51	6.21		
Critical Hdwy Stg 1	-	-	-	-	-	-		5.41	5.51	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		5.41	5.51	-		
Follow-up Hdwy	-	-	-	2.218	-	-		3.509	4.009	3.309		
Pot Cap-1 Maneuver	0	-	-	1145	-	0		~ 157	129	374		
Stage 1	0	-	-	-	-	0		339	306	-		
Stage 2	0	-	-	-	-	0		719	595	-		
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	1145	-	-		~ 142	0	374		
Mov Cap-2 Maneuver	-	-	-	-	-	-		~ 142	0	-		
Stage 1	-	-	-	-	-	-		339	0	-		
Stage 2	-	-	-	-	-	-		649	0	-		
Approach	EB			WB				SB				
HCM Control Delay, s	0			1				\$ 357.1				
HCM LOS								F				
Minor Lane/Major Mvn	nt	EBT	EBR	WBL	WBT SB	Ln1 S	BLn2					
Capacity (veh/h)		-	-	1145	-	142	374					
HCM Lane V/C Ratio		-	-	0.098	- 2.	326	0.96					
HCM Control Delay (s))	-	-	8.5	-\$ 66	68.5	70.8					
HCM Lane LOS	/	-	-	A	-	F	F					
HCM 95th %tile Q(veh	ı)	-	-	0.3	-	28	10.7					
Notes												
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s +:	Comp	outation Not	Defined *: Al	major	volume i	n platoon	

Mvmt Flow

124 461

0

Intersection												
Int Delay, s/veh	217.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑			4		٦	4				
Traffic Vol, veh/h	98	364	0	0	379	302	332	3	92	0	0	0
Future Vol, veh/h	98	364	0	0	379	302	332	3	92	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	e, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	0	0	0	2	2	2

420

4 116

0

0

0

0 480 382

Major/Minor	Major1		1	Major2		1	Minor1			
Conflicting Flow All	862	0	-	-	-	0	1380	1571	461	
Stage 1	-	-	-	-	-	-	709	709	-	
Stage 2	-	-	-	-	-	-	671	862	-	
Critical Hdwy	4.12	-	-	-	-	-	6.4	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.4	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	5.5	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.5	4	3.3	
Pot Cap-1 Maneuver	780	-	0	0	-	-	~ 161	112	605	
Stage 1	-	-	0	0	-	-	491	440	-	
Stage 2	-	-	0	0	-	-	512	375	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	780	-	-	-	-	-	~ 135	0	605	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 135	0	-	
Stage 1	-	-	-	-	-	-	~ 413	0	-	
Stage 2	-	-	-	-	-	-	512	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	2.2			0		\$	796.1			
HCM LOS							F			
Minor Lane/Major Mvr	nt l	NBLn11	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		135	605	780	-	-	-			
HCM Lane V/C Ratio		3.113	0.199	0.159	-	-	-			
HCM Control Delay (s) \$	1020.3	12.4	10.5	-	-	-			
HCM Lane LOS	, .	F	В	В	-	-	-			
HCM 95th %tile Q(veh	ו)	39.6	0.7	0.6	-	-	-			
Notes										
~: Volume exceeds ca	pacity	\$: De	elay exc	eeds 30)0s	+: Com	putatior	n Not De	efined	*: All major volume in platoon

	-	\mathbf{F}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	5	1
Traffic Volume (veh/h)	170	286	53	346	335	17
Future Volume (veh/h)	170	286	53	346	335	17
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	230	0	72	468	453	0
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, %	1	1	2	2	1	1
Cap, veh/h	503		198	810	778	
Arrive On Green	0.27	0.00	0.11	0.43	0.43	0.00
Sat Flow, veh/h	1885	1598	1781	1870	1795	1598
Grp Volume(v) veh/h	230	0	72	468	453	0
Grp Sat Flow(s) veh/h/ln	1885	1598	1781	1870	1795	1598
Q Serve(a, s) s	9.2	0.0	34	17.0	17.2	0.0
Cvcle Q Clear(q, c) s	9.2	0.0	3.4	17.0	17.2	0.0
Prop In Lane	0.2	1 00	1 00	11.0	1 00	1 00
Lane Grp Cap(c) veh/h	503	1.00	198	810	778	1.00
V/C Ratio(X)	0.46		0.36	0.58	0.58	
Avail Cap(c, a) veh/h	503		198	810	778	
HCM Platoon Batio	1 00	1 00	1 00	1 00	1 00	1 00
Instream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d) s/yeb	27.6	0.00	37.1	10.00	10.3	0.00
Incr Delay (d2), s/veh	3.0	0.0	5.1	3.0	3.0	0.0
Initial O Delay(d3) s/yeb	0.0	0.0	0.0	0.0	0.0	0.0
% ile Back Ω f Ω (50%) veh/ln	0.0 4 4	0.0	17	7.6	7.2	0.0
Unsig Movement Delay, s/vel	т. т h	0.0	1.7	1.0	1.2	0.0
InGro Delay(d) s/veb	30.5	0.0	122	22 3	22.5	0.0
	00.0 C	0.0	42.2 D	22.5	22.J C	0.0
Approach Val. uch/h	220	٨	U	E40	452	٨
Approach Vol, Ven/n	230	A		540	453	A
Approach Delay, s/ven	30.5			24.9	22.5	
Approach LOS	C			C	C	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		45.0		45.0	15.0	30.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		39.0		39.0	10.0	24.0
Max Q Clear Time (g c+11), s		19.0		19.2	5.4	11.2
Green Ext Time (p_c), s		6.4		1.8	0.0	2.1
Intersection Summary						
			2E 1			
			25.1			
HCIVI 6th LOS			C			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	٦	\mathbf{F}	1	1	Ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		1	ካካ	**	**	1		
Traffic Volume (vph)	0	274	198	1205	1754	10		
Future Volume (vph)	0	274	198	1205	1754	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0		
Lane Util, Factor		1.00	0.97	0.95	0.95	1.00		
Frpb. ped/bikes		0.99	1.00	1.00	1.00	1.00		
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00		
Frt		0.86	1.00	1.00	1.00	0.85		
Flt Protected		1.00	0.95	1.00	1.00	1.00		
Satd, Flow (prot)		1591	3099	3195	3406	1524		
Flt Permitted		1.00	0.95	1.00	1.00	1.00		
Satd. Flow (perm)		1591	3099	3195	3406	1524		
Peak-hour factor. PHF	0.94	0.94	0.94	0,94	0.94	0.94		
Adi, Flow (vph)	0	291	211	1282	1866	11		
RTOR Reduction (vph)	0	0	0	0	0	3		
Lane Group Flow (vph)	0	291	211	1282	1866	8		
Confl. Peds. (#/hr)		1						
Heavy Vehicles (%)	2%	2%	13%	13%	6%	6%		
Turn Type		Free	Prot	NA	NA	Perm		
Protected Phases		1100	1	Free	2			
Permitted Phases		Free			_	2		
Actuated Green, G (s)		100.0	12.1	100.0	74.9	74.9		
Effective Green, g (s)		100.0	12.1	100.0	74.9	74.9		
Actuated g/C Ratio		1.00	0.12	1.00	0.75	0.75		
Clearance Time (s)			6.0		7.0	7.0		
Vehicle Extension (s)			3.0		5.0	5.0		
Lane Gro Cap (vph)		1591	374	3195	2551	1141		
v/s Ratio Prot			0.07	0,40	c0.55			
v/s Ratio Perm		0,18				0.01		
v/c Ratio		0.18	0.56	0.40	0.73	0.01		
Uniform Delay, d1		0.0	41.5	0.0	7.0	3.2		
Progression Factor		1.00	0.53	1.00	0.37	0.05		
Incremental Delay, d2		0.3	1.6	0.3	0.9	0.0		
Delay (s)		0.3	23.4	0.3	3.4	0.2		
Level of Service		A	С	A	А	A		
Approach Delay (s)	0.3			3.6	3.4			
Approach LOS	A			A	А			
laters etter O								
			0.0	, .	014 0000			
HCM 2000 Control Delay	14 P		3.2	H	CM 2000	Level of Service	e	A
HCM 2000 Volume to Capac	city ratio		0./1	~				0
Actuated Cycle Length (s)			100.0	SI	um of losi	t time (s)	13	0
Intersection Capacity Utilizat	ION		13.0%	IC	U Level (OI SERVICE		U I
Analysis Period (min)			15					

c Critical Lane Group

	≯	→	$\mathbf{\hat{z}}$	•	+	*	1	t	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۲</u>		1				٦	ef 👘			•	1
Traffic Volume (vph)	276	0	615	0	0	0	428	1113	0	0	1321	232
Future Volume (vph)	276	0	615	0	0	0	428	1113	0	0	1321	232
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	1667			1673	1497
Flt Permitted	0.95		1.00				0.04	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				69	1667			1673	1497
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	297	0	661	0	0	0	460	1197	0	0	1420	249
RTOR Reduction (vph)	0	0	21	0	0	0	0	0	0	0	0	26
Lane Group Flow (vph)	297	0	640	0	0	0	460	1197	0	0	1420	223
Confl. Peds. (#/hr)							1					1
Confl. Bikes (#/hr)												1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		. 14					16			2	. 4
Permitted Phases			4				16					2
Actuated Green, G (s)	20.5		61.5				131.0	131.0			90.0	110.5
Effective Green, g (s)	20.5		61.5				131.0	131.0			90.0	110.5
Actuated g/C Ratio	0.12		0.37				0.80	0.80			0.55	0.67
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	218		546				372	1327			915	1064
v/s Ratio Prot	c0.17		c0.44				0.26	0.72			c0.85	0.03
v/s Ratio Perm							0.72					0.12
v/c Ratio	1.36		1.17				1.24	0.90			1.55	0.21
Uniform Delay, d1	72.0		51.5				60.5	12.1			37.2	10.3
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	189.8		95.9				127.6	8.8			253.8	0.1
Delay (s)	261.8		147.4				188.1	20.9			291.0	10.4
Level of Service	F		F				F	С			F	В
Approach Delay (s)		182.8			0.0			67.3			249.2	
Approach LOS		F			А			Е			F	
Intersection Summary												
HCM 2000 Control Delav			164.0	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	ty ratio		1.47									
Actuated Cycle Length (s)	,		164.5	S	um of lost	time (s)			19.5			
Intersection Capacity Utilization	on		122.7%	IC	U Level o	of Service)		Н			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1		***	44	
Traffic Volume (veh/h)	137	1118	0	1788	1477	0
Future Volume (veh/h)	137	1118	0	1788	1477	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	151	0	0	1965	1623	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	7	7	0	8	5	0
Cap, veh/h	217		0	3961	2826	0
Arrive On Green	0.07	0.00	0.00	0.81	0.81	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grp Volume(v), veh/h	151	0	0	1965	1623	0
Grp Sat Flow(s).veh/h/ln	1659	1522	0	1621	1735	0
Q Serve(q s), s	4.5	0.0	0.0	12.6	16.3	0.0
Cycle Q Clear(a c), s	4.5	0.0	0.0	12.6	16.3	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	217		0	3961	2826	0
V/C Ratio(X)	0.69		0.00	0.50	0.57	0.00
Avail Cap(c_a), veh/h	398		0	3961	2826	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.7	0.0	0.0	2.9	3.2	0.0
Incr Delay (d2) s/veh	4 0	0.0	0.0	0.4	0.9	0.0
Initial Q Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh/ln	1.9	0.0	0.0	21	31	0.0
Unsig Movement Delay s/ve	h	0.0	0.0		0.1	0.0
InGrn Delay(d) s/veh	49 7	0.0	0.0	33	4 1	0.0
	D	0.0	Δ	0.0 A	Δ	0.0 A
Approach Vol. veh/h	151	Δ		1965	1623	
Approach Delay, s/yeb	/0.7	Л		33	/ 1	
Approach LOS	-3.7 D			Δ	4.1	
	U			Л	Л	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	;	76.0		12.0		76.0
Max Q Clear Time (g_c+I1), s	3	18.3		6.5		14.6
Green Ext Time (p_c), s		38.0		0.2		46.6
Intersection Summary						
HCM 6th Ctrl Delay			5.5			
HCM 6th LOS			Δ			
			Л			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	€	*	t.	1	1	Ŧ
Movement V	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	11	441			***
Traffic Volume (veh/h)	666	602	930	0	0	1760
Future Volume (veh/h)	666	602	930	0	0	1760
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	•	1.00	1.00	•
Parking Bus. Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adi Sat Flow, veh/h/ln 1	1722	1722	1767	0	0	1841
Adi Flow Rate, veh/h	724	654	1011	0	0	1913
Peak Hour Factor (0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh %	12	12	0.02 Q	0.02	0.52	0.5Z
Can veh/h	972	785	3 2723	0	0	2837
Arrive On Groon	0.21	0.21	0.56	0 00	0.00	0.56
Anive On Green	0.31	0.31	0.00	0.00	0.00	0.00
Sat Flow, ven/n 3	5182	2569	5141	0	0	5356
Grp Volume(v), veh/h	724	654	1011	0	0	1913
Grp Sat Flow(s),veh/h/In1	1591	1284	1608	0	0	1675
Q Serve(g_s), s	20.5	23.7	11.5	0.0	0.0	26.8
Cycle Q Clear(g_c), s	20.5	23.7	11.5	0.0	0.0	26.8
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h	972	785	2723	0	0	2837
V/C Ratio(X)	0.74	0.83	0.37	0.00	0.00	0.67
Avail Cap(c_a), veh/h 1	1177	950	2723	0	0	2837
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Unstream Filter/I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) s/yeb	31.2	32 /	12.0	0.00	0.00	15 3
Iner Delay (d2) shoch	2.1	52.4	0.4	0.0	0.0	12.0
Initial O Delay (uz), S/Vell	2.1	0.0	0.4	0.0	0.0	1.0
Initial Q Delay(03),S/Ven	0.0	0.0	0.0	0.0	0.0	0.0
%IIE BackOfQ(50%),Veh/	δ. η	1.6	3.8	0.0	0.0	9.4
Unsig. Movement Delay,	s/veh	0- 0	40.4			10.0
LnGrp Delay(d),s/veh	33.3	37.8	12.4	0.0	0.0	16.6
LnGrp LOS	С	D	В	Α	A	В
Approach Vol, veh/h 1	1378		1011			1913
Approach Delay, s/veh	35.5		12.4			16.6
Approach LOS	D		В			В
		•				•
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc),	S	62.5		37.5		62.5
Change Period (Y+Rc), s	3	6.0		7.0		6.0
Max Green Setting (Gma	ax), s	50.0		37.0		50.0
Max Q Clear Time (g_c+l	l1), s	28.8		25.7		13.5
Green Ext Time (p_c), s		20.9		4.8		26.4
Intersection Summary						
HCM 6th Ctrl Delay			21.7			
HCM 6th LOS			<u> </u>			
			U			

* + + + + * * + * + + + + + +

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्र	1	٦	*††	1	<u> </u>	44Þ		
Traffic Volume (veh/h)	6	1	18	161	0	88	21	1320	199	116	1913	2	
Future Volume (veh/h)	6	1	18	161	0	88	21	1320	199	116	1913	2	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	۱	No			No			No			No		
Adj Sat Flow, veh/h/ln	1900	1900	1900	1796	1796	1796	1707	1707	1707	1826	1826	1826	
Adj Flow Rate, veh/h	6	1	19	173	0	95	23	1419	0	125	2057	2	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	0	7	7	7	13	13	13	5	5	5	
Cap, veh/h	44	27	72	189	0	364	38	2331		156	2913	3	
Arrive On Green	0.26	0.24	0.24	0.26	0.00	0.24	0.02	0.50	0.00	0.03	0.19	0.19	
Sat Flow, veh/h	0	111	301	487	0	1518	1626	4661	1447	1739	5143	5	
Grp Volume(v), veh/h	26	0	0	173	0	95	23	1419	0	125	1329	730	
Grp Sat Flow(s),veh/h/ln	411	0	0	487	0	1518	1626	1554	1447	1739	1662	1825	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.1	1.4	21.9	0.0	7.1	37.5	37.5	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.1	1.4	21.9	0.0	7.1	37.5	37.5	
Prop In Lane	0.23		0.73	1.00		1.00	1.00		1.00	1.00		0.00	
Lane Grp Cap(c), veh/h	151	0	0	199	0	364	38	2331		156	1882	1034	
V/C Ratio(X)	0.17	0.00	0.00	0.87	0.00	0.26	0.60	0.61		0.80	0.71	0.71	
Avail Cap(c_a), veh/h	151	0	0	199	0	364	98	2331		243	1882	1034	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.70	0.70	0.70	
Uniform Delay (d), s/veh	31.0	0.0	0.0	41.2	0.0	30.8	48.4	18.0	0.0	47.6	32.9	32.9	
Incr Delay (d2), s/veh	0.5	0.0	0.0	31.5	0.0	0.4	14.1	1.2	0.0	7.1	1.6	2.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	/ln0.5	0.0	0.0	5.9	0.0	1.9	0.7	7.4	0.0	3.5	16.9	18.9	
Unsig. Movement Delay,	s/veh												
LnGrp Delay(d),s/veh	31.5	0.0	0.0	72.7	0.0	31.2	62.4	19.1	0.0	54.7	34.4	35.7	
LnGrp LOS	С	A	A	E	A	С	E	В		D	С	D	
Approach Vol, veh/h		26			268			1442	А		2184		
Approach Delay, s/veh		31.5			58.0			19.8			36.0		
Approach LOS		С			E			В			D		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc),	s7.4	62.6		30.0	14.0	56.0		30.0					
Change Period (Y+Rc), s	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gma	ax6), G	53.0		24.0	14.0	45.0		24.0					
Max Q Clear Time (g_c+	113,45	39.5		28.0	9.1	23.9		28.0					
Green Ext Time (p_c), s	0.0	13.4		0.0	0.1	19.6		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			31.6										
HCM 6th LOS			С										
Timer - Assigned Phs Phs Duration (G+Y+Rc), Change Period (Y+Rc), s Max Green Setting (Gma Max Q Clear Time (g_c+ Green Ext Time (p_c), s Intersection Summary HCM 6th Ctrl Delay HCM 6th LOS	1 s7.4 s 5.0 ax6, 8 l 13,4s 0.0	2 62.6 6.0 53.0 39.5 13.4	31.6 C	4 30.0 6.0 24.0 28.0 0.0	5 14.0 5.0 14.0 9.1 0.1	6 56.0 45.0 23.9 19.6		8 30.0 6.0 24.0 28.0 0.0					

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	٭	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	388	229	181	1042	1570	387
Future Volume (veh/h)	388	229	181	1042	1570	387
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00	-		1.00
Parking Bus. Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No			No	No	
Adi Sat Flow, veh/h/ln	1781	1781	1678	1678	1826	1826
Adi Flow Rate. veh/h	422	249	197	1133	1707	421
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh %	8	8	15	15	5	5
Cap, veh/h	592	272	228	2199	1927	859
Arrive On Green	0.18	0.18	0.08	0.69	0.56	0.56
Sat Flow, veh/h	3291	1510	1598	3272	3561	1547
Grn Volume(v) veh/h	100	240	1030	1100	1707	101
Grp Sat Flow(a) yeh/h/h	422	249	1500	150/	1725	421 1547
	1040	1010	1090	1094	1730	1047
Q Serve(g_S), S	12.1	10.2	0.2	17.1	43.1	10.0
Cycle Q Clear(g_c), s	12.1	16.2	6.2	17.1	43.1	10.0
Prop In Lane	1.00	1.00	1.00		100-	1.00
Lane Grp Cap(c), veh/h	592	272	228	2199	1927	859
V/C Ratio(X)	0.71	0.92	0.86	0.52	0.89	0.49
Avail Cap(c_a), veh/h	592	272	317	2199	1927	859
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.92	0.92	1.00	1.00
Uniform Delay (d), s/vel	h 38.6	40.3	26.5	7.5	19.5	13.6
Incr Delay (d2), s/veh	4.0	33.4	14.9	0.8	6.4	2.0
Initial Q Delay(d3),s/veh	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel	h/lr5.1	8.4	3.4	4.9	16.9	5.7
Unsig. Movement Delay	, s/veh	1				
LnGrp Delay(d),s/veh	42.6	73.7	41.4	8.3	25.9	15.6
LnGrp LOS	D	E	D	A	С	В
Approach Vol. veh/h	671		_	1330	2128	
Approach Delay s/veh	54 1			13.2	23.9	
Approach I OS	D			R	20.0	
	U			U	U	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc)), \$ 3.5	62.5		24.0		76.0
Change Period (Y+Rc),	s 5.0	7.0		6.0		7.0
Max Green Setting (Gm	na 1x4,.G	50.0		18.0		69.0
Max Q Clear Time (g c	+118.2s	45.1		18.2		19.1
Green Ext Time (p c). s	s 0.3	4.9		0.0		38.0
Intersection Summary						
HCM 6th Ctrl Dolov			25.2			
			20.0			
			U			

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\$			el 🕹			ŧ	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1470	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1470	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	36	1652	0

Major/Minor		Minor1		Ν	1ajor1		N	Major2			
Conflicting Flow All		3248	3248	1524	-	0	0	1560	0	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		1724	1724	-	-	-	-	-	-	-	
Critical Hdwy		6.44	6.54	6.24	-	-	-	4.16	-	-	
Critical Hdwy Stg 1		5.44	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.44	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy		3.536	4.036	3.336	-	-	-	2.254	-	-	
Pot Cap-1 Maneuver		~ 10	9	144	0	-	-	413	-	0	
Stage 1		196	178	-	0	-	-	-	-	0	
Stage 2		156	142	-	0	-	-	-	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		0	0	144	-	-	-	413	-	-	
Mov Cap-2 Maneuver		0	0	-	-	-	-	-	-	-	
Stage 1		196	0	-	-	-	-	-	-	-	
Stage 2		0	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		37.5			0			0.3			
HCM LOS		E									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT							
Capacity (veh/h)	-	- 144	413	-							
HCM Lane V/C Ratio	-	- 0.234	0.087	-							
HCM Control Delay (s)	-	- 37.5	14.5	0							
HCM Lane LOS	-	- E	В	А							
HCM 95th %tile Q(veh)	-	- 0.9	0.3	-							
Notes											
~: Volume exceeds capacity	\$: De	lay exceeds 3	00s	+: Comp	outation	Not Defin	ed	*: All r	major vol	ume in	platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	→	$\mathbf{\hat{z}}$	4	+	•	٩.	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	۲	†	1	ኘ	†	1	٦	∱1 ≱	
Traffic Volume (veh/h)	244	373	413	475	239	78	413	592	231	97	518	113
Future Volume (veh/h)	244	373	413	475	239	78	413	592	231	97	518	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	419	0	534	269	0	464	665	0	109	582	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	338	557		212	724		501	906		223	695	151
Arrive On Green	0.33	0.33	0.00	0.04	0.39	0.00	0.26	0.54	0.00	0.25	0.25	0.25
Sat Flow, veh/h	1005	1693	1434	1753	1841	1560	1612	1693	1434	752	2833	617
Grp Volume(v), veh/h	274	419	0	534	269	0	464	665	0	109	356	353
Grp Sat Flow(s),veh/h/ln	1005	1693	1434	1753	1841	1560	1612	1693	1434	752	1735	1715
Q Serve(g_s), s	41.3	34.2	0.0	5.5	16.1	0.0	35.6	46.6	0.0	20.1	30.2	30.4
Cycle Q Clear(g_c), s	47.4	34.2	0.0	5.5	16.1	0.0	35.6	46.6	0.0	21.7	30.2	30.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.36
Lane Grp Cap(c), veh/h	338	557		212	724		501	906		223	425	420
V/C Ratio(X)	0.81	0.75		2.52	0.37		0.93	0.73		0.49	0.84	0.84
Avail Cap(c_a), veh/h	338	557		212	724		501	906		223	425	420
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	53.8	46.4	0.0	57.0	33.4	0.0	39.3	27.5	0.0	53.1	55.6	55.6
Incr Delay (d2), s/veh	18.8	9.1	0.0	698.5	1.5	0.0	25.6	5.2	0.0	7.5	17.5	18.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	12.1	15.8	0.0	47.0	7.7	0.0	14.8	19.6	0.0	4.3	15.2	15.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	72.6	55.5	0.0	755.5	34.8	0.0	65.0	32.8	0.0	60.5	73.0	73.6
LnGrp LOS	E	<u> </u>		F	C		E	C		E	<u> </u>	<u> </u>
Approach Vol, veh/h		693	A		803	A		1129	A		818	
Approach Delay, s/veh		62.2			514.1			46.0			71.6	
Approach LOS		E			F			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	45.0	44.0	10.0	56.0		89.0		66.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0		5.0				
Max Green Setting (Gmax), s	40.5	38.0	5.5	51.0		83.0		61.0				
Max Q Clear Time (g_c+l1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			164.5									
HCM 6th LOS			F									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्च	1		र्भ	1		4	
Traffic Vol, veh/h	23	2	6	2	1	2	29	715	3	1	734	30
Future Vol, veh/h	23	2	6	2	1	2	29	715	3	1	734	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	745	3	1	765	31

Major/Minor	Minor2		Ν	Minor1			Major1		Ν	1ajor2			
Conflicting Flow All	1591	1591	781	1592	1603	745	796	0	0	748	0	0	
Stage 1	783	783	-	805	805	-	-	-	-	-	-	-	
Stage 2	808	808	-	787	798	-	-	-	-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-	-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-	-	2.281	-	-	
Pot Cap-1 Maneuver	78	97	365	88	107	417	763	-	-	830	-	-	
Stage 1	358	377	-	379	398	-	-	-	-	-	-	-	
Stage 2	347	367	-	388	401	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	73	90	365	81	100	417	763	-	-	830	-	-	
Mov Cap-2 Maneuver	73	90	-	81	100	-	-	-	-	-	-	-	
Stage 1	334	376	-	354	371	-	-	-	-	-	-	-	
Stage 2	321	342	-	378	400	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	67.9	34.5	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	763	-	-	88	86	417	830	-	-
HCM Lane V/C Ratio	0.04	-	-	0.367	0.036	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	67.9	48.4	13.7	9.3	0	-
HCM Lane LOS	А	А	-	F	E	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-

276.8
F

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	et.		¥		
Traffic Vol, veh/h	6	737	284	6	375	487	
Future Vol, veh/h	6	737	284	6	375	487	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	2	2	3	3	0	0	
Mvmt Flow	7	847	326	7	431	560	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	283.6		29.3		354.3		
HCM LOS	F		D		F		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	44%
Vol Thru, %	99%	98%	0%
Vol Right, %	0%	2%	56%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	743	290	862
LT Vol	6	0	375
Through Vol	737	284	0
RT Vol	0	6	487
Lane Flow Rate	854	333	991
Geometry Grp	1	1	1
Degree of Util (X)	1.557	0.651	1.728
Departure Headway (Hd)	8.368	9.794	7.259
Convergence, Y/N	Yes	Yes	Yes
Сар	444	373	515
Service Time	6.368	7.794	5.259
HCM Lane V/C Ratio	1.923	0.893	1.924
HCM Control Delay	283.6	29.3	354.3
HCM Lane LOS	F	D	F
HCM 95th-tile Q	36.8	4.4	51.4

Intersection

Int Delay, s/veh	1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef –			↑	<u>۲</u>		
Traffic Vol, veh/h	1055	50	0	255	30	0)
Future Vol, veh/h	1055	50	0	255	30	0)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	;
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	84	84	84	84	84	84	ļ
Heavy Vehicles, %	2	2	3	3	2	2)
Mvmt Flow	1256	60	0	304	36	0)

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0 -	- 1590	-	
Stage 1	-		- 1286	-	
Stage 2	-		- 304	-	
Critical Hdwy	-		- 6.42	-	
Critical Hdwy Stg 1	-		- 5.42	-	
Critical Hdwy Stg 2	-		- 5.42	-	
Follow-up Hdwy	-		- 3.518	-	
Pot Cap-1 Maneuver	-	- 0	- 118	0	
Stage 1	-	- 0	- 259	0	
Stage 2	-	- 0	- 748	0	
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuver	-		- 118	-	
Mov Cap-2 Maneuver	-		- 118	-	
Stage 1	-		- 259	-	
Stage 2	-		- 748	-	
Annroach	FB	WR	NB		
HCM Control Delay	0	0	48.2		
HCM LOS	0	0			

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Canadity (yeh/h)	110			
Capacity (ven/n)	118	-	-	-
HCM Lane V/C Ratio	0.303	-	-	-
HCM Control Delay (s)	48.2	-	-	-
HCM Lane LOS	E	-	-	-
HCM 95th %tile Q(veh)	1.2	-	-	-

Intersection

Int Delay, s/veh	125.2						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	- ሽ	↑	4		- ¥		
Traffic Vol, veh/h	20	961	271	152	300	9	
Future Vol, veh/h	20	961	271	152	300	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	
Storage Length	50	-	-	-	0	-	
Veh in Median Storage	e, # -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	4	4	2	2	
Mvmt Flow	22	1045	295	165	326	10	

Major/Minor	Major1	Ν	lajor2	Minor2				
Conflicting Flow All	460	0	-	0 1467	378			
Stage 1	-	-	-	- 378	-			
Stage 2	-	-	-	- 1089	-			
Critical Hdwy	4.12	-	-	- 6.42	6.22			
Critical Hdwy Stg 1	-	-	-	- 5.42	-			
Critical Hdwy Stg 2	-	-	-	- 5.42	-			
Follow-up Hdwy	2.218	-	-	- 3.518	3.318			
Pot Cap-1 Maneuver	1101	-	-	- ~ 141	669			
Stage 1	-	-	-	- 693	-			
Stage 2	-	-	-	- ~ 323	-			
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	1101	-	-	- ~ 138	669			
Mov Cap-2 Maneuver	-	-	-	- ~ 138	-			
Stage 1	-	-	-	- 679	-			
Stage 2	-	-	-	- ~ 323	-			
Approach	EB		WB	SB				
HCM Control Delay, s	0.2		0	\$ 693.7				
HCM LOS	•		•	F				
				•				
	1		CDT		0014			
Minor Lane/Major Mvr	nt	EBL	ERI	WRI WRK	SBLN1			
Capacity (veh/h)		1101	-		141			
HCM Lane V/C Ratio		0.02	-		2.382			
HCM Control Delay (s	5)	8.3	-		693.7			
HCM Lane LOS	,	A	-		+			
HCM 95th %tile Q(ver	ר)	0.1	-		28.7			
Notes								
~: Volume exceeds ca	apacity	\$: Del	ay exc	ceeds 300s	+: Comp	outation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		el el		5	1					1	et F	
Traffic Vol, veh/h	0	863	414	141	291	0	0	0	0	286	2	144
Future Vol, veh/h	0	863	414	141	291	0	0	0	0	286	2	144
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	3	3	3	0	0	0	2	2	2
Mvmt Flow	0	918	440	150	310	0	0	0	0	304	2	153

Major/Minor	Major1		Ν	/lajor2			Minor2			
Conflicting Flow All	-	0	0	1358	0)	1748	1968	310	
Stage 1	-	-	-	-	-	-	610	610	-	
Stage 2	-	-	-	-	-	-	1138	1358	-	
Critical Hdwy	-	-	-	4.13	-	-	6.42	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.42	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.42	5.52	-	
Follow-up Hdwy	-	-	-	2.227	-	-	3.518	4.018	3.318	
Pot Cap-1 Maneuver	0	-	-	503	-)	~ 95	63	730	
Stage 1	0	-	-	-	-)	542	485	-	
Stage 2	0	-	-	-	-)	306	217	-	
Platoon blocked, %		-	-		-					
Mov Cap-1 Maneuver	-	-	-	503	-	-	~ 67	0	730	
Mov Cap-2 Maneuver	· <u>-</u>	-	-	-	-	-	~ 67	0	-	
Stage 1	-	-	-	-	-	-	542	0	-	
Stage 2	-	-	-	-	-	-	~ 215	0	-	
Approach	EB			WB			SB			
HCM Control Delay, s	0			5			\$ 1141.5			
HCM LOS							F			
Minor Lane/Major Mvr	nt	EBT	EBR	WBL	WBT SBLn	1 SBLn2				
Capacity (veh/h)		-	-	503	- 6	7 730				
HCM Lane V/C Ratio		-	-	0.298	- 4.54	1 0.213				
HCM Control Delay (s	;)	-	-	15.2	\$ 1718. ⁴	11.3				
HCM Lane LOS		-	-	С	-	= B				
HCM 95th %tile Q(veh	ר)	-	-	1.2	- 33.	1 0.8				
Notes										
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 30)0s +: Co	mputatior	Not Defined *: All	l major v	volume i	in platoon

67

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	↑			4		<u>۲</u>	4				
Traffic Vol, veh/h	362	752	0	0	348	545	73	3	46	0	0	0
Future Vol, veh/h	362	752	0	0	348	545	73	3	46	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	1	1	1	0	0	0
Mvmt Flow	398	826	0	0	382	599	80	3	51	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	981	0	-	-	-	0	2304	2603	826	
Stage 1	-	-	-	-	-	-	1622	1622	-	
Stage 2	-	-	-	-	-	-	682	981	-	
Critical Hdwy	4.12	-	-	-	-	-	6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.51	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.509	4.009	3.309	
Pot Cap-1 Maneuver	704	-	0	0	-	-	~ 43	25	373	
Stage 1	-	-	0	0	-	-	178	162	-	
Stage 2	-	-	0	0	-	-	504	329	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	704	-	-	-	-	-	~ 19	0	373	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 19	0	-	
Stage 1	-	-	-	-	-	-	~ 77	0	-	
Stage 2	-	-	-	-	-	-	504	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	5.4			0		\$	1119.8			
HCM LOS							F			
Minor Lane/Maior Myn	nt	NBI n1	NBI n2	FBI	FRT	WBT	WBR			
Canacity (veh/h)		19	373	704			-			
HCM Lane V/C Ratio		4 222	0 144	0 565	_	-	_			
HCM Control Delay (s)) \$	1860.5	16.3	16.5	-	-	-			
HCM Lane LOS) Ψ	F	C.01	C	-	-	-			
HCM 95th %tile Q(veh	1)	10.5	0.5	3.6	-	-	-			
	.,			0.0						
Notes		A =								
~: Volume exceeds capacity \$: Delay exceeds 300)0s	+: Com	putatio	n Not D	efined	*: All major volume in platoon

	-	\mathbf{r}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	۲	•	۲	1
Traffic Volume (veh/h)	390	400	35	315	619	38
Future Volume (veh/h)	390	400	35	315	619	38
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1885	1885
Adj Flow Rate, veh/h	443	0	40	358	703	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	3	3	3	3	1	1
Cap, veh/h	536		98	742	838	
Arrive On Green	0.29	0.00	0.06	0.40	0.47	0.00
Sat Flow, veh/h	1856	1572	1767	1856	1795	1598
Grp Volume(v), veh/h	443	0	40	358	703	0
Grp Sat Flow(s),veh/h/ln	1856	1572	1767	1856	1795	1598
Q Serve(g s), s	20.1	0.0	2.0	12.9	30.9	0.0
Cycle Q Clear(a c). s	20.1	0.0	2.0	12.9	30.9	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h	536		98	742	838	
V/C Ratio(X)	0.83		0.41	0.48	0.84	
Avail Cap(c a), veh/h	536		98	742	838	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	29.9	0.0	41.1	20.1	21.0	0.0
Incr Delay (d2), s/veh	13.6	0.0	12.1	2.2	9.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/In	10.6	0.0	1.2	5.7	13.8	0.0
Unsig. Movement Delay, s/vel	h					
LnGrp Delav(d).s/veh	43.5	0.0	53.1	22.3	30.9	0.0
LnGrp LOS	D		D	C	С	
Approach Vol. veh/h	443	А		398	703	А
Approach Delay s/yeh	43.5	73		25.4	30.9	
Approach LOS	D			С	C	
Timer - Assianed Phs		2		4	5	6
Phs Duration (G+Y+Rc) s		42.0		48.0	10.0	32.0
Change Period (Y+Rc) s		6.0			5.0	6.0
Max Green Setting (Gmax) s		36.0		42.0	5.0	26.0
Max O Clear Time $(q, c+l1)$ s		14.9		32.9	4.0	20.0
Green Ext Time (n_c) s		4.8		23	0.0	1.8
		-1.0		2.0	0.0	1.0
Intersection Summary			22.4			
HCM 6th Ctrl Delay			33.1			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	→	$\mathbf{\hat{z}}$	4	+	•	•	Ť	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.		1				۲.	∱1 ≽			^	*
Traffic Volume (vph)	169	0	287	0	0	0	544	1198	0	0	1066	207
Future Volume (vph)	169	0	287	0	0	0	544	1198	0	0	1066	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	0.95			0.95	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	3374			2905	1392
Flt Permitted	0.95		1.00				0.10	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				169	3374			2905	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	199	0	338	0	0	0	640	1409	0	0	1254	244
RTOR Reduction (vph)	0	0	21	0	0	0	0	0	0	0	0	41
Lane Group Flow (vph)	199	0	317	0	0	0	640	1409	0	0	1254	203
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	10.5		45.6				76.5	76.5			41.4	51.9
Effective Green, g (s)	10.5		45.6				76.5	76.5			41.4	51.9
Actuated g/C Ratio	0.10		0.46				0.76	0.76			0.41	0.52
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	170		619				563	2581			1202	812
v/s Ratio Prot	c0.12		0.23				c0.32	0.42			0.43	0.03
v/s Ratio Perm							c0.54					0.12
v/c Ratio	1.17		0.51				1.14	0.55			1.04	0.25
Uniform Delay, d1	44.8		19.3				26.4	4.7			29.3	13.3
Progression Factor	1.00		1.00				0.67	0.19			1.00	1.00
Incremental Delay, d2	122.4		0.7				75.6	0.2			38.0	0.2
Delay (s)	167.1		20.0				93.2	1.1			67.3	13.5
Level of Service	F		С				F	А			E	В
Approach Delay (s)		74.5			0.0			29.9			58.5	
Approach LOS		E			A			С			E	
Intersection Summary	tersection Summary											
HCM 2000 Control Delay			46.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.20									
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)			19.5			
Intersection Capacity Utiliza	ation		83.1%	IC	CU Level of	of Service)		E			
Analysis Period (min)			15									

c Critical Lane Group

Intersection

Int Delay, s/veh	4.6							
Movement	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations	- ¥		_ ≜ î≽			- 11		
Traffic Vol, veh/h	15	14	1359	8	0	1259		
Future Vol, veh/h	15	14	1359	8	0	1259		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Stop	Stop	Free	Free	Free	Free		
RT Channelized	-	None	-	None	-	None		
Storage Length	0	-	-	-	-	-		
Veh in Median Storage	e, # 0	-	0	-	-	0		
Grade, %	0	-	0	-	-	0		
Peak Hour Factor	78	78	78	78	78	78		
Heavy Vehicles, %	20	20	9	9	17	17		
Mvmt Flow	19	18	1742	10	0	1614		

Major/Minor	Minor1	Μ	lajor1	Ma	ijor2					
Conflicting Flow All	2554	876	0	0	-	-				
Stage 1	1747	-	-	-	-	-				
Stage 2	807	-	-	-	-	-				
Critical Hdwy	7.2	7.3	-	-	-	-				
Critical Hdwy Stg 1	6.2	-	-	-	-	-				
Critical Hdwy Stg 2	6.2	-	-	-	-	-				
Follow-up Hdwy	3.7	3.5	-	-	-	-				
Pot Cap-1 Maneuver	~ 17	259	-	-	0	-				
Stage 1	103	-	-	-	0	-				
Stage 2	357	-	-	-	0	-				
Platoon blocked, %			-	-		-				
Mov Cap-1 Maneuver	· ~ 17	259	-	-	-	-				
Mov Cap-2 Maneuver	~ 17	-	-	-	-	-				
Stage 1	103	-	-	-	-	-				
Stage 2	357	-	-	-	-	-				
Approach	WB		NB		SB					
HCM Control Delay	\$ 420.3		0		0					
HCM LOS	F		•							

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBT	
Capacity (veh/h)	-	- 31	-	
HCM Lane V/C Ratio	-	- 1.199	-	
HCM Control Delay (s)	-	-\$ 420.3	-	
HCM Lane LOS	-	- F	-	
HCM 95th %tile Q(veh)	-	- 4.1	-	
Notes				
1000				

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

	۶	-	\mathbf{F}	∢	-	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳.	^	1	ሻሻ	↑	1	ሻ	↑	1	۳.	↑ 1≽	
Traffic Volume (veh/h)	57	190	538	187	149	41	409	520	444	71	534	78
Future Volume (veh/h)	57	190	538	187	149	41	409	520	444	71	534	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	238	0	234	186	0	511	650	0	89	668	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	90	375		310	274		549	1099		292	816	120
Arrive On Green	0.05	0.11	0.00	0.09	0.15	0.00	0.24	0.61	0.00	0.32	0.32	0.32
Sat Flow, veh/h	1711	3413	1522	3428	1856	1572	1711	1796	1522	645	2567	376
Grp Volume(v), veh/h	71	238	0	234	186	0	511	650	0	89	381	385
Grp Sat Flow(s),veh/h/ln	1711	1706	1522	1714	1856	1572	1711	1796	1522	645	1467	1477
Q Serve(g_s), s	3.4	5.5	0.0	5.5	7.8	0.0	17.1	18.2	0.0	9.0	19.8	19.8
Cycle Q Clear(g_c), s	3.4	5.5	0.0	5.5	7.8	0.0	17.1	18.2	0.0	9.0	19.8	19.8
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	90	375		310	274		549	1099		292	466	470
V/C Ratio(X)	0.78	0.63		0.75	0.68		0.93	0.59		0.30	0.82	0.82
Avail Cap(c_a), veh/h	213	909		311	431		606	1197		306	498	501
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.6	35.1	0.0	36.7	33.3	0.0	18.3	9.7	0.0	22.3	25.9	26.0
Incr Delay (d2), s/veh	13.7	2.5	0.0	10.0	4.2	0.0	20.2	1.9	0.0	2.1	13.4	13.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.7	2.3	0.0	2.7	3.7	0.0	8.8	6.2	0.0	1.5	8.2	8.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	52.3	37.7	0.0	46.7	37.5	0.0	38.5	11.6	0.0	24.4	39.3	39.4
LnGrp LOS	D	D		D	D		D	В		С	D	D
Approach Vol, veh/h		309	А		420	А		1161	А		855	
Approach Delay, s/veh		41.0			42.6			23.4			37.8	
Approach LOS		D			D			С			D	
Timer - Assigned Phs	1	2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s	24.3	32.3	12.0	14.1		56.5	8.9	17.2				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0	4.5	5.0				
Max Green Setting (Gmax), s	22.5	28.0	7.5	22.0		55.0	10.3	19.2				
Max Q Clear Time (g_c+I1), s	19.1	21.8	7.5	7.5		20.2	5.4	9.8				
Green Ext Time (p_c), s	0.6	4.4	0.0	1.6		12.4	0.0	0.8				
Intersection Summary												
HCM 6th Ctrl Delay			32.8									
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

	≯	-	-	•	1	<			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	5	*	*	1	5	1			
Traffic Volume (veh/h)	487	193	381	365	0	0			
Future Volume (veh/h)	487	193	381	365	0	0			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No	No		No				
Adj Sat Flow, veh/h/ln	1811	1811	1870	1870	1870	1870			
Adj Flow Rate, veh/h	573	227	448	429	0	0			
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85			
Percent Heavy Veh, %	6	6	2	2	2	2			
Cap, veh/h	776	1500	752	637	5	5			
Arrive On Green	0.25	0.83	0.40	0.40	0.00	0.00			
Sat Flow, veh/h	1725	1811	1870	1585	1781	1585			
Grp Volume(v), veh/h	573	227	448	429	0	0			_
Grp Sat Flow(s),veh/h/ln	1725	1811	1870	1585	1781	1585			
Q Serve(g_s), s	5.0	0.9	6.6	7.8	0.0	0.0			
Cycle Q Clear(g_c), s	5.0	0.9	6.6	7.8	0.0	0.0			
Prop In Lane	1.00			1.00	1.00	1.00			
Lane Grp Cap(c), veh/h	776	1500	752	637	5	5			
V/C Ratio(X)	0.74	0.15	0.60	0.67	0.00	0.00			
Avail Cap(c_a), veh/h	1964	3573	1604	1360	968	861			
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00			
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	0.00			
Uniform Delay (d), s/veh	5.0	0.6	8.2	8.6	0.0	0.0			
Incr Delay (d2), s/veh	1.4	0.0	0.8	1.2	0.0	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/In	0.3	0.0	1.8	1.8	0.0	0.0			
Unsig. Movement Delay, s/veh	ו								
LnGrp Delay(d),s/veh	6.4	0.6	9.0	9.8	0.0	0.0			
LnGrp LOS	A	A	A	A	A	A			
Approach Vol, veh/h		800	877		0				
Approach Delay, s/veh		4.7	9.4		0.0				
Approach LOS		А	А						
Timer - Assigned Phs				4		6	7	8	
Phs Duration (G+Y+Rc), s				35.0		0.0	14.9	20.1	
Change Period (Y+Rc), s				6.0		6.0	6.0	6.0	
Max Green Setting (Gmax), s				69.0		19.0	33.0	30.0	
Max Q Clear Time (g_c+l1), s				2.9		0.0	7.0	9.8	
Green Ext Time (p_c), s				1.4		0.0	1.9	4.3	
Intersection Summarv									
HCM 6th Ctrl Delay			72						
HCM 6th LOS			Α						

	≯	-	+	•	1	1	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	5	+	1.		¥.	-	
Traffic Volume (veh/h)	5	178	742	157	136	19	
Future Volume (veh/h)	5	178	742	157	136	19	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1811	1811	1856	1856	1900	1900	
Adj Flow Rate, veh/h	7	237	989	209	181	25	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	
Percent Heavy Veh, %	6	6	3	3	0	0	
Cap, veh/h	393	1348	1014	214	208	29	
Arrive On Green	0.01	0.74	1.00	1.00	0.14	0.14	
Sat Flow, veh/h	1725	1811	1485	314	1535	212	
Grp Volume(v), veh/h	7	237	0	1198	207	0	
Grp Sat Flow(s).veh/h/ln	1725	1811	0	1799	1755	0	
Q Serve(q s), s	0.1	3.8	0.0	0.0	11.6	0.0	
Cvcle Q Clear(q c), s	0.1	3.8	0.0	0.0	11.6	0.0	
Prop In Lane	1.00			0.17	0.87	0.12	
Lane Grp Cap(c), veh/h	393	1348	0	1228	238	0	
V/C Ratio(X)	0.02	0.18	0.00	0.98	0.87	0.00	
Avail Cap(c a), veh/h	458	1348	0	1228	246	0	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	0.69	1.00	0.00	
Uniform Delay (d), s/veh	4.3	3.8	0.0	0.0	42.4	0.0	
Incr Delay (d2), s/veh	0.0	0.3	0.0	16.3	26.4	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	0.0	1.2	0.0	5.6	6.7	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	4.3	4.0	0.0	16.3	68.8	0.0	
LnGrp LOS	А	А	А	В	Е	А	
Approach Vol, veh/h		244	1198		207		
Approach Delay, s/veh		4.0	16.3		68.8		
Approach LOS		A	В		E		
Timer - Assigned Phs				4		6	7 8
Phs Duration (G+Y+Rc), s				80.5		19.5	6.2 74.3
Change Period (Y+Rc), s				6.0		6.0	5.5 6.0
Max Green Setting (Gmax), s				74.0		14.0	4.5 64.0
Max Q Clear Time (q c+l1). s				5.8		13.6	2.1 2.0
Green Ext Time (p_c), s				1.5		0.0	0.0 17.8
Intersection Summary							
HCM 6th Ctrl Delay			21.1				
HCM 6th LOS			С				

	۶	-	\mathbf{F}	•	-	*	1	1	۲	1	Ŧ	∢_	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		↑	1	5	↑					۲	4Î		
Traffic Volume (veh/h)	0	211	103	85	626	0	0	0	0	251	1	272	
Future Volume (veh/h)	0	211	103	85	626	0	0	0	0	251	1	272	
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Work Zone On Approach	h	No			No						No		
Adj Sat Flow, veh/h/ln	0	1841	1841	1870	1870	0				1885	1885	1885	
Adj Flow Rate, veh/h	0	278	136	112	824	0				330	1	358	
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76				0.76	0.76	0.76	
Percent Heavy Veh, %	0	4	4	2	2	0				1	1	1	
Cap, veh/h	0	993	841	626	1197	0				431	1	383	
Arrive On Green	0.00	0.72	0.72	0.09	1.00	0.00				0.24	0.24	0.24	
Sat Flow, veh/h	0	1841	1560	1781	1870	0				1795	4	1594	
Grp Volume(v), veh/h	0	278	136	112	824	0				330	0	359	
Grp Sat Flow(s),veh/h/ln	0	1841	1560	1781	1870	0				1795	0	1598	
Q Serve(g_s), s	0.0	5.3	2.8	2.7	0.0	0.0				17.1	0.0	22.0	
Cycle Q Clear(g_c), s	0.0	5.3	2.8	2.7	0.0	0.0				17.1	0.0	22.0	
Prop In Lane	0.00		1.00	1.00		0.00				1.00	-	1.00	
Lane Grp Cap(c), veh/h	0	993	841	626	1197	0				431	0	384	
V/C Ratio(X)	0.00	0.28	0.16	0.18	0.69	0.00				0.77	0.00	0.94	
Avail Cap(c_a), veh/h	0	993	841	696	1197	0				431	0	384	
HCM Platoon Ratio	1.00	1.33	1.33	2.00	2.00	1.00				1.00	1.00	1.00	
Upstream Filter(I)	0.00	0.87	0.87	0.71	0.71	0.00				1.00	0.00	1.00	
Uniform Delay (d), s/ven	0.0	1.3	6.9	8.2	0.0	0.0				35.4	0.0	37.2	
Incr Delay (d2), s/ven	0.0	0.0	0.4	0.1	2.3	0.0				8.0	0.0	30.1	
Initial Q Delay(03),s/ven	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
Movement Delay	nu.u	2.0	0.9	0.9	0.0	0.0				0.3	0.0	11.0	
InGro Delay(d) chuch		70	73	83	22	0.0				131	0.0	67.4	
	0.0 A	1.9 A	7.5 A	0.5 A	2.3 ^	0.0 A				43.4 D	0.0 A	07.4 E	
Approach Vol. voh/h	A	A 11	A	A	920	A				U	690	E	
Approach Vol, ven/n		414			30						009 55 0		
Approach LOS		۱.۱			3.U A						00.9 E		
		A			A						E		
Timer - Assigned Phs			3	4		6		8					
Phs Duration (G+Y+Rc),	, S		10.1	59.9		30.0		70.0					
Change Period (Y+Rc),	S		5.5	6.0		6.0		6.0					
Max Green Setting (Gma	ax), s		8.5	50.0		24.0		64.0					
Max Q Clear Time (g_c+	-I1), s		4.7	7.3		24.0		2.0					
Green Ext Time (p_c), s			0.1	2.2		0.0		7.5					
Intersection Summary													
HCM 6th Ctrl Delay			21.8										
HCM 6th LOS			С										

, ,	۶	→	\mathbf{F}	•	+	*	1	t	۲	\$	ŧ	∢	
Movement E	BL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	ň					1	۲.	4Î					
Traffic Volume (veh/h)	98	364	0	0	379	302	332	3	92	0	0	0	
Future Volume (veh/h)	98	364	0	0	379	302	332	3	92	0	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT) 1.	.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus, Adj 1.	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach		No			No			No					
Adj Sat Flow, veh/h/ln 18	870	1870	0	0	1870	1870	1900	1900	1900				
Adj Flow Rate, veh/h 1	124	461	0	0	480	382	420	4	116				
Peak Hour Factor 0.	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79				
Percent Heavy Veh, %	2	2	0	0	2	2	0	0	0				
Cap, veh/h 4	457	1158	0	0	767	650	472	14	408				
Arrive On Green 0.	0.30	1.00	0.00	0.00	0.41	0.41	0.26	0.26	0.26				
Sat Flow, veh/h 17	781	1870	0	0	1870	1585	1810	54	1564				
Grp Volume(v), veh/h 1	124	461	0	0	480	382	420	0	120				
Grp Sat Flow(s),veh/h/ln17	781	1870	0	0	1870	1585	1810	0	1618				
Q Serve(g_s), s	0.0	0.0	0.0	0.0	20.4	18.7	22.3	0.0	5.9				
Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	20.4	18.7	22.3	0.0	5.9				
Prop In Lane 1.	.00	4450	0.00	0.00	-0-	1.00	1.00	•	0.97				
Lane Grp Cap(c), veh/h 4	457	1158	0	0	/6/	650	4/2	0	422				
V/C Ratio(X) 0.	1.27	0.40	0.00	0.00	0.63	0.59	0.89	0.00	0.28				
Avail Cap(c_a), ven/n 4	457	1158	1 00	1 00	/0/	650	6/0	1 00	599				
HUNI Platoon Ratio 2.	.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I) 0.	1.70	0.78	0.00	0.00	1.00	1.00	1.00	0.00	1.00				
Uniform Delay (d), s/ven 2	0.2	0.0	0.0	0.0	20.4	22.9	30.0 10.5	0.0	29.0				
Inci Delay (uz), s/ven	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4				
%ile BackOfO(50%) veh/lr	0.0 n1 0.	0.0	0.0	0.0	0.0	7.4	11.0	0.0	23				
Unsig Movement Delay	aluoh	0.5	0.0	0.0	3.4	1.4	11.0	0.0	2.0				
InGrn Delay(d) s/yeb 2	1 9	0.8	0.0	0.0	273	26.8	46 1	0.0	29.9				
LinGro LOS	. 1.3 С	0.0 A	0.0 A	0.0 A	27.5 C	20.0 C	-0.1 D	0.0 A	20.0 C				
Approach Vol. veh/h	<u> </u>	585			862	0	0	5/0	<u> </u>				
Approach Delay, s/yeh		53			27.1			42 5					
Approach LOS		0.0 A			27.1 C			-2.5 D					
		~			U								
Timer - Assigned Phs		2		4			7	8					
Phs Duration (G+Y+Rc), s	5	32.1		67.9			20.9	47.0					
Change Period (Y+Rc), s	,	6.0		6.0			6.0	* 6					
Max Green Setting (Gmax	(), S	37.0		51.0			4.5	* 41					
Max Q Clear Time (g_c+l1	I), S	24.3		2.0			2.0	22.4					
Green Ext Time (p_c), s		1./		3.1			0.1	4.2					
Intersection Summary													
HCM 6th Ctrl Delay			24.8										
HCM 6th LOS			С										

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	۶	-	\mathbf{F}	∢	+	*	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň		1				ሻ	≜t ≽			44	1
Traffic Volume (vph)	276	0	615	0	0	0	428	1113	0	0	1321	232
Future Volume (vph)	276	0	615	0	0	0	428	1113	0	0	1321	232
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	0.95			0.95	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	3167			3179	1498
Flt Permitted	0.95		1.00				0.08	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				131	3167			3179	1498
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	297	0	661	0	0	0	460	1197	0	0	1420	249
RTOR Reduction (vph)	0	0	22	0	0	0	0	0	0	0	0	47
Lane Group Flow (vph)	297	0	639	0	0	0	460	1197	0	0	1420	202
Confl. Peds. (#/hr)							1					1
Confl. Bikes (#/hr)												1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	13.5		42.5				73.5	73.5			44.5	58.0
Effective Green, g (s)	13.5		42.5				73.5	73.5			44.5	58.0
Actuated g/C Ratio	0.14		0.42				0.74	0.74			0.44	0.58
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grn Can (vnh)	236		621				422	2327			1414	966
v/s Ratio Prot	c0 17		c0 44				0.24	0.38			0.45	0.03
v/s Ratio Perm	00.11		00.11				c0.56	0.00			0.10	0.11
v/c Ratio	1.26		1.03				1.09	0.51			1.00	0.21
Uniform Delay, d1	43.2		28.8				30.0	5.6			27.8	10.0
Progression Factor	1.00		1.00				0.65	0.30			1.00	1.00
Incremental Delay, d2	145.9		43.8				67.2	0.2			25.0	0.1
Delay (s)	189.2		72.6				86.6	1.9			52.7	10.2
Level of Service	F		F				F	A			D	B
Approach Delay (s)	•	108.7	-		0.0		•	25.4			46.4	-
Approach LOS		F			A			C			D	
		•						•			2	
Intersection Summary												
HCM 2000 Control Delay			52.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		1.20									
Actuated Cycle Length (s)			100.0	S	um of lost	time (s)			19.5			
Intersection Capacity Utilizat	tion		89.7%	IC	U Level o	of Service	e		E			
Analysis Period (min)			15									

c Critical Lane Group

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\$			∱î ≽			1	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	0	1470	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	0	1470	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	0	1652	0

Major/Minor		Minor1		N	lajor1		Ма	ajor2			
Conflicting Flow All		2350	3176	780	-	0	0	-	-	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		826	1652	-	-	-	-	-	-	-	
Critical Hdwy		6.88	6.58	6.98	-	-	-	-	-	-	
Critical Hdwy Stg 1		5.88	5.58	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.88	5.58	-	-	-	-	-	-	-	
Follow-up Hdwy		3.54	4.04	3.34	-	-	-	-	-	-	
Pot Cap-1 Maneuver		29	10	334	0	-	-	0	-	0	
Stage 1		163	175	-	0	-	-	0	-	0	
Stage 2		385	151	-	0	-	-	0	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		29	0	334	-	-	-	-	-	-	
Mov Cap-2 Maneuver		29	0	-	-	-	-	-	-	-	
Stage 1		163	0	-	-	-	-	-	-	-	
Stage 2		385	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		227.8			0			0			
HCM LOS		F									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBT								
Capacity (veh/h)	-	- 42	-								
HCM Lane V/C Ratio	-	- 0.803	-								
HCM Control Delay (s)	-	- 227.8	-								

F

3.1

-

-

-

-

-

_

HCM Lane LOS

HCM 95th %tile Q(veh)

	۶	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳.	^	1	ሻሻ	↑	1	ሻ	↑	1	۳.	↑ 1≽	
Traffic Volume (veh/h)	244	387	399	475	239	78	413	592	231	115	500	113
Future Volume (veh/h)	244	387	399	475	239	78	413	592	231	115	500	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	435	0	534	269	0	464	665	0	129	562	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	299	535		576	276		468	862		216	672	151
Arrive On Green	0.19	0.17	0.00	0.17	0.15	0.00	0.23	0.51	0.00	0.24	0.24	0.24
Sat Flow, veh/h	1612	3216	1434	3401	1841	1560	1612	1693	1434	752	2813	634
Grp Volume(v), veh/h	274	435	0	534	269	0	464	665	0	129	346	343
Grp Sat Flow(s),veh/h/ln	1612	1608	1434	1700	1841	1560	1612	1693	1434	752	1735	1712
Q Serve(g_s), s	16.7	13.0	0.0	15.5	14.5	0.0	22.1	31.7	0.0	16.7	18.9	19.1
Cycle Q Clear(g_c), s	16.7	13.0	0.0	15.5	14.5	0.0	22.1	31.7	0.0	21.4	18.9	19.1
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.37
Lane Grp Cap(c), veh/h	299	535		576	276		468	862		216	414	409
V/C Ratio(X)	0.92	0.81		0.93	0.97		0.99	0.77		0.60	0.83	0.84
Avail Cap(c_a), veh/h	299	535	4.00	5/6	2/6	4.00	468	864	4.00	217	41/	411
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	39.9	40.1	0.0	40.9	42.2	0.0	24.2	19.8	0.0	39.4	36.1	36.2
Incr Delay (d2), s/veh	31.6	9.8	0.0	21.5	46.6	0.0	39.2	6.0	0.0	9.6	16.6	17.2
Initial Q Delay(d3),s/ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%IIe BackOfQ(50%),ven/In	9.0	5.8	0.0	8.2	10.2	0.0	12.8	12.7	0.0	3.0	9.7	9.7
Unsig. Movement Delay, s/ven	74 5	40.0	0.0	<u> </u>	00.0	0.0	CD 4	05.0	0.0	40.0	F0 7	FD 4
LnGrp Delay(d),s/ven	/1.5	49.9	0.0	62.3 E	88.9	0.0	63.4 F	25.8	0.0	49.0	52.7	53.4
	E	700	۸	E	F	٨	E		۸	D	D 010	D
Approach vol, ven/n		709	A		803	A		1129	A		818	
Approach Delay, s/ven		58.3			71.2			41.3			52.4	
Approach LOS		E			E			D			D	
Timer - Assigned Phs	1	2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s	27.0	29.9	21.4	21.6		56.9	23.0	20.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0	4.5	5.0				
Max Green Setting (Gmax), s	22.5	24.0	16.9	16.6		51.0	18.5	15.0				
Max Q Clear Time (g_c+l1), s	24.1	23.4	17.5	15.0		33.7	18.7	16.5				
Green Ext Time (p_c), s	0.0	0.4	0.0	0.5		6.6	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			54.3									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			्र	1		्र	1		4	
Traffic Vol, veh/h	23	2	6	2	1	2	29	715	3	1	734	30
Future Vol, veh/h	23	2	6	2	1	2	29	715	3	1	734	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	745	3	1	765	31

Major/Minor	Minor2		N	Ainor1			Major1		N	lajor2			
Conflicting Flow All	1591	1591	781	1592	1603	745	796	0	0	748	0	0	
Stage 1	783	783	-	805	805	-	-	-	-	-	-	-	
Stage 2	808	808	-	787	798	-	-	-	-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-	-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-	-	2.281	-	-	
Pot Cap-1 Maneuver	78	97	365	88	107	417	763	-	-	830	-	-	
Stage 1	358	377	-	379	398	-	-	-	-	-	-	-	
Stage 2	347	367	-	388	401	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	73	90	365	81	100	417	763	-	-	830	-	-	
Mov Cap-2 Maneuver	73	90	-	81	100	-	-	-	-	-	-	-	
Stage 1	334	376	-	354	371	-	-	-	-	-	-	-	
Stage 2	321	342	-	378	400	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	67.9	34.5	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	763	-	-	88	86	417	830	-	-
HCM Lane V/C Ratio	0.04	-	-	0.367	0.036	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	67.9	48.4	13.7	9.3	0	-
HCM Lane LOS	А	А	-	F	Е	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-
	≯	-	-	•	1	∢			
------------------------------	------	------	------	------	------	------	----------	--	
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	5	+	ţ,		¥	-			
Traffic Volume (veh/h)	20	961	271	152	300	9			
Future Volume (veh/h)	20	961	271	152	300	9			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No	No		No				
Adj Sat Flow, veh/h/ln	1870	1870	1841	1841	1900	1900			
Adj Flow Rate, veh/h	22	1045	295	165	326	10			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	2	2	4	4	0	0			
Cap, veh/h	610	1291	684	382	326	10			
Arrive On Green	0.02	0.69	0.82	0.82	0.19	0.19			
Sat Flow, veh/h	1781	1870	1109	620	1717	53			
Grp Volume(v), veh/h	22	1045	0	460	337	0			
Grp Sat Flow(s).veh/h/ln	1781	1870	0	1729	1775	0			
Q Serve(g s), s	0.4	39.2	0.0	7.4	19.0	0.0			
Cvcle Q Clear(g c), s	0.4	39.2	0.0	7.4	19.0	0.0			
Prop In Lane	1.00			0.36	0.97	0.03			
Lane Grp Cap(c), veh/h	610	1291	0	1066	337	0			
V/C Ratio(X)	0.04	0.81	0.00	0.43	1.00	0.00			
Avail Cap(c a), veh/h	658	1291	0	1066	337	0			
HCM Platoon Ratio	1.00	1.00	1.33	1.33	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.98	1.00	0.00			
Uniform Delay (d), s/veh	6.5	10.9	0.0	4.1	40.5	0.0			
Incr Delay (d2), s/veh	0.0	5.6	0.0	1.2	48.8	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.1	15.0	0.0	2.2	12.7	0.0			
Unsig. Movement Delay, s/veh									
LnGrp Delay(d).s/veh	6.5	16.5	0.0	5.4	89.3	0.0			
LnGrp LOS	A	В	A	A	F	А			
Approach Vol. veh/h		1067	460		337				
Approach Delay, s/veh		16.3	5.4		89.3				
Approach LOS		B	A		F				
Timer - Assigned Phs				4		6	7 8		
Phs Duration (G+Y+Rc), s				75.0		25.0	7.3 67.7		
Change Period (Y+Rc), s				6.0		6.0	5.5 6.0		
Max Green Setting (Gmax) s				69.0		19.0	4.5 59.0		
Max Q Clear Time (g c+11), s				41.2		21.0	2.4 9.4		
Green Ext Time (p_c), s				10.0		0.0	0.0 3.3		
Intersection Summary									
HCM 6th Ctrl Delay			26.8						
HCM 6th LOS			С						

Movement EBL EBR WBR WBT WBR NBL NBR SBL SBL SBR Lane Configurations 1<
Lane Configurations Image: Configurations <
Traffic Volume (veh/h) 0 863 414 141 291 0 0 0 286 2 144 Future Volume (veh/h) 0 863 414 141 291 0 0 0 0 286 2 144 Initial Q (Db), veh 0
Future Volume (veh/h) 0 863 414 141 291 0 0 0 286 2 144 Initial Q (Db), veh 0 <
Initial Q (Qb), veh 0
Ped-Bike Adj(A_pbT) 1.00 0.98 1.00 </td
Parking Bus, Adj 1.00 1.01
Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 0 1870 1870 1856 1856 0 1870 1870 1870 Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94
Adj Sat Flow, veh/h/ln 0 1870 1870 1856 1856 0 1870 1870 1870 Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94
Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94 0.91 0.10 0.0
Peak Hour Factor 0.94 0.1 0.1 0.1
Percent Heavy Veh, % 0 2 2 3 3 0 2 2 2 Cap, veh/h 0 1096 910 385 1273 0 346 4 304 Arrive On Green 0.00 1.00 0.09 1.00 0.00 0.19 0.19 0.19 Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1866 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.00 365 1273 0 346 0 385 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I)<
Cap, veh/h 0 1096 910 385 1273 0 346 4 304 Arrive On Green 0.00 1.00 1.00 0.09 1.00 0.00 0.19 0.155 Gr Volume(v), veh/h 0 155 0 0.10 1.0
Arrive On Green 0.00 1.00 1.00 0.09 1.00 0.00 0.19 0.19 0.19 Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 0.4 0.0 0.0 1.00 0.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.08 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410
Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1558 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 1.00 1.00 0.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 8.4 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00
Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1558 Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 1.00 1.00 0.00 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avaii Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platcon Ratio 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Grp Sat Flow(s),veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d2), s/veh 0.0 3.2 0.7
Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.00 99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 1.66 0.0 8.7 Prop In Lane 0.00 1.00 0.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.90 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.1 1.72 0.0 1.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 1.72 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 Unsig: Movement Delay, s/veh 1.0 0.2
Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 3.5
Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 </td
Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 0.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/ln0.0 1.0 0.2 1.1 0.1 0.0 8.8 0.0 3.5 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 LnGrp DOS A D
Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 <
Initial Q Delay(d3),s/veh 0.0 <t< td=""></t<>
%ile BackOfQ(50%),veh/In0.0 1.0 0.2 1.1 0.1 0.0 8.8 0.0 3.5 Unsig. Movement Delay, s/veh
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 LnGrp LOS A A A A A A D Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
LnGrp Delay(d),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 LnGrp LOS A A A A A A A D Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A A D Timer - Assigned Phs 3 4 6 8
LnGrp LOS A B D A A A A A A A A A A A A A D D A
Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
Approach LOS A A D Timer - Assigned Phs 3 4 6 8 Phe Duration (C) V: Po) = 10.0 64.6 25.4 74.6
Timer - Assigned Phs 3 4 6 8 Pho Duration (C) V(Po) and the second sec
Pris Duration (G+Y+RC), S 10.0 04.0 25.4 74.0
Change Period (Y+Rc), s 5.5 6.0 6.0 6.0
Max Green Setting (Gmax), s 4.5 55.0 23.0 65.0
Max Q Clear Time (g c+l1), s 5.4 2.0 18.6 2.0
Green Ext Time (p c), s 0.0 11.9 0.8 2.0
UCM 6th Ctrl Dolov 12.0

	۶	-	\mathbf{F}	•	-	*	1	1	1	1	Ŧ	∢	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲.				•	1	<u> </u>	ef -					
Traffic Volume (veh/h)	362	752	0	0	348	545	73	3	46	0	0	0	
Future Volume (veh/h)	362	752	0	0	348	545	73	3	46	0	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach	h	No			No			No					
Adj Sat Flow, veh/h/ln	1870	1870	0	0	1870	1870	1885	1885	1885				
Adj Flow Rate, veh/h	398	826	0	0	382	599	80	3	51				
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91				
Percent Heavy Veh, %	2	2	0	0	2	2	1	1	1				
Cap, veh/h	518	1571	0	0	1384	1173	72	4	61				
Arrive On Green	0.08	1.00	0.00	0.00	0.74	0.74	0.04	0.04	0.04				
Sat Flow, veh/h	1781	1870	0	0	1870	1585	1795	90	1522				
Grp Volume(v), veh/h	398	826	0	0	382	599	80	0	54				
Grp Sat Flow(s),veh/h/In	1781	1870	0	0	1870	1585	1795	0	1611				
Q Serve(g_s), s	0.0	0.0	0.0	0.0	6.7	15.8	4.0	0.0	3.3				
Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	6.7	15.8	4.0	0.0	3.3				
Prop In Lane	1.00		0.00	0.00		1.00	1.00		0.94				
Lane Grp Cap(c), veh/h	518	1571	0	0	1384	1173	72	0	64				
V/C Ratio(X)	0.77	0.53	0.00	0.00	0.28	0.51	1.11	0.00	0.84				
Avail Cap(c_a), veh/h	527	1571	0	0	1384	1173	72	0	64				
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I)	0.37	0.37	0.00	0.00	1.00	1.00	1.00	0.00	1.00				
Uniform Delay (d), s/veh	13.5	0.0	0.0	0.0	4.2	5.4	48.0	0.0	47.7				
Incr Delay (d2), s/veh	2.6	0.5	0.0	0.0	0.5	1.6	140.6	0.0	59.3				
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh/ln6.5 0.2				0.0	2.2	4.5	4.6	0.0	2.4				
Unsig. Movement Delay	, s/veh	1											
LnGrp Delay(d),s/veh	16.0	0.5	0.0	0.0	4.7	7.0	188.6	0.0	107.0				
LnGrp LOS	В	A	A	A	A	A	F	A	F				
Approach Vol, veh/h		1224			981			134					
Approach Delay, s/veh		5.5			6.1			155.7					
Approach LOS		А			А			F					
Timer - Assigned Phs		2		4			7	8					
Phs Duration (G+Y+Rc)	, S	10.0		90.0			10.0	80.0					
Change Period (Y+Rc),	S	6.0		6.0			6.0	* 6					
Max Green Setting (Gm	ax), s	4.0		84.0			4.5	* 74					
Max Q Clear Time (g_c+	⊦l1), s	6.0		2.0			2.0	17.8					
Green Ext Time (p_c), s		0.0		7.5			0.3	5.3					
Intersection Summary													
HCM 6th Ctrl Delay			14.4										
HCM 6th LOS			В										

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Bureau of Engraving and Printing LBG

14. **APPENDIX F: SAMPLE SIZE**

Existing AM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE				
Desired Confidence Level 95%				
Sample Standard Deviation	8.80909			
Number of Samples	10			

USE TO TEST C.I. OF SAMPLES				
Desired Confidence Level 95%				
Sample Standard Deviation	8.80909			
Number of Samples	10			

95% Confidence Interval	14.9591
Percent Error	4.4%

Mean	339.6
95% Confidence Interval	14.9591

Existing PM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE			
Desired Confidence Level	95%		
Sample Standard Deviation	44.612		
Number of Samples	48		

95% Confidence Interval	29.8198
Percent Error	5.0%

USE TO TEST C.I. OF SAMPLES				
Desired Confidence Level	95%			
Sample Standard Deviation	44.612			
Number of Samples	10			

Mean	600.3
95% Confidence Interval	75.7579

No Action Alternative AM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE				
Desired Confidence Level 95%				
Sample Standard Deviation	57.7312			
Number of Samples	50			

95% Confidence Interval	37.7584	
Percent Error	5.6%	

USE TO TEST C.I. OF SAMPLES		
Desired Confidence Level	95%	
Sample Standard Deviation	57.7312	
Number of Samples	10	

Mean	671
95% Confidence Interval	98.0362

No Action Alternative AM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE		
Desired Confidence Level	95%	
Sample Standard Deviation	59.0312	
Number of Samples	36	

USE TO TEST C.I. OF SAMPLES		
Desired Confidence Level	95%	
Sample Standard Deviation	59.0312	
Number of Samples	10	

925.3

100.244

95% Confidence Interval	46.0831	Mean
Percent Error	5.0%	95% Confidence Interval

Action Alternative AM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE	
Desired Confidence Level	95%
Sample Standard Deviation	41.9339
Number of Samples	18

USE TO TEST C.I. OF SAMPLES		
Desired Confidence Level	95%	
Sample Standard Deviation	41.9339	
Number of Samples	10	

95% Confidence Interval	48.5904
Percent Error	4.9%

Mean	1001.7
95% Confidence Interval	71.2101

Action Alternative PM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE		
Desired Confidence Level 95%		
Sample Standard Deviation	61.1996	
Number of Samples	18	

95% Confidence Interval	70.9142
Percent Error	5.0%

USE TO TEST C.I. OF SAMPLES			
Desired Confidence Level	95%		
Sample Standard Deviation	61.1996		
Number of Samples	10		

Mean	1424.5
95% Confidence Interval	103.926

Action Alternative with Mitigation AM Peak Hour Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE			
Desired Confidence Level	95%		
Sample Standard Deviation	31.7133		
Number of Samples	26		

95% Confidence Interval	29.6621
Percent Error	4.9%

USE TO TEST C.I. OF SAMPLES		
Desired Confidence Level	95%	
Sample Standard Deviation	31.7133	
Number of Samples	10	

Mean	605.8	
95% Confidence Interval	53.8539	

Action Alternative with Mitigation PM Peak Hour Simulations Required Sample Size Summary

USE TO FIND REQUIRED SAMPLE SIZE		
Desired Confidence Level	95%	
Sample Standard Deviation	47.0867	
Number of Samples	26	

USE TO TEST C.I. OF SAMPLES		
Desired Confidence Level	95%	
Sample Standard Deviation	47.0867	
Number of Samples	10	

95% Confidence Interval	44.0412	Mear
Percent Error	4.9%	95% (

	••	000.0
<u>'</u>	Mean	890.6
6	95% Confidence Interval	79.9602

15. APPENDIX G: CALIBRATION REPORT

TABLE OF CONTENTS

Tra	ansMo	deler™ and SimTraffic™ Validation and Calibration	iv
Α	Intro	duction	1
в	Tran	sModeler™ Model	1
	B1	Vehicle Volumes	1
	B2	Vehicle Classification	2
С	Tran	sModeler™ Validation Process	2
	C1	Simulation Observation	3
	C2	Simulated Vehicle Volumes versus Actual Vehicle Volumes	3
	C3	TransModeler™ Calibration Process	5
	C4	Adjustment to Link Speeds	6
D	SimT	Fraffic™ Model	6
	D1	Vehicle Volumes	6
Е	SimT	Fraffic™ Validation Process	6
	E1	Simulation Observation	6
	E2	Simulated Vehicle Volumes versus Actual Vehicle Volumes	7
F	SimT	Fraffic™ Calibration Process	10
G	Refe	rences	11
	Tra A B C D E F G	TransModAIntroBTranB1B2CTranC1C2C3C4DSimE1E2FSimGReference	TransModeler™ and SimTraffic™ Validation and Calibration A Introduction B TransModeler™ Model B1 Vehicle Volumes B2 Vehicle Classification C TransModeler™ Validation Process C1 Simulation Observation C2 Simulated Vehicle Volumes versus Actual Vehicle Volumes C3 TransModeler™ Calibration Process C4 Adjustment to Link Speeds D1 Vehicle Volumes E1 Simulation Observation E2 Simulation Process E4 Adjustment to Link Speeds D1 Vehicle Volumes E3 Simulation Process E4 Simulation Process E5 SimTraffic™ Model D1 Vehicle Volumes E1 Simulation Observation E2 Simulated Vehicle Volumes versus Actual Vehicle Volumes E5 SimTraffic™ Calibration Process E6 References

List of Figures

Figure 1: TransModeler™ Modeled Study Area	2
Figure 2: TransModeler™ Approach-based Validation Test Results	4
Figure 3: TransModeler™ Approach-based Validation Test Results	5
Figure 4: SimTraffic™ Approach-based Validation Test Results	8
Figure 5: SimTraffic™ Validation Test Summary	10

This page intentionally left blank.

TransModeler[™] and SimTraffic[™] Validation and Calibration

A Introduction

This Traffic Impact Study (TIS) used TransModeler[™] Traffic Simulation Software (TransModeler[™]) to analyze results for the Entry Control Facility (ECF) (i.e., gate results) and SimTraffic[™] to provide queueing analysis. The project team (A/E) validated and calibrated both TransModeler[™] and SimTraffic[™] to model the existing conditions. The validation and calibration process involved creating a model of the existing roadway study area network, validating how well a simulation compared to the actual operation, and adjusting or calibrating the model until the simulation closely resembled the network.

This appendix provides the details for developing the existing network, validating the results, and calibrating the model.

B TransModeler[™] Model

The project team (A/E) coded the Bureau of Engraving and Printing (BEP) vehicle study area, focused on the Powder Mill corridor between Soil Conservation Road and Edmonston Road, into TransModeler™ to include the intersections and adjacent roadway segments along the following roadways: Edmonston Road, Sunnyside Avenue, Powder Mill Road, Poultry Road, Research Road, Springfield Road, the ramps connecting the Baltimore-Washington Parkway to Powder Mill Road, and Soil Conservation Road. The Kenilworth Avenue corridor (Capital Beltway to Cherrywood Lane) was not included because the intersections along Edmonston Road at Sunnyside Avenue and Powder Mill Road meter all traffic onto Powder Mill Road. Figure 1 shows the modeled study area.

TransModeler[™] is capable of modeling key roadway elements such as the number of lanes, lane width, speed, length of turning lanes, type of pavement striping (solid line, dashed line, barrier), channelized right-turn lanes matched to the actual curve radius, lane assignments through an intersection by lane, and traffic signal timings by lane group (left, through, or right). In addition, TransModeler[™] can model an ECF by lane and any other special roadway design to reflect the future condition as accurately as possible.

The TIS used two methods to model vehicle volumes: (1) hourly vehicle volumes obtained through the existing condition data collection counts, and (2) vehicle classification counts along Edmonston Road.

B1 Vehicle Volumes

The project team (A/E) entered existing condition hourly vehicle volume counts for each intersection in the model to provide a complete network of vehicle trips through the study area. Because vehicle trips occur from an origin to a destination, TransModeler[™] develops a specific origin and destination by vehicle to match the number of vehicle trips per hour coded into the model by lane group. Depending on the network complexity, converting lane group volumes to origin-destination pairs can result in modeled vehicle volumes that are different from the actual volumes and thus can require calibration or adjustments to correct the imbalance.

Figure 4-13 (intersection turning movement volumes) in Data Collection and Development of the Peak Hour section of the *Transportation Study for the Bureau of Engraving and Printing* (Transportation Study) show the hourly volumes entered into the model.

Figure 1: TransModeler™ Modeled Study Area

B2 Vehicle Classification

Included in the vehicle volumes are trucks, buses, passenger vehicles, small trucks, and motorcycles. Each of these vehicle types has a different length and thus covers a different amount of roadway space. A typical full-size tractor trailer is 53-feet long, while a typical passenger vehicle is less than 25-feet long. The vehicle mix can affect traffic operations, especially if the roadway contains a high volume of larger vehicles. Each vehicle type also has a different acceleration rate from a stopped position, and some take longer to reach the speed limit than others, which also affects the traffic operations.

The project team (A/E) used the vehicle classification counts to develop the appropriate split between cars, and pick-up trucks/SUVs, and trucks. TransModeler[™] allows the TIS to break out the passenger vehicles into three categories, high, middle, and low performance passenger cars, to better simulate acceleration and deceleration speeds. Based on the vehicle classification count, approximately 80 percent of vehicles traveling along Edmonston Road were passenger vehicles. Following the software's default split among the three passenger vehicle classes, the total passenger vehicle volumes were distributed among three categories: 14 percent of the passenger vehicle volume was assigned to high performance, 53 percent of the passenger vehicle volume was assigned to middle performance, and 13 percent of the passenger vehicle volume was assigned to low performance, for a total of 80 percent. The remaining 20 percent of volume was assigned to pick-up trucks/SUVs (15 percent) and small trucks (5 percent) based on the vehicle classification counts.

C TransModeler[™] Validation Process

Once the network was completed by entering or coding the hourly vehicle volumes using turning movement files, coding traffic signals timings to match the existing conditions, and coding lane geometry to match the existing conditions, the project team (A/E) performed the validation process. The validation process included visually observing the simulations and comparing the simulated vehicle-turning movement volumes to the actual coded vehicle-turning movement volumes.

C1 Simulation Observation

The project team (A/E) ran simulations to determine if the vehicle operations in the model seemed reasonable based on site visit observations. Any unusual operation issues were quickly determined and addressed by fixing coding errors such as lane assignments at intersections or traffic signal timings. The observations also provided the team with an opportunity to flag and correct other minor coding errors.

C2 Simulated Vehicle Volumes versus Actual Vehicle Volumes

Prior to conducting the volume tests, the project team (A/E) ran the simulation 10 times to develop the minimum number of runs to be statistically accurate within plus or minus 3 percent or better at the 95th percentile confidence interval. The AM peak hour relied on 10 total simulation runs for an accuracy of plus or minus 0.7 percent at the 95th percentile confidence interval. Following the simulation runs, the project team (A/E) extracted the simulated vehicle-turning movement volumes based on an average of the results from the total number of simulations. The project team (A/E) than compared the statistically accurate results to the actual turning movement volumes coded to perform each of the validation tests.

The next step in the validation process included comparing the simulated turning movement volumes by intersection approach and by intersection as a whole to actual vehicle volumes. Based on the Federal Highway Administration's (FHWA) *Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software*, the project team (A/E) performed three validation tests to determine the accuracy of the simulation results when compared to the Existing Condition (FHWA 2004). The first test compared the TransModeler™ simulation approach volumes at all intersections to the Existing Condition volumes for all approaches. If more than 85 percent of the approaches had less than a 15 percent difference, then the model passed the first validation test. The second test compared the TransModeler™ simulation volumes to the Existing Condition overall intersection volumes. If more than 85 percent of the approaches had less than a 15 percent difference in overall intersection volumes. If more than 85 percent of the intersection volumes to the Existing Condition overall intersection volumes. If more than 85 percent of the second validation test. The third test compared the sum of all TransModeler™ simulation approach intersection volumes to the sum of all Existing Condition approach intersection volumes. If the difference between volume sums was less than 5 percent, the model passed the third validation test.

According to the results of the validation tests, the Existing Condition model passed all three tests. The approach-based test scored 100 percent, meaning that 100 percent of intersection approaches in the study area had less than a 15 percent difference between the simulation and Existing Condition volumes. The intersection-based test scored 100 percent, meaning that 100 percent of the intersections had less than a 15 percent difference in overall intersection volume. The approach volume summation scored no higher than 1.1 percent, meaning that the overall difference between intersection volume sums was less than 1.1 percent. Figure 2 contains the validation test results for each intersection, and Figure 3 contains the validation test result summary.

			AM Peak	Hour	
#	Intersection	Existing Volume Vehicles	Simulated Volume Vehicles	Difference	Less than 15%
6	MD 201 (Edmonston Road) & Su	ınnyside Ave	nue (Signaliz	ed)	
	EB (Sunnyside Rd)	285	282	-1.1%	Pass
	NB (MD 201)	995	985	-1.0%	Pass
	SB (MD 201)	1,005	980	-2.5%	Pass
	Overall	2,285	2,247	-1.7%	Pass
7	MD 201 (Edmonston Road) & Be	eaver Dam Ro	oad (TWSC)		
	WB (Beaver Dam Rd)	25	25	0.0%	Pass
	NB (MD 201)	768	761	-0.9%	Pass
	SB (MD 201)	1,012	1,001	-1.1%	Pass
	Overall	1,805	1,787	-1.0%	Pass
8	MD 201 (Edmonston Road) & P	owder Mill R	oad (Signaliz	ed)	
	EB (Powder Mill Rd)	611	609	-0.3%	Pass
	WB (Powder Mill Rd)	275	302	9.8%	Pass
	NB (MD 201)	773	757	-2.1%	Pass
	SB (MD 201)	535	526	-1.7%	Pass
	Overall	2,194	2,194	0.0%	Pass
10	Powder Mill Road & Poultry Roa	d (AWSC)	-		
	EB (Powder Mill Rd)	146	142	-2.7%	Pass
	WB (Powder Mill Rd)	280	267	-4.6%	Pass
	SB (Poultry Rd)	0	0	0.0%	Pass
	Overall	426	409	-4.0%	Pass
11	Powder Mill Road & Research R	oad (TWSC)	-		
	EB (Powder Mill Rd)	144	143	-0.7%	Pass
	WB (Powder Mill Rd)	266	263	-1.1%	Pass
	NB (Research Rd)	17	17	0.0%	Pass
	Overall	427	423	-0.9%	Pass
12	Powder Mill Road & Springfield	Road (TWSC)			
	EB (Powder Mill Rd)	155	151	-2.6%	Pass
	WB (Powder Mill Rd)	415	412	-0.7%	Pass
	SB (Springfield Rd)	138	137	-0.7%	Pass
	Overall	708	700	-1.1%	Pass
13	Powder Mill Road & BW Parkwa	y SB Ramps	(TWSC)		
	EB (Powder Mill Rd)	272	268	-1.5%	Pass
	WB (Powder Mill Rd)	352	349	-0.9%	Pass
	SB (BW Parkway Off-ramp)	362	359	-0.8%	Pass
	Overall	986	976	-1.0%	Pass

Figure 2: TransModeler™ Approach-based Validation Test Results

			AM Peak	Hour	
#	Intersection	Existing Volume	Simulated Volume	Difference	Less than
		Vehicles	Vehicles		15%
14	Powder Mill Road & BW Parkwa	y NB Ramps	(TWSC)		
	EB (Powder Mill Rd)	405	402	-0.7%	Pass
	WB (Powder Mill Rd)	567	561	-1.1%	Pass
	NB (BW Parkway Off-ramp)	138	137	-0.7%	Pass
	Overall	1,110	1,100	-0.9%	Pass
15	Powder Mill Road & Soil Conser	vation Road	(Signalized)		
	EB (Powder Mill Rd)	405	401	-1.0%	Pass
	WB (Powder Mill Rd)	317	313	-1.3%	Pass
	NB (Soil Conservation Rd)	312	311	-0.3%	Pass
	Overall	1,034	1,025	-0.9%	Pass

Figure 2: TransModeler™ Approach-based Validation Test Results (continued)

Notes:

AWSC = All-way STOP-Controlled intersection

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

TWSC = Two-way STOP-Controlled unsignalized intersection

Red cells denote intersections or approaches where simulated versus actual volumes were greater than a 15% difference.

	Ο.	Tuene Medelen TM	A	h h a a a al		Tast	D = = 4 =
FIGUIPE	.51	I ransivioneier III	Approac	n-nasen	validation	IASTR	20011170
iguic	ν.	i i uliomoucici	Approuo	n buscu	v unuulon	10001	Counto

	Facilities	Percent of Total	Check
	A	M Peak Hour	
Number of passing approaches	28		
Number of approaches	28	100%	Pass
Number of passing intersections	9		
Number of intersections	9	100%	Pass
Simulation approach volume sum	10,975		
Actual approach volume sum	10,861	1.0%	Pass

C3 TransModeler[™] Calibration Process

The original results calculated in the validation process resulted in a few failing intersection validation checks where the actual volumes and simulated volumes differed by a wide margin (Figure 3 indicates the results after completing the calibration process); therefore, TransModeler™ required calibration to achieve the established goals from the FHWA report. Calibration consisted of adjusting the link speeds along Edmonston Road.

C4 Adjustment to Link Speeds

The initial link speeds for the AM model reflected a speed limit that was slower than the actual posted speed limit to reflect nighttime conditions during the early morning hours. The AM peak hour link speeds were increased to the posted speed limit. This change corrected the simulation to reflect that current users of the study area roadways are comfortable driving at the posted speed during nighttime conditions.

D SimTraffic[™] Model

The project team (A/E) coded the BEP vehicle study area into Synchro^M, the static traffic analysis software that feeds the traffic model into SimTraffic^M and contains the same intersections as the transportation study area. Figure 1 illustrates the modeled study area.

Synchro[™] is capable of modeling key roadway elements such as the number of lanes, lane width, speed, length of turning lanes, channelized right-turn lanes, lane assignments through an intersection, and traffic signal timings by lane group (left, through, or right). Each element was coded to reflect the existing condition as accurately as possible. SimTraffic[™] simulates the values coded in Synchro[™] to assess the queuing and corridor travel times.

D1 Vehicle Volumes

The project team (A/E) entered the Existing Condition hourly vehicle volume counts for each intersection in the model to provide a complete network of vehicle trips through the study area. SimTraffic[™] simulates the traffic conditions based on loading the model at each intersection. If the volume is balanced between each intersection, SimTraffic[™] simulates a consistent traffic flow between intersections. If there is an imbalance of volumes between intersections, SimTraffic[™] adds or removes vehicles to adjust for the imbalance. The vehicle volumes for this study were closely balanced between intersections to provide a consistent vehicle flow because driveways do not exist between intersections, thus most vehicles entering the road from the previous intersections should enter the next downstream intersection.

In addition to vehicle volumes, the project team (A/E) entered the pedestrian and bicycle flows and truck percentages by intersection approach. Figure 4-14 (intersection turning movement volumes) in Data Collection and Development of the Peak Hour section of the Transportation Study show the hourly volumes added to the model.

To provide 15-minute peak flows, the project team (A/E) entered peak hour factors, the primary time period for calculating the traffic operations, into the Synchro[™] model. Peak hour factors provide a ratio of 15-minute to hourly flows to compare the percentage of the actual hourly flow to four times the highest 15-minute flow. An intersection with a uniform flow for each 15-minute interval has a peak hour factor of 1.0; an intersection with a 15-minute flow that is much higher than the other 15-minute flows can result in a peak hour factor below 0.92, a typical peak hour factor. The study area intersections had peak hour factors between 0.93 and 0.97, representing similar volumes for each 15-minute period.

E SimTraffic[™] Validation Process

Once the network was completed, the next step was validation. The validation process included visually observing the simulations and comparing the simulated vehicle-turning movement volumes to the actual coded vehicle-turning movement volumes.

E1 Simulation Observation

The project team (A/E) ran simulations to determine if the vehicle operations in the model seemed reasonable based on site visit observations. Any unusual operation issues were quickly determined and addressed by fixing coding errors such as lane assignments at intersections or traffic signal timings. The observations also allowed the project team (A/E) the opportunity to flag and correct other minor coding errors.

E2 Simulated Vehicle Volumes versus Actual Vehicle Volumes

Prior to conducting the volume tests, the project team (A/E) ran the simulation 10 times to develop the minimum number of runs to be statistically accurate within plus or minus 5 percent or better at the 95th percentile confidence interval. The AM peak hour relied on 43 total simulation runs, and the PM peak hour relied on 47 total simulation runs for an accuracy of plus or minus 5 percent at the 95th percentile confidence interval. Following the simulation runs, the team extracted the simulated vehicle-turning movement volumes based on an average of the results from the total number of simulations. They then compared the statistically accurate results to the actual turning movement volumes coded to perform each of the validation tests.

According to the results of the validation tests, the Existing Condition model passed all three tests. The approach-based test scored higher than 97 percent, meaning that more than 97 percent of the intersection approaches in the study area had less than a 15 percent difference between the simulation and Existing Condition volumes. The intersection-based test scored 100 percent, meaning that 100 percent of the intersections had less than a 15 percent difference in overall intersection volume. Finally, the sum of the approach volume scored no higher than 1.2 percent, meaning that the overall difference between intersection volume sums was less than 1.2 percent. Figure 4 contains the validation test results for each intersection, and Figure 5 contains the validation test result summaries.

# Intersection Existing Volume Simulated Volume Difference Difference Less than 15% Existing Volume Simulated Volume Difference Existing than 15% Simulated Volume Difference Existing than 15% Simulated Volume Difference Existing than 15% 1 MD 201 (Kenilworth Avenue) & I-95 SB Off-ramp (Signalizer) 0.06% Pass 1,000 995 -0.5% Pass 8 (I-95 Off-ramp) 830 835 0.6% Pass 1,454 1,432 -1.5% Pass NB (MD 201) 770 760 -1.3% Pass 3,521 3,471 -1.4% Pass 2 MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalizer) -0.3% Pass 1,012 1,014 0.2% Pass 8 MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalizer) -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 1,012 1,014 0.2% Pass NB (MD 201) 2,433 <t< th=""><th></th><th></th><th colspan="7">AM Peak Hour PM Peak Hour</th><th></th></t<>			AM Peak Hour PM Peak Hour							
Vehicles 15% Vehicles 159 1 MD 201 (Kenilworth Avenue) & I-95 SB Off-ramp (Signalized) EB (I-95 Off-ramp) 830 835 0.6% Pass 1,000 995 -0.5% Pass NB (MD 201) 881 879 -0.2% Pass 1,454 1,432 -1.5% Pass SB (MD 201) 770 760 -1.3% Pass 1,067 1,044 -2.2% Pass Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass WB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass SB (MD 201) 864 846 -2.1% Pass 2,874 2,851 -0.8% Pass	#	Intersection	Existing Volume	Simulated Volume	Difference	Less than	Existing Volume	Simulated Volume	Difference	Less than
MD 201 (Kenilworth Avenue) & I-95 SB Off-ramp (Signalized) EB (I-95 Off-ramp) 830 835 0.6% Pass 1,000 995 -0.5% Pass NB (MD 201) 881 879 -0.2% Pass 1,454 1,432 -1.5% Pass SB (MD 201) 770 760 -1.3% Pass 1,067 1,044 -2.2% Pass Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) Value -0.1% Pass 1,012 1,014 0.2% Pass MB (MD 201) 396 409 3.3% Pass 1,182 1,159 -1.9% Pass SB (MD 201) 864 846 -2.1% Pass 1,82 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway			Veh	icles		15%	Veh	icles		15%
EB (I-95 Off-ramp) 830 835 0.6% Pass 1,000 995 -0.5% Pass NB (MD 201) 881 879 -0.2% Pass 1,454 1,432 -1.5% Pass SB (MD 201) 770 760 -1.3% Pass 1,067 1,044 -2.2% Pass Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) - - 9ass 1,012 1,014 0.2% Pass WB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 1,182 1,159 -1.9% Pass SB (MD 201) 864 846 -2.1% Pass 2,874 2,851 -0.8% Pass Joverall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% <	1	MD 201 (Kenilworth Avenue) &	I-95 SB Off-I	amp (Signali	zed)					
NB (MD 201) 881 879 -0.2% Pass 1,454 1,432 -1.5% Pass SB (MD 201) 770 760 -1.3% Pass 1,067 1,044 -2.2% Pass Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass M D 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) V Pass 1,012 1,014 0.2% Pass MB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Rod 178 -1.1% Pass 220 212 -3.6% Pass W		EB (I-95 Off-ramp)	830	835	0.6%	Pass	1,000	995	-0.5%	Pass
SB (MD 201) 770 760 -1.3% Pass 1,067 1,044 -2.2% Pass Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) Vertice Pass 1,012 1,014 0.2% Pass MB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Rod/SHA Driveway (Signalized) EB (SHA Driveway) 4 4 0.0% Pass 2,20 212 -3.6% Pass MB (Crescent Rd) 180 178 -1.1% Pass		NB (MD 201)	881	879	-0.2%	Pass	1,454	1,432	-1.5%	Pass
Overall 2,481 2,474 -0.3% Pass 3,521 3,471 -1.4% Pass 2 MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) WB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass 3 MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) 2 23 4.5% Pass 3 MD 201 (Kenilworth Avenue) & 180 178 -1.1% Pass 220 212 -3.6% Pass 4 0.0% Pass 1,195 1,200 0.4% Pass 5 (Grescent Rd) 180 178 -1.1% Pass 1,285		SB (MD 201)	770	760	-1.3%	Pass	1,067	1,044	-2.2%	Pass
2 MD 201 (Kenilworth Avenue) & I-95 NB Off-ramp (Signalized) WB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) -0.2% Pass 2,274 2,03 4.5% Pass B (SHA Driveway) 4 4 0.0% Pass 220 212 -3.6% Pass WB (Crescent Rd) 1,113 1,110 -0.3% Pass 1,285 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass SB (MD 201) 987 983		Overall	2,481	2,474	-0.3%	Pass	3,521	3,471	-1.4%	Pass
WB (I-95 Off-ramp) 1,173 1,172 -0.1% Pass 1,012 1,014 0.2% Pass NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) EB (SHA Driveway) 4 4 0.0% Pass 22 23 4.5% Pass WB (Crescent Rd) 180 178 -1.1% Pass 1,195 1,200 0.4% Pass SB (MD 201) 1,113 1,110 -0.3% Pass 1,285 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass SB (MD 201) 987 983 -0.4% Pass 2,722 </td <td>2</td> <td>MD 201 (Kenilworth Avenue) &</td> <td>I-95 NB Off-</td> <td>ramp (Signali</td> <td>ized)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2	MD 201 (Kenilworth Avenue) &	I-95 NB Off-	ramp (Signali	ized)					
NB (MD 201) 396 409 3.3% Pass 680 678 -0.3% Pass SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) Edit State 22 23 4.5% Pass KB (MD 201) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,285 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass SB (MD 201) 987 983 -0.4% Pass 2,722 2,705 -0.6% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		WB (I-95 Off-ramp)	1,173	1,172	-0.1%	Pass	1,012	1,014	0.2%	Pass
SB (MD 201) 864 846 -2.1% Pass 1,182 1,159 -1.9% Pass Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass 3 MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) EB (SHA Driveway) 4 4 0.0% Pass 22 23 4.5% Pass WB (Crescent Rd) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,285 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		NB (MD 201)	396	409	3.3%	Pass	680	678	-0.3%	Pass
Overall 2,433 2,427 -0.2% Pass 2,874 2,851 -0.8% Pass 3 MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) EB (SHA Driveway) 4 4 0.0% Pass 22 23 4.5% Pass WB (Crescent Rd) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,195 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		SB (MD 201)	864	846	-2.1%	Pass	1,182	1,159	-1.9%	Pass
3 MD 201 (Kenilworth Avenue) & Crescent Road/SHA Driveway (Signalized) EB (SHA Driveway) 4 4 0.0% Pass 22 23 4.5% Pass WB (Crescent Rd) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,195 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		Overall	2,433	2,427	-0.2%	Pass	2,874	2,851	-0.8%	Pass
EB (SHA Driveway) 4 4 0.0% Pass 22 23 4.5% Pass WB (Crescent Rd) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,195 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass	3	MD 201 (Kenilworth Avenue) &	Crescent Ro	ad/SHA Driv	eway (Signali	zed)				
WB (Crescent Rd) 180 178 -1.1% Pass 220 212 -3.6% Pass NB (MD 201) 1,113 1,110 -0.3% Pass 1,195 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		EB (SHA Driveway)	4	4	0.0%	Pass	22	23	4.5%	Pass
NB (MD 201) 1,113 1,110 -0.3% Pass 1,195 1,200 0.4% Pass SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		WB (Crescent Rd)	180	178	-1.1%	Pass	220	212	-3.6%	Pass
SB (MD 201) 987 983 -0.4% Pass 1,285 1,270 -1.2% Pass Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		NB (MD 201)	1,113	1,110	-0.3%	Pass	1,195	1,200	0.4%	Pass
Overall 2,284 2,275 -0.4% Pass 2,722 2,705 -0.6% Pass		SB (MD 201)	987	983	-0.4%	Pass	1,285	1,270	-1.2%	Pass
		Overall	2,284	2,275	-0.4%	Pass	2,722	2,705	-0.6%	Pass
4 MD 201 (Kenilworth Avenue) & Ivy Lane (Signalized)	4	MD 201 (Kenilworth Avenue) &	lvy Lane (Sig	nalized)						
EB (Ivy Ln) 93 94 1.1% Pass 203 207 2.0% Pas		EB (Ivy Ln)	93	94	1.1%	Pass	203	207	2.0%	Pass
NB (MD 201) 1,109 1,116 0.6% Pass 1,072 1,094 2.1% Pas		NB (MD 201)	1,109	1,116	0.6%	Pass	1,072	1,094	2.1%	Pass
SB (MD 201) 901 905 0.4% Pass 1,087 1,101 1.3% Pas		SB (MD 201)	901	905	0.4%	Pass	1,087	1,101	1.3%	Pass
Overall 2,103 2,115 0.6% Pass 2,362 2,402 1.7% Pas		Overall	2,103	2,115	0.6%	Pass	2,362	2,402	1.7%	Pass
5 MD 201 (Kenilworth Avenue/Edmonston Road) & Cherrywood Lane (Signalized)	5	MD 201 (Kenilworth Avenue/Ed	dmonston Ro	ad) & Cherry	wood Lane	Signaliz	ed)			
EB (Cherrywood Ln) 140 140 0.0% Pass 270 272 0.7% Pas		EB (Cherrywood Ln)	140	140	0.0%	Pass	270	272	0.7%	Pass
NB (MD 201) 1,015 1,009 -0.6% Pass 987 1,004 1.7% Pas		NB (MD 201)	1,015	1,009	-0.6%	Pass	987	1,004	1.7%	Pass
SB (MD 201) 1,087 1,074 -1.2% Pass 1,180 1,182 0.2% Pas		SB (MD 201)	1,087	1,074	-1.2%	Pass	1,180	1,182	0.2%	Pass
Overall 2,242 2,223 -0.8% Pass 2,437 2,458 0.9% Pas		Overall	2,242	2,223	-0.8%	Pass	2,437	2,458	0.9%	Pass
6 MD 201 (Edmonston Road) & Sunnyside Avenue (Signalized)	6	MD 201 (Edmonston Road) & Su	nnyside Ave	nue (Signaliz	ed)					
EB (Sunnyside Rd) 285 284 -0.4% Pass 543 535 -1.5% Pas		EB (Sunnyside Rd)	285	284	-0.4%	Pass	543	535	-1.5%	Pass
NB (MD 201) 995 997 0.2% Pass 1,203 1,264 5.1% Pas		NB (MD 201)	995	997	0.2%	Pass	1,203	1,264	5.1%	Pass
SB (MD 201) 1,005 998 -0.7% Pass 928 891 -4.0% Pass		SB (MD 201)	1,005	998	-0.7%	Pass	928	891	-4.0%	Pass
Overall 2,285 2,279 -0.3% Pass 2,674 2,690 0.6% Pas		Overall	2,285	2,279	-0.3%	Pass	2,674	2,690	0.6%	Pass
7 MD 201 (Edmonston Road) & Beaver Dam Road (TWSC)	7	MD 201 (Edmonston Road) & Be	eaver Dam R	oad (TWSC)						
WB (Beaver Dam Rd) 25 24 -4.0% Pass 27 25 -7.4% Pass		WB (Beaver Dam Rd)	25	24	-4.0%	Pass	27	25	-7.4%	Pass
NB (MD 201) 768 767 -0.1% Pass 1,082 1,096 1.3% Pas		NB (MD 201)	768	767	-0.1%	Pass	1,082	1,096	1.3%	Pass
SB (MD 201) 1,012 1,016 0.4% Pass 883 882 -0.1% Pass		SB (MD 201)	1,012	1,016	0.4%	Pass	883	882	-0.1%	Pass
Overall 1,805 1,807 0.1% Pass 1,992 2,003 0.6% Pas		Overall	1,805	1,807	0.1%	Pass	1,992	2,003	0.6%	Pass

Figure 4: SimTraffic[™] Approach-based Validation Test Results

			AM Peak I	Hour			Hour		
#	Intersection	Existing Volume	Simulated Volume	Difference	Less than	Existing Volume	Simulated Volume	Difference	Less than
		Veh	icles		15%	Veh	icles		15%
8	MD 201 (Edmonston Road) & P	owder Mill R	oad (Signaliz	ed)			1		
	EB (Powder Mill Rd)	611	612	0.2%	Pass	867	751	-13.4%	Pass
	WB (Powder Mill Rd)	275	287	4.4%	Pass	262	265	1.1%	Pass
	NB (MD 201)	773	812	5.0%	Pass	947	1,058	11.7%	Pass
	SB (MD 201)	535	526	-1.7%	Pass	694	693	-0.1%	Pass
	Overall	2,194	2,237	2.0%	Pass	2,770	2,767	-0.1%	Pass
9	Edmonston Road & Odell Road	(TWSC)							_
	EB (Odell Rd)	20	19	-5.0%	Pass	27	26	-3.7%	Pass
	WB (Odell Rd)	7	6	-14.3%	Pass	5	4	-20.0%	Fail
	NB (Edmonston Rd)	489	484	-1.0%	Pass	580	590	1.7%	Pass
	SB (Edmonston Rd)	554	563	1.6%	Pass	628	643	2.4%	Pass
	Overall	1,070	1,072	0.2%	Pass	1,240	1,263	1.9%	Pass
10	Powder Mill Road & Poultry Roa	ad (AWSC)							
	EB (Powder Mill Rd)	146	166	13.7%	Pass	600	544	-9.3%	Pass
	WB (Powder Mill Rd)	280	278	-0.7%	Pass	246	246	0.0%	Pass
	SB (Poultry Rd)	0	0	-	Pass	10	9	-10.0%	Pass
	Overall	426	444	4.2%	Pass	856	799	-6.7%	Pass
11	Powder Mill Road & Research R	oad (TWSC)							
	EB (Powder Mill Rd)	144	146	1.4%	Pass	596	540	-9.4%	Pass
	WB (Powder Mill Rd)	266	261	-1.9%	Pass	216	216	0.0%	Pass
	NB (Research Rd)	14	16	14.3%	Pass	27	27	0.0%	Pass
	Overall	424	423	-0.2%	Pass	839	783	-6.7%	Pass
12	Powder Mill Road & Springfield	Road (TWSC)							
	EB (Powder Mill Rd)	155	156	0.6%	Pass	487	439	-9.9%	Pass
	WB (Powder Mill Rd)	415	415	0.0%	Pass	365	367	0.5%	Pass
	SB (Springfield Rd)	138	139	0.7%	Pass	274	270	-1.5%	Pass
	Overall	708	710	0.3%	Pass	1,126	1,076	-4.4%	Pass
13	Powder Mill Road & BW Parkwa	y SB Ramps	(TWSC)						
	EB (Powder Mill Rd)	272	267	-1.8%	Pass	749	695	-7.2%	Pass
	WB (Powder Mill Rd)	352	348	-1.1%	Pass	381	354	-7.1%	Pass
	SB (BW Parkway Off-ramp)	362	364	0.6%	Pass	376	379	0.8%	Pass
	Overall	986	979	-0.7%	Pass	1,506	1,428	-5.2%	Pass

Figure 4: SimTraffic[™] Approach-based Validation Test Results (continued)

			AM Peak	Hour			PM Peak	Hour	
#	Intersection	Existing Volume	Simulated Volume	Difference	Less than	Existing Volume	Simulated Volume	Difference	Less than
		Veh	icles		15%	Veh	icles		15%
14	Powder Mill Road & BW Parkwa	ay NB Ramps	(TWSC)						
	EB (Powder Mill Rd)	405	401	-1.0%	Pass	846	826	-2.4%	Pass
	WB (Powder Mill Rd)	567	566	-0.2%	Pass	793	771	-2.8%	Pass
	NB (BW Parkway Off-ramp)	138	139	0.7%	Pass	106	105	-0.9%	Pass
	Overall	1,110	1,106	-0.4%	Pass	1,745	1,702	-2.5%	Pass
15	Powder Mill Road & Soil Conser	vation Road	(TWSC)						
	EB (Powder Mill Rd)	405	396	-2.2%	Pass	663	631	-4.8%	Pass
	WB (Powder Mill Rd)	317	325	2.5%	Pass	311	308	-1.0%	Pass
	NB (Soil Conservation Rd)	312	306	-1.9%	Pass	583	541	-7.2%	Pass
	Overall	1,034	1,027	-0.7%	Pass	1,557	1,480	-4.9%	Pass

Figure 4: SimTraffic[™] Approach-based Validation Test Results (continued)

Notes:

AWSC = All-way STOP-Controlled intersection

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

TWSC = Two-way STOP-Controlled unsignalized intersection

Red cells denote intersections or approaches where simulated versus actual volumes were greater than a 15% difference.

Figure 5: SimTraffic[™] Validation Test Summary

	Facilities	Percent of Total	Check	Facilities	Percent of Total	Check		
	A	A Peak Hour		PM Peak Hour				
Number of passing approaches	48	100%		47	07.0%	_		
Number of approaches	48	100%	Pass	48	97.9%	Pass		
Number of passing intersections	15	100%		9	100%			
Number of intersections	15	100%	Pass	9	100%	Pass		
Simulation approach volume sum	23,585	1.00/		30,221	1 10/			
Actual approach volume sum	23,598	1.0%	Pass	29,878	1.1%	Pass		

F SimTraffic[™] Calibration Process

The original results calculated in the validation process had one failing check and required calibration to achieve the established goals to accurately model queueing along Rockville Pike. The initial link speeds for the AM and PM models reflected actual posted speed limits. The PM peak hour link speeds were reduced by 15 miles per hour to reflect the actual speed the vehicles travel the corridor based on the congested conditions. This provided a more realistic queue pattern that matched observations.

G References

FHWA (Federal Highway Administration)

2004 Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software, U.S. Department of Transportation, Federal Highway Administration, Publication No. FHWA-HRT-04-040, McLean, Virginia.

Site Visits

Site Visit by Louis Berger on September 17, 2019.

16. APPENDIX H: SimTraffic REPORT

SimTraffic Simulation Summary Existing Conditions AM10/08/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) # of Intervals		1 5:52 7:00 68 60 5	10 5:52 7:00 68 60 5	2 5:52 7:00 68 60 5	3 5:52 7:00 68 60 5	4 5:52 7:00 68 60 5	5 5:52 7:00 68 60 5	6 5:52 7:00 68 60 5	7 5:52 7:00 68 60 5	8 5:52 7:00 68 60 5	9 5:52 7:00 68 60 5	Avg 5:52 7:00 68 60 5	
# of Recorded Intervals # of Recorded Intervals Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)	S	7430 7403 318 345 8542 340.8 102.2 8155 296.3	4 7411 7434 319 296 8489 334.5 99.0 7924 293.9	4 7484 7498 368 354 8656 346.7 105.6 8283 300.4	4 7337 7233 270 374 8357 325.3 92.4 7631 287.8	4 7300 7302 347 345 8447 336.0 101.0 7851 291.8	4 7355 7339 332 348 8333 326.4 94.4 7630 284.5	4 7465 7426 325 364 8586 345.8 106.8 8254 298.2	4 7442 7472 372 342 8744 349.7 106.2 8267 301.8	4 7576 7565 339 350 8705 346.0 103.7 8088 299.1	4 7435 7427 320 328 8612 344.2 104.5 8302 297.0	4 7423 7408 328 337 8547 339.6 101.6 8031 295.1	4
Interval #0 Information Start Time End Time Total Time (min) No data recorded this	Seedir 5:52 6:00 8 interval.	ng											
Interval #1 Information Start Time End Time Total Time (min)	Record 6:00 6:15 15	ding											
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs		1 1892 1847 318 363	10 1847 1861 319 305	2 1875 1869 368 374	3 1744 1696 270 318	4 1897 1875 347 369	5 1844 1827 332 349	6 1880 1864 325 341	7 1863 1892 372 343	8 1852 1869 339 322	9 1829 1806 320 343	Avg 1846 1843 328 335	

Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)		2166 86.2 26.1 2066 75.3	2084 82.5 24.7 2032 72.6	2201 88.9 27.7 2182 76.3	1933 74.3 20.3 1762 65.7	2160 89.8 29.3 2244 76.3	2070 81.1 23.5 1961 71.0	2134 86.5 27.1 2112 73.8	2178 85.6 25.0 2010 75.2	2082 80.2 22.1 1844 71.3	2129 84.4 25.3 2031 73.3	2114 84.0 25.1 2022 73.1
Interval #2 Information Start Time End Time Total Time (min)	Recor 6:15 6:30 15	ding										
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)		1 1869 1908 363 324 2259 92.4 29.3 2190 78.4	10 1850 1843 305 312 2154 83.2 23.6 1944 73.9	2 1909 1927 374 356 2196 88.1 26.9 2001 76.7	3 1863 1843 318 338 2096 81.0 22.6 1872 71.7	4 1804 1842 369 331 2157 85.9 26.2 1949 74.1	5 1825 1847 349 327 2135 83.4 23.9 1882 72.5	6 1865 1845 341 2133 85.7 26.3 2007 73.9	7 1806 1794 343 355 2168 85.8 25.5 1969 73.6	8 1898 1852 322 368 2196 86.3 25.1 2038 75.0	9 1930 1903 343 370 2171 88.6 28.2 2171 75.1	Avg 1856 1859 335 337 2167 86.0 25.8 1999 74.5
Interval #3 Information Start Time End Time Total Time (min)	Record 6:30 6:45 15	ding										
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)		1 1841 1855 324 310 2033 79.9 22.9 1896 70.6	10 1886 1843 312 355 2161 85.6 25.5 2056 75.0	2 1851 1859 356 348 2138 83.9 24.2 2003 74.1	3 1835 1832 338 341 2134 83.2 24.0 1926 73.7	4 1771 1794 331 308 2023 75.6 19.4 1649 68.7	5 1801 1813 327 315 2059 79.5 22.1 1901 70.1	6 1828 1864 361 325 2184 87.6 26.9 2109 76.4	7 1919 1903 355 371 2263 92.8 29.6 2231 78.9	8 1936 1930 368 374 2229 90.6 28.7 2118 76.9	9 1809 1849 370 330 2132 84.8 25.5 2035 73.4	Avg 1842 1851 337 332 2136 84.3 24.9 1991 73.8

Interval #4 Information Start Time End Time Total Time (min)	Record 6:45 7:00 15	ding										
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops		1 1828 1793 310 345 2083 82.3 23.9 2003	10 1828 1887 355 296 2090 83.3 25.1 1892	2 1849 1843 348 354 2120 85.8 26.8 2097	3 1895 1862 341 374 2193 86.9 25.5 2071	4 1828 1791 308 345 2106 84.8 26.1 2009	5 1885 1852 315 348 2070 82.4 24.8 1886	6 1892 1853 325 364 2135 86.0 26.5 2026	7 1854 1883 371 342 2135 85.4 26.1 2057	8 1890 1914 374 350 2198 89.0 27.8 2088	9 1867 1869 330 328 2180 86.4 25.5 2065	Avg 1856 1855 332 337 2131 85.2 25.8 2017
Fuel Used (gal)		72.0	72.3	73.3	76.7	72.7	71.0	74.1	74.1	76.0	75.2	73.7

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Performance Report Existing Conditions AM10/08/2019

1: MD 201 & I-95 SB off-Ramp Performance by movement

Movement Vehicles Entered	EBL 73	EBR 762	NBT 879	SBT 760	All 2474							
2: MD 201 & I-95 NB Off Ram	p Perfo	rmance	by move	ement								
Movement Vehicles Entered	WBL 457	WBR 715	NBT 409	SBT 846	All 2427							
3: MD 201 & SHA Dist. 3/Cres	scent Dr	ive Perf	ormanc	e by mo	vement							
Movement Vehicles Entered	EBL 0	EBR 4	WBL 110	WBT 1	WBR 67	NBL 33	NBT 1040	NBR 37	SBL 28	SBT 950	SBR 5	All 227
4: MD 201 & Ivy Lane Perform	nance by	y mover	nent									
Movement Vehicles Entered	EBR 94	NBL 92	NBT 1024	SBT 898	SBR 7	All 2115						
5: MD 201 & Cherrywood Lan	e Perfor	mance	by move	ement								
Movement Vehicles Entered	EBL 115	EBR 25	NBL 132	NBT 877	SBT 862	SBR 212	All 2223					
6: MD 201 & Sunnyside Aven	ue Perfo	ormance	e by mov	/ement								
Movement Vehicles Entered	EBL 86	EBR 198	NBL 319	NBT 678	SBT 891	SBR 107	All 2279					
7: MD 201 & Beaver Dam Road Performance by movement												
Movement	WBL	WBR	NBT	NBR	SBL	SBT	All					

2275

8: MD 201 & Powder Mill Road Performance by movement

Movement Vehicles Entered	EBL 53	EBT 98	EBR 461	WBL 104	WBT 150	WBR 33	NBL 313	NBT 454	NBR 45	SBL 23	SBT 431	SBR 72	All 2237
9: Edmonston Road & Odell R	load Pe	rforman	ce by m	ovemen	t								
Movement Vehicles Entered	EBL 18	EBR 1	WBL 1	WBT 4	WBR 1	NBL 46	NBT 434	NBR 4	SBT 523	SBR 40	All 1072		
10: Powder Mill Road & Poultr	y Road	Perform	nance by	/ moven	nent								
Movement Vehicles Entered	EBL 1	EBT 165	WBT 278	All 444									
11: Powder Mill Road Perform	ance by	v mover	nent										
Movement Vehicles Entered	NBL 16	NBT 0	SET 138	SER 8	NWT 261	All 423							
12: Powder Mill Road Perform	ance by	v movem	nent										
Movement Vehicles Entered	EBL 3	EBT 153	WBT 278	WBR 137	SBL 121	SBR 18	All 710						
13: Powder Mill Road Perform	ance by	v mover	nent										
Movement Vehicles Entered	EBT 178	EBR 89	WBL 77	WBT 271	SBL 222	SBT 1	SBR 141	All 979					
14: Powder Mill Road Performance by movement													
Movement Vehicles Entered	EBL 85	EBT 316	WBT 294	WBR 272	NBL 54	NBT 3	NBR 82	All 1106					
15: Powder Mill Road Perform	ance by	v mover	nent										
Movement	EBT	EBR	WBL	WBT	NBL	NBR	All						

Vehicles Entered	152	244	49	276	290	16	1027			
16: Powder Mill Road Perform	nance by	/ moven	nent							
Movement Vehicles Entered	EBT 2	EBR 17	SET 135	NWL 17	NWT 272	All 443				
17: Performance by movement										
Movement Vehicles Entered	WBL 17	NBT 15	NBR 18	SBT 8	All 58					
21: MD 201 /MD 201 & I-95 NB On Ramp Performance by movement										
Movement Vehicles Entered	NBT 396	NBR 556	SBT 1311	All 2263						
23: I-95 SB On Ramp & MD 201 Performance by movement										
Movement Vehicles Entered	NBT 981	SBT 761	SBR 544	All 2286						
26: MD 201 & Lane Drop Perf	ormanc	e by mo	vement							
Movement Vehicles Entered	SET 1088	NWT 998	All 2086							
47: MD 201 Performance by r	noveme	nt								
Movement Vehicles Entered	SBT 4	SBR 997	NEL 760	NET 8	All 1769					
61: MD 201 & Ramp to Northbound I-95 Performance by movement										
Movement Vehicles Entered	NBT 1115	SBT 875	SBR 196	All 2186						

Total Network Performance

Vehicles Entered 7423

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

Queuing and Blocking Report Existing Conditions AM10/08/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	Т	Т	Т	Т	Т
Maximum Queue (ft)	60	123	99	75	130	126	124
Average Queue (ft)	8	56	26	10	41	29	36
95th Queue (ft)	35	107	72	45	101	85	97
Link Distance (ft)		734	1249	1249	1249	542	542
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	325						
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	208	266	314	289	94	122	114	154	166	235	
Average Queue (ft)	89	144	194	172	30	46	45	70	73	102	
95th Queue (ft)	172	221	276	261	71	96	89	132	140	196	
Link Distance (ft)		1405	1405			282	282	215	215	215	
Upstream Blk Time (%)										0	0
Queuing Penalty (veh)									0	1	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)			0	0							
Queuing Penalty (veh)			1	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	43	153	68	83	147	218	235	45	88	92	94	157
Average Queue (ft)	4	78	30	31	33	84	88	2	25	17	22	41
95th Queue (ft)	23	136	59	69	108	184	199	32	68	58	67	113

Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	239	429	250	250	266	266 0	266 0 0 0	0 200 0 0	300	783	783	783
Intersection: 4: MD 201 & Ivy	Lane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 80 24 61 350	NB L 113 55 96 783	SB T 136 35 95 1193	SB T 179 62 144 1193								
Intersection: 5: MD 201 & Che	errywood	d Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	EB L 115 31 83	EB L 134 58 108 1306	EB R 72 19 56 1306	NB L 133 59 108	NB T 200 94 172 1193	NB T 211 101 185 1193	SB T 230 90 187 610	SB T 303 127 253 610	SB R 222 44 121			
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250			750				1 1	250 0 0			
Intersection: 6: MD 201 & Sur	nyside /	Avenue										
Movement	EB	EB	NB	NB	B35	SB	SB					

Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	248	265	469	619	3	1202	275
Average Queue (ft)	103	124	284	111	0	592	69
95th Queue (ft)	194	233	464	397	4	1114	239
Link Distance (ft)	968			1368	2212	1542	
Upstream Blk Time (%)					0		0
Queuing Penalty (veh)				1		1	
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	0		2	0		22	0
Queuing Penalty (veh)	0		16	0		24	0

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB
Directions Served	LR	TR	LT
Maximum Queue (ft)	88	6	253
Average Queue (ft)	24	0	34
95th Queue (ft)	65	5	163
Link Distance (ft)	625	1542	843
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	158	228	124	183	255	66	283	367	89	60	290	264
Average Queue (ft)	53	88	6	73	91	15	145	167	3	17	185	150
95th Queue (ft)	122	174	63	147	196	57	250	298	54	46	265	241
Link Distance (ft)		920			512			617			813	813
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)		0		0	29	0		2			1	
Queuing Penalty (veh)		1		0	41	1		5			0	

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	77	59	38	102	2
Average Queue (ft)	27	7	2	18	0
95th Queue (ft)	71	35	19	63	1
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		
Storage Blk Time (%)		1	0		
Queuing Penalty (veh)		0	0		

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	WB
Directions Served	LT	TR
Maximum Queue (ft)	118	106
Average Queue (ft)	56	64
95th Queue (ft)	92	93
Link Distance (ft)	97	858
Upstream Blk Time (%)		0
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 11: Powder Mill Road

Movement	NB
Directions Served	L
Maximum Queue (ft)	38
Average Queue (ft)	13
95th Queue (ft)	38
Link Distance (ft)	46
Upstream Blk Time (%)	0

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 12: Powder Mill Road

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	18	92
Average Queue (ft)	1	40
95th Queue (ft)	11	69
Link Distance (ft)		467
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	50	
Storage Blk Time (%)	0	
Queuing Penalty (veh)	0	

Intersection: 13: Powder Mill Road

Movement	EB	WB	WB	SB	SB
Directions Served	TR	L	Т	L	TR
Maximum Queue (ft)	5	47	2	56	169
Average Queue (ft)	0	12	0	44	66
95th Queue (ft)	3	35	2	58	127
Link Distance (ft)	153		550		850
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		225		25	
Storage Blk Time (%)				34	14
Queuing Penalty (veh)				48	31
_ ,					

0

Intersection: 14: Powder Mill Road

Movement	EB	WB	NB	NB
Directions Served	L	TR	L	TR
Maximum Queue (ft)	75	21	57	68

Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	25 56	1 11 268	29 52	29 53 857
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250		50 2 2	1 1
Intersection: 15: Powder Mill F	Road			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (yeb)	EB T 140 67 122 546	EB R 50 4 25	WB L 84 34 75	WB T 142 65 126 792
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		260	300	
Intersection: 16: Powder Mill F	Road			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB R 26 11 31 14 0	SE T 6 0 4 46 1	NW LT 44 3 22 1635	

Intersection: 17:

Movement	WB	NB
Directions Served	L	TR
Maximum Queue (ft)	3	22
Average Queue (ft)	0	1
95th Queue (ft)	3	13
Link Distance (ft)	14	460
Upstream Blk Time (%)		0
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	SB	SB
Directions Served	Т	Т
Maximum Queue (ft)	2	2
Average Queue (ft)	0	0
95th Queue (ft)	2	2
Link Distance (ft)	39	39
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	SB
Directions Served	R
Maximum Queue (ft)	3
Average Queue (ft)	0
95th Queue (ft)	3
Link Distance (ft)	115
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	

Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 26: MD 201 & Lane Drop

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NW T 156 50 126 610	NW T 166 58 141 610
Intersection: 47: MD 201		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	SB R 223 97 183 617	SB R 248 110 207 617
Intersection: 61: MD 201	& Ramp to N	orthbound I-95
Movement	NB	NB

ND	
Т	Т
2	25
0	1
2	26
	T 2 0 2
Link Distance (ft) 215 215 Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary Network wide Queuing Penalty: 177

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Simulation Summary Existing Conditions PM10/16/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) # of Intervals # of Recorded Intervals Vebs Entered	1 2:52 4:00 68 60 5	10 2:52 4:00 68 60 5 4 10231	2 2:52 4:00 68 60 5 4 10252	3 2:52 4:00 68 60 5 4 10121	4 2:52 4:00 68 60 5 4 10176	5 2:52 4:00 68 60 5 4 10072	6 2:52 4:00 68 60 5 4 10054	7 2:52 4:00 68 60 5 4 10156	8 2:52 4:00 68 60 5 4 10154	9 2:52 4:00 68 60 5 4 10018	Avg 2:52 4:00 68 60 5 4 10112	4
Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)	9916 468 492 10637 564.2 258.9 10749 398.2	10206 465 490 10813 555.4 245.6 11201 401.1	10155 415 512 10937 592.1 278.0 11337 413.8	10050 447 518 10727 558.6 250.6 10940 401.0	10084 420 512 10818 573.3 262.0 11029 405.1	9992 412 492 10828 622.8 311.0 10944 414.6	10079 531 506 10543 691.5 388.4 10393 425.5	10085 416 487 10945 640.1 324.9 10803 423.6	10090 441 505 10968 574.6 259.8 11359 409.0	10015 475 478 10727 630.1 321.8 10698 418.0	10066 444 490 10794 600.3 290.1 10950 411.0	
Interval #0 InformationSeedingStart Time2:52End Time3:00Total Time (min)8Volumes adjusted by GrowthNo data recorded this interval	ng Factors.											
Interval #1 InformationRecorStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Growth	ding Factors.											
Run Number Vehs Entered Vehs Exited	1 2506 2445	10 2520 2510	2 2657 2486	3 2574 2470	4 2580 2495	5 2574 2450	6 2527 2550	7 2603 2479	8 2563 2496	9 2581 2526	Avg 2567 2492	

Starting Vehs		468	465	415	447	420	412	531	416	441	475	444
Ending Vehs		529	475	586	551	505	536	508	540	508	530	515
Travel Distance (mi)		2730	2700	2759	2681	2705	2720	2703	2848	2710	2776	2733
Travel Time (hr)		128.5	120.4	124.8	123.7	121.9	123.5	138.0	124.6	121.0	128.2	125.5
Total Delay (hr)		50.3	42.9	45.3	46.7	44.2	45.4	60.6	42.6	43.4	47.8	46.9
Total Stops		2765	2818	2914	2799	2656	2677	2796	2839	2759	2956	2801
Fuel Used (gal)		98.2	96.9	99.2	96.3	96.2	96.6	100.4	101.1	96.7	100.5	98.2
Interval #2 Information Start Time End Time Total Time (min) Volumes adjusted by 0	3:15 3:30 15 Growth F	actors.										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2563	2581	2521	2515	2553	2556	2527	2504	2588	2577	2540
Vehs Exited		2564	2524	2560	2578	2508	2535	2540	2527	2539	2570	2543
Starting Vehs		529	475	586	551	505	536	508	540	508	530	515
Ending Vehs		528	532	547	488	550	557	495	517	557	537	520
Travel Distance (mi)		2788	2664	2666	2688	2675	2743	2663	2684	2758	2710	2704
Travel Time (hr)		134.6	128.8	147.7	136.4	137.9	148.9	160.6	146.6	137.0	145.9	142.4
Total Delay (hr)		54.0	52.6	70.9	59.0	61.2	70.2	84.2	69.5	57.7	68.2	64.7
Total Stops		2967	2877	3018	2846	2785	2812	2565	2540	2999	2769	2808
Fuel Used (gal)		101.3	96.8	101.8	99.8	99.3	102.9	105.2	101.1	101.7	103.6	101.4
Interval #3 Information Start Time End Time Total Time (min) Volumes adjusted by 0	3:30 3:45 15 Growth F	actors.										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2440	2582	2547	2547	2509	2471	2473	2534	2512	2399	2503
Vehs Exited		2471	2606	2563	2537	2540	2509	2453	2514	2551	2451	2518
Starting Vehs		528	532	547	488	550	557	495	517	557	537	520
Ending Vehs		497	508	531	498	519	519	515	537	518	485	503
Travel Distance (mi)		2629	2704	2775	2748	2729	2678	2564	2708	2781	2548	2686
Travel Time (hr)		142.5	146.4	153.1	146.5	154.4	166.2	183.7	173.9	152.1	164.4	158.3

Total Delay (hr)	67.0	68.8	73.9	68.0	75.4	88.9	109.6	95.9	72.3	91.6	81.1
Total Stops	2666	2766	2706	2808	2864	2850	2517	2862	2894	2412	2726
Fuel Used (gal)	99.2	101.7	105.6	103.7	104.8	105.6	106.7	108.3	105.0	102.3	104.3
Interval #4 Information											

Start Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2431	2548	2527	2485	2534	2471	2527	2515	2491	2461	2492
Vehs Exited	2436	2566	2546	2465	2541	2498	2536	2565	2504	2468	2508
Starting Vehs	497	508	531	498	519	519	515	537	518	485	503
Ending Vehs	492	490	512	518	512	492	506	487	505	478	490
Travel Distance (mi)	2490	2745	2737	2611	2709	2687	2614	2706	2719	2693	2671
Travel Time (hr)	158.6	159.7	166.5	152.0	159.2	184.2	209.2	195.0	164.5	191.6	174.0
Total Delay (hr)	87.7	81.2	87.9	76.9	81.2	106.6	133.9	116.8	86.4	114.1	97.3
Total Stops	2351	2740	2699	2487	2724	2605	2515	2562	2707	2561	2593
Fuel Used (gal)	99.5	105.7	107.2	101.3	104.8	109.6	113.2	113.1	105.6	111.6	107.2

BEP SimTraffic Report LBG Page 0

SimTraffic Performance Report Existing Conditions PM10/16/2019

1: MD 201 & I-95 SB off-Ram	p Perfor	mance l	by appro	bach				
Approach	EB	NB	SB	All				
Vehicles Entered	1005	1457	1071	3533				
2: MD 201 & I-95 NB Off Ram	o Perfor	mance l	oy appro	bach				
Approach	WB	NB	SB	All				
Vehicles Entered	1011	680	1164	2855				
3: MD 201 & SHA Dist. 3/Crescent Drive Performance by approach								
Approach	EB	WB	NB	SB	All			
Vehicles Entered	25	221	1189	1263	2698			
4: MD 201 & Ivy Lane Perform	ance by	, approa	ch					
Approach	EB	NB	SB	All				
Vehicles Entered	199	1074	1110	2383				
5: MD 201 & Cherrywood Land	e Perfor	mance b	by appro	bach				
Approach	EB	NB	SB	All				
Vehicles Entered	277	994	1185	2456				
6: MD 201 & Sunnyside Avenue Performance by approach								
Approach	EB	NB	SB	All				
Vehicles Entered	540	1264	873	2677				

7: MD 201 & Beaver Dam Road Performance by approach

Approach	WB	NB	SB	All
Vehicles Entered	25	1100	853	1978

8: MD 201 & Powder Mill Road Performance by approach

Approach Vehicles Entered	EB 677	WB 267	NB 1056	SB 585	All 2585					
9: Edmonston Road & Odell R	load Pei	forman	ce by ap	proach						
Approach Vehicles Entered	EB 28	WB 6	NB 575	SB 638	All 1247					
10: Powder Mill Road & Poultr	y Road	Perform	ance by	/ approa	ich					
Approach Vehicles Entered	EB 527	WB 244	SB 9	All 780						
11: Powder Mill Road Perform	11: Powder Mill Road Performance by approach									
Approach Vehicles Entered	EB 526	WB 213	NB 28	All 767						
12: Powder Mill Road & Spring	gfield Ro	ad Perf	ormanc	e by app	oroach					
Approach Vehicles Entered	EB 433	WB 374	SB 274	All 1081						
13: Powder Mill Road & B-W F	Parkway	SB Off	Ramp F	Performa	ance by approach					
Approach Vehicles Entered	EB 691	WB 364	SB 379	All 1434						
14: B-W Parkway NB Off-Ram	ıp & Pov	vder Mil	l Road F	Performa	ance by approach					
Approach Vehicles Entered	EB 823	WB 781	NB 106	All 1710						
15: Soil Conservation Road &	15: Soil Conservation Road & Powder Mill Road Performance by approach									
Approach	EB	WB	NB	All						

Vehicles Entered	644	319	546	1509			
16: Powder Mill Road Perform	ance by	approa	ch				
Approach Vehicles Entered	EB 45	WB 233	SE 486	All 764			
17: Performance by approach	I						
Approach Vehicles Entered	WB 21	NB 74	SB 38	All 133			
18: Powder Mill Road Perform	ance by	approa	ch				
Approach Vehicles Entered	EB 530	WB 228	All 758				
21: MD 201 /MD 201 & I-95 NB On Ramp Performance by approach							
Approach Vehicles Entered	NB 1565	SB 1718	All 3283				
23: I-95 SB On Ramp & MD 20	01 Perf	ormance	e by app	oroach			
Approach Vehicles Entered	NB 1555	SB 1689	All 3244				
26: MD 201 & Lane Drop Perfe	ormance	e by app	roach				
Approach Vehicles Entered	SE 1179	NW 1234	All 2413				
28: Powder Mill Road Perform	ance by	approa	ch				
Approach Vehicles Entered	EB 531	WB 228	All 759				
40: Powder Mill Road Performance by approach							

Approach	EB	WB	All				
Vehicles Entered	548	262	810				
43: Powder Mill Road Perform	ance by	approa	ch				
Approach	EB	WB	All				
Vehicles Entered	529	228	757				
44: Powder Mill Road Perform	ance by	approa	ch				
Approach	NE	SW	All				
Vehicles Entered	528	227	755				
45: Powder Mill Road Perform	ance by	approa	ch				
Approach	NE	SW	All				
Vehicles Entered	529	227	756				
47: MD 201 Performance by approach							
Approach	SB	NE	All				
Vehicles Entered	855	1072	1927				
48: Powder Mill Road Perform	ance by	approa	ch				
Approach	SE	NW	All				
Vehicles Entered	530	227	757				
49: Powder Mill Road Perform	ance by	approa	ch				
Approach	SE	NW	All				
Vehicles Entered	531	226	757				
50: Powder Mill Road Perform	ance by	approa	ch				
Approach	EB	WB	All				
Vehicles Entered	531	232	763				

56: Powder Mill Road Performance by approach

Approach	SE	NW	All
Vehicles Entered	532	244	776

57: Powder Mill Road Performance by approach

Approach	EB	WB	All
Vehicles Entered	530	228	758

61: MD 201 & Ramp to Northbound I-95 Performance by approach

Approach	NB	SB	All
Vehicles Entered	1211	1341	2552

66: Powder Mill Road Performance by approach

Approach	EB	WB	All
Vehicles Entered	488	241	729

72: Powder Mill Road Performance by approach

Approach	EB	WB	All
Vehicles Entered	493	262	755

74: Powder Mill Road Performance by approach

Approach	NE	SW	All
Vehicles Entered	486	243	729

Total Network Performance

Vehicles Entered 10112

BEP SimTraffic Report

LBG Page 0

Queuing and Blocking Report Existing Conditions PM10/16/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т
Maximum Queue (ft)	70	154	149	117	181	202	162	172
Average Queue (ft)	11	70	5	46	41	82	52	66
95th Queue (ft)	44	128	109	99	119	169	122	140
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)				0				
Queuing Penalty (veh)			0					
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	256	296	270	252	102	127	145	142	145	160	
Average Queue (ft)	129	180	154	142	34	56	65	59	61	62	
95th Queue (ft)	225	266	230	217	76	107	120	115	118	127	
Link Distance (ft)		1405	1405			282	282	215	215	215	
Upstream Blk Time (%)									0	0	0
Queuing Penalty (veh)								0	0	0	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)			0	0							
Queuing Penalty (veh)			0	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	39	210	87	77	187	238	244	133	152	117	140	161
Average Queue (ft)	12	101	34	21	60	123	121	6	61	27	41	44
95th Queue (ft)	33	171	67	56	146	215	218	63	124	80	105	120

Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	239	429 0 0	250	250	266 0 0	266 0	266 0 1 1 1	0 200 0 0	300	783	783	783
Intersection: 4: MD 201 & Ivy	Lane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 91 22 66 350	NB L 118 59 101 783	SB T 78 14 52 1193	SB T 110 40 95 1193								
Intersection: 5: MD 201 & Che	errywood	d Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	EB L 131 52 108	EB L 154 80 132 1306	EB R 152 53 114 1306	NB L 129 45 94	NB T 145 34 103 1193	NB T 140 31 101 1193	SB T 184 82 155 610	SB T 221 107 192 610	SB R 61 21 53			
Storage Bay Dist (π) Storage Blk Time (%) Queuing Penalty (veh)	250			750				0 0	250			
Intersection: 6: MD 201 & Sur	nyside /	Avenue										
Movement	EB	EB	NB	NB	SB	SB						

Directions Served	L	R	L	TR	Т	R
Maximum Queue (ft)	332	340	455	556	1065	275
Average Queue (ft)	146	194	229	224	566	118
95th Queue (ft)	262	313	384	452	1015	316
Link Distance (ft)	968			1368	1546	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		350	450			250
Storage Blk Time (%)	0	1	0	1	28	0
Queuing Penalty (veh)	0	1	1	2	39	0

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served	LTR	TR	LT	
Maximum Queue (ft)	76	12	589	
Average Queue (ft)	23	1	91	
95th Queue (ft)	57	11	355	
Link Distance (ft)	626	1546	837	
Upstream Blk Time (%)				0
Queuing Penalty (veh)			1	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	275	1495	525	148	257	66	415	565	299	165	292	271
Average Queue (ft)	259	1377	404	50	110	18	198	246	40	62	173	149
95th Queue (ft)	322	1780	768	111	217	62	353	444	208	126	261	243
Link Distance (ft)		1433			523			618			816	816
Upstream Blk Time (%)			59						0			
Queuing Penalty (veh)		0						4				
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)	50	40	0		34	0	1	5	0	0	1	
Queuing Penalty (veh)	324	214	3		37	1	4	25	0	0	0	

Intersection: 9: Edmonston Road & Odell Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB LTR 70 22 54 509	WB LT 23 2 12 488	WB R 26 3 17 50	NB LT 152 16 78 419	SB LTR 4 0 4 365
Intersection: 10: Powder Mill F	Road & F	Poultry F	Road		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB LT 175 118 178 97 65	B69 T 73 8 41 325 12	WB TR 112 65 96 866	SB LR 22 5 20 391	
Intersection: 11: Powder Mill F	Road				
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB TR 34 3 21 383	NB L 52 21 49 48	1		

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 12: Powder Mill Road & Springfield Road

0

Movement	EB	WB	SB
Directions Served	L	TR	LR
Maximum Queue (ft)	36	9	178
Average Queue (ft)	5	0	80
95th Queue (ft)	24	6	144
Link Distance (ft)		153	467
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	50		
Storage Blk Time (%)	0		
Queuing Penalty (veh)	0		

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)	EB TR 39 2 15	WB L 74 33 60	WB T 5 0 4	SB L 63 49 56	SB TR 544 257 565	
Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	153		550		850 0	0
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		225		25 82 100	13 34	

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	NB	NB
Directions Served	L	Т	TR	L	TR
Maximum Queue (ft)	157	4	54	72	123

Average Queue (ft)	71	0	7	38	31
95th Queue (ft)	131	0	29	70	79
Link Distance (ft)		550	268		857
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)	250			50	
Storage Blk Time (%)				14	1
Queuing Penalty (veh)				6	1

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement	EB	EB	WB	WB	NB	NB
Directions Served	Т	R	L	Т	L	R
Maximum Queue (ft)	230	54	75	159	931	500
Average Queue (ft)	121	8	24	69	795	217
95th Queue (ft)	194	37	61	131	1101	625
Link Distance (ft)	546			792	892	
Upstream Blk Time (%)						55
Queuing Penalty (veh)					0	
Storage Bay Dist (ft)		260	300			475
Storage Blk Time (%)	0				70	0
Queuing Penalty (veh)	0				24	0

Intersection: 16: Powder Mill Road

Movement	EB	WB	SE	
Directions Served	Т	TR	L	
Maximum Queue (ft)	46	3	73	
Average Queue (ft)	20	0	10	
95th Queue (ft)	41	3	45	
Link Distance (ft)	19	796	50	
Upstream Blk Time (%)		6		0
Queuing Penalty (veh)	2		2	
Storage Bay Dist (ft)				
Storage Blk Time (%)				

Queuing Penalty (veh)

Intersection: 17:

Movement	WB	NB	SB
Directions Served	L	TR	Т
Maximum Queue (ft)	9	44	6
Average Queue (ft)	0	6	0
95th Queue (ft)	5	28	3
Link Distance (ft)	19	462	48
Upstream Blk Time (%)		0	
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 18: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	NB	NB	NB	SB	SB
Directions Served	Т	Т	R	Т	Т
Maximum Queue (ft)	5	5	15	4	2
Average Queue (ft)	0	0	1	0	0
95th Queue (ft)	5	5	9	2	2
Link Distance (ft)	115	115	115	39	39
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)					

Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	SB
Directions Served	R
Maximum Queue (ft)	2
Average Queue (ft)	0
95th Queue (ft)	2
Link Distance (ft)	115
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 26: MD 201 & Lane Drop

NW	NW
Т	Т
136	135
26	30
87	95
610	610
	NW T 136 26 87 610

Intersection: 28: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 40: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 43: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 44: Powder Mill Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		
Intersection: 45: Powder	Mill Road	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		
Intersection: 47: MD 201		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	SB R 153 66 133 618	SB R 160 67 139 618

Intersection: 48: Powder Mill Road

Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 49: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 50: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 56: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 57: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 61: MD 201 & Ramp to Northbound I-95 Movement NB Т

Directions Served	Т
Maximum Queue (ft)	3

Average Queue (ft) 0 95th Queue (ft) 3 Link Distance (ft) 215 Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 66: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 72: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 74: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary Network wide Queuing Penalty: 895

BEP SimTraffic Report LBG Page 0 SimTraffic Simulation Summary No Action Conditions AM 1

11/05/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min)		1 5:52 7:00 68 60	10 5:52 7:00 68 60	2 5:52 7:00 68 60	3 5:52 7:00 68 60	4 5:52 7:00 68 60	5 5:52 7:00 68 60	6 5:52 7:00 68 60	7 5:52 7:00 68 60	8 5:52 7:00 68 60	9 5:52 7:00 68 60	Avg 5:52 7:00 68 60	
# of Recorded Interval	e	5	5 1	Л									
Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr)	3	9215 8909 446 752 10359 624.7 335.1	9243 8736 445 952 10054 726.9 446.6	9325 8976 417 766 10434 629.7 338.5	9429 8964 382 847 10404 639.8 349.6	9099 8855 443 687 10193 608.2 324.3	9394 8891 442 945 10257 761.4 475.2	9328 8979 390 739 10300 642.8 354.6	9346 8896 460 910 10406 762.9 472.7	9289 8922 427 794 10126 643.3 360.8	9236 8931 453 758 10272 670.4 383.0	9289 8907 424 809 10280 671.0 384.0	4
Total Stops		13992	15201 /13 3	14340	14657	14198	15956	14688	16087	14392	14853 100 3	14833	
Interval #0 Information Start Time End Time Total Time (min) No data recorded this	Seedir 5:52 6:00 8 interval.	ng											
Interval #1 Information Start Time End Time Total Time (min)	Record 6:00 6:15 15	ding											
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs		1 2346 2273 446 519	10 2348 2226 445 567	2 2331 2214 417 534	3 2404 2268 382 518	4 2250 2141 443 552	5 2356 2155 442 643	6 2416 2244 390 562	7 2410 2252 460 618	8 2402 2284 427 545	9 2318 2197 453 574	Avg 2352 2225 424 558	

Travel Distance (mi)		2627	2588	2628	2645	2531	2612	2607	2699	2599	2539	2607
Travel Time (hr)		121.1	122.4	120.3	116.4	122.7	139.8	121.1	142.1	124.2	128.0	125.8
Total Delay (hr)		47.5	50.3	46.6	42.7	52.3	66.9	48.1	67.0	51.6	57.2	53.0
Total Stops		3049	3136	3134	2948	3164	3668	3140	3687	3179	3447	3250
Fuel Used (gal)		93.8	93.6	94.1	92.8	91.7	97.8	93.3	100.0	95.1	94.3	94.6
Interval #2 Informatior Start Time End Time Total Time (min)	n Recor 6:15 6:30 15	ding										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2296	2389	2375	2398	2357	2324	2387	2304	2328	2281	2340
Vehs Exited		2214	2234	2298	2276	2272	2237	2328	2226	2258	2194	2252
Starting Vehs		519	567	534	518	552	643	562	618	545	574	558
Ending Vehs		601	722	611	640	637	730	621	696	615	661	644
Travel Distance (mi)		2633	2560	2645	2676	2597	2541	2644	2619	2554	2487	2596
Travel Time (hr)		138.0	167.2	141.3	146.4	149.0	175.4	147.1	168.4	147.0	157.1	153.7
Total Delay (hr)		64.4	95.8	67.7	71.8	76.5	104.4	72.9	95.5	75.9	87.2	81.2
Total Stops		3302	3946	3526	3721	3644	3942	3701	4002	3595	3761	3717
Fuel Used (gal)		97.8	102.0	98.8	99.7	97.8	102.5	100.1	103.3	97.3	98.1	99.7
Interval #3 Informatior Start Time End Time Total Time (min)	n Recor 6:30 6:45 15	ding										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2252	2270	2346	2378	2244	2380	2297	2306	2315	2313	2309
Vehs Exited		2179	2178	2295	2267	2283	2312	2196	2160	2229	2268	2233
Starting Vehs		601	722	611	640	637	730	621	696	615	661	644
Ending Vehs		674	814	662	751	598	798	722	842	701	706	727
Travel Distance (mi)		2575	2495	2640	2645	2545	2585	2519	2445	2491	2602	2554
Travel Time (hr)		163.9	201.8	170.7	171.3	158.5	204.5	174.0	204.2	164.2	179.9	179.3
Total Delay (hr)		91.9	132.3	97.2	97.6	87.7	132.3	103.7	135.8	94.9	106.9	108.0
Total Stops		3704	3980	3734	4169	3751	4087	3788	3874	3683	3792	3855
Fuel Used (gal)		101.6	106.5	105.0	104.4	99.4	110.8	102.1	107.0	99.1	105.1	104.1

Record 6:45 7:00 15	ding										
	1	10	2	3	4	5	6	7	8	9	Avg
	2321	2236	2273	2249	2248	2334	2228	2326	2244	2324	2275
	2243	2098	2169	2153	2159	2187	2211	2258	2151	2272	2189
	674	814	662	751	598	798	722	842	701	706	727
	752	952	766	847	687	945	739	910	794	758	809
	2525	2411	2521	2438	2519	2519	2529	2644	2482	2644	2523
	201.8	235.5	197.4	205.7	178.0	241.9	200.6	248.2	207.8	205.4	212.2
	131.2	168.2	126.9	137.6	107.8	171.6	130.0	174.4	138.4	131.7	141.8
	3937	4139	3946	3819	3639	4259	4059	4524	3935	3853	4006
	108.5	111.1	106.8	106.3	102.1	115.2	107.6	120.0	107.2	111.8	109.7
	Record 6:45 7:00 15	Recording 6:45 7:00 15 1 2321 2243 674 752 2525 201.8 131.2 3937 108.5	Recording 6:45 7:00 15 15 11 15 11 10 2321 2236 2243 2098 674 814 752 952 2525 2411 201.8 235.5 131.2 168.2 3937 4139 108.5 111.1	Recording 6:45 7:00 15 15 15 10 10 22321 2236 2273 2243 2098 2169 674 814 662 752 952 766 2525 2411 2521 201.8 235.5 197.4 131.2 168.2 126.9 3937 4139 3946 108.5 111.1 106.8	Recording 6:45 7:00 15110 2211023232122362273224922432098216921536748146627517529527668472525241125212438201.8235.5197.4205.7131.2168.2126.9137.63937413939463819108.5111.1106.8106.3	Recording 6:45 7:00 15 1 10 2 3 4 2321 2236 2273 2249 2248 2243 2098 2169 2153 2159 674 814 662 751 598 752 952 766 847 687 2525 2411 2521 2438 2519 201.8 235.5 197.4 205.7 178.0 131.2 168.2 126.9 137.6 107.8 3937 4139 3946 3819 3639 108.5 111.1 106.8 106.3 102.1	Recording 6:45 7:00 151102345232122362273224922482334224320982169215321592187674814662751598798752952766847687945252524112521243825192519201.8235.5197.4205.7178.0241.9131.2168.2126.9137.6107.8171.6393741393946381936394259108.5111.1106.8106.3102.1115.2	Recording6:457:001511023456232122362273224922482334222822432098216921532159218722116748146627515987987227529527668476879457392525241125212438251925192529201.8235.5197.4205.7178.0241.9200.6131.2168.2126.9137.6107.8171.6130.03937413939463819363942594059108.5111.1106.8106.3102.1115.2107.6	Recording6:457:0015110234567232122362273224922482334222823262243209821692153215921872211225867481466275159879872284275295276684768794573991025252411252124382519251925292644201.8235.5197.4205.7178.0241.9200.6248.2131.2168.2126.9137.6107.8171.6130.0174.439374139394638193639425940594524108.5111.1106.8106.3102.1115.2107.6120.0	Recording6:457:00151102345678232122362273224922482334222823262244224320982169215321592187221122582151674814662751598798722842701752952766847687945739910794252524112521243825192519252926442482201.8235.5197.4205.7178.0241.9200.6248.2207.8131.2168.2126.9137.6107.8171.6130.0174.4138.4393741393946381936394259405945243935108.5111.1106.8106.3102.1115.2107.6120.0107.2	Recording 6:45 7:00 1511023456789232122362273224922482334222823262244232422432098216921532159218722112258215122726748146627515987987228427017067529527668476879457399107947582525241125212438251925192529264424822644201.8235.5197.4205.7178.0241.9200.6248.2207.8205.4131.2168.2126.9137.6107.8171.6130.0174.4138.4131.73937413939463819363942594059452439353853108.5111.1106.8106.3102.1115.2107.6120.0107.2111.8

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Performance Report No Action Conditions AM 11/05/2019

1: MD 201 & I-95 SB off-Ramp Performance by movement

Movement	EBL	EBR	NBT	SBT	All
Travel Time (hr)	2.1	4.2	8.8	4.0	19.1

2: MD 201 & I-95 NB Off Ramp Performance by movement

Movement	WBL	WBR	NBT	SBT	All
Travel Time (hr)	7.4	12.9	2.9	4.7	27.9

3: MD 201 & SHA Dist. 3/Crescent Drive Performance by movement

Movement	EBL	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All
Travel Time (hr)	0.0	0.0	1.9	0.0	0.6	0.7	5.2	0.1	0.5	6.0	0.0	15.1

4: MD 201 & Ivy Lane Performance by movement

Movement	EBR	NBL	NBT	SBT	SBR	All
Travel Time (hr)	0.6	1.8	9.5	7.0	0.0	19.0

5: MD 201 & Cherrywood Lane Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Travel Time (hr)	11.9	1.2	3.0	25.2	5.8	1.6	48.8

6: MD 201 & Sunnyside Avenue Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Travel Time (hr)	6.5	6.8	23.0	19.0	36.3	6.9	98.4

7: MD 201 & Beaver Dam Road Performance by movement

Movement	WBL	WBR	NBT	NBR	SBL	SBT	All
Travel Time (hr)	6.3	6.9	7.7	0.1	0.7	30.9	52.5

8: MD 201 & Powder Mill Road Performance by movement

Movement Travel Time (hr)	EBL 2.6	EBT 4.9	EBR 23.8	WBL 3.8	WBT 2.1	WBR 0.3	NBL 4.7	NBT 3.8	NBR 0.2	SBL 0.6	SBT 18.0	SBR 2.0	All 66.8
9: Edmonston Road & Odell R	load Pe	rforman	ce by m	ovemen	t								
Movement Travel Time (hr)	EBL 0.3	EBR 0.0	WBL 0.0	WBT 0.1	WBR 0.0	NBL 0.2	NBT 1.6	NBR 0.0	SBT 1.5	SBR 0.1	All 3.8		
10: Powder Mill Road & Poultr	y Road	Perform	nance by	/ moven	nent								
Movement Travel Time (hr)	EBL 0.0	EBT 0.4	WBT 3.0	All 3.4									
11: Powder Mill Road Perform	ance by	v movem	nent										
Movement Travel Time (hr)	NBL 0.0	SET 0.4	SER 0.0	NWT 0.2	All 0.7								
12: Powder Mill Road Perform	ance by	v movem	nent										
Movement Travel Time (hr)	EBL 0.0	EBT 0.6	WBT 0.6	WBR 0.3	SBL 0.9	SBR 0.1	All 2.7						
13: Powder Mill Road Perform	ance by	v movem	nent										
Movement Travel Time (hr)	EBT 0.4	EBR 0.2	WBL 0.4	WBT 1.3	SBL 2.8	SBT 0.0	SBR 1.9	All 7.1					
14: Powder Mill Road Perform	ance by	v movem	nent										
Movement Travel Time (hr)	EBL 0.6	EBT 1.5	WBT 0.8	WBR 0.8	NBL 0.9	NBT 0.0	NBR 0.8	All 5.3					
15: Powder Mill Road Perform	ance by	v movem	nent										
Movement	EBT	EBR	WBL	WBT	NBL	NBR	All						

Travel Time (hr)	1.7	0.8	0.9	2.8	3.3	0.1	9.5
------------------	-----	-----	-----	-----	-----	-----	-----

16: Powder Mill Road Performance by movement

Movement	EBT	EBR	SET	NWL	NWT	All
Travel Time (hr)	0.0	0.0	0.1	0.2	4.3	4.6

17: Performance by movement

Movement	WBL	NBT	NBR	SBT	All
Travel Time (hr)	0.0	0.1	0.1	0.0	0.2

21: MD 201 /MD 201 & I-95 NB On Ramp Performance by movement

Movement	NBT	NBR	SBT	All
Travel Time (hr)	1.0	1.8	0.8	3.5

23: I-95 SB On Ramp & MD 201 Performance by movement

Movement	NBT	SBT	SBR	All
Travel Time (hr)	4.7	1.4	1.3	7.4

26: MD 201 & Lane Drop Performance by movement

Movement	SET	NWT	All
Travel Time (hr)	3.4	27.6	31.0

47: MD 201 Performance by movement

Movement	SBT	SBR	NEL	NET	All
Travel Time (hr)	0.2	42.6	5.0	0.0	47.9

61: MD 201 & Ramp to Northbound I-95 Performance by movement

Movement	NBT	SBT	SBR	All
Travel Time (hr)	3.2	2.0	0.5	5.7

Total Network Performance

Travel Time (hr) 671.0

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

Queuing and Blocking ReportNo Action Conditions AM11/05/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т
Maximum Queue (ft)	100	162	75	118	117	201	91	116
Average Queue (ft)	16	80	3	47	28	79	30	33
95th Queue (ft)	60	138	76	101	80	162	76	84
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)				0				
Queuing Penalty (veh)			0					
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	215	258	372	315	125	137	146	198	192	248	
Average Queue (ft)	101	155	203	183	52	71	68	85	89	109	
95th Queue (ft)	188	233	301	276	99	123	120	164	168	212	
Link Distance (ft)		1405	1405			282	282	215	215	215	
Upstream Blk Time (%)									0	0	1
Queuing Penalty (veh)								0	0	2	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)			1	0							
Queuing Penalty (veh)			3	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	61	182	83	88	176	240	255	45	84	77	101	160
Average Queue (ft)	5	87	35	34	31	71	65	2	23	13	21	35
95th Queue (ft)	31	151	68	74	127	182	185	40	64	51	65	103

Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	239	429	250	250	266 3 1 0	266 1 7	266 2 7 2 1	1 200 0 0	300	783	783	783
Intersection: 4: MD 201 & Ivy	Lane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 104 30 77 350	NB L 318 84 287 783 4	NB T 264 47 323 783 1 7	NB T 268 48 322 783 1 3	SB T 62 8 37 1193 1	SB T 113 31 86 1193						
Intersection: 5: MD 201 & Che	errywood	d Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (yeb)	EB L 252 145 264	EB L 656 236 616 1306	EB R 184 44 125 1306	NB L 539 194 623	NB T 820 319 972 1193 20	NB T 823 318 969 1193 3 22	SB T 242 119 224 610 3	SB T 315 160 277 610	SB R 256 66 169			
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250 5 8	14 25		750 0 0	15 32	22		1 3	250 0 0			
Intersection: 6: MD 201 & Sur	nyside /	Avenue										
Movement	EB	EB	NB	NB	B35	B6006	SB	SB				

Directions Served	L	R	L	TR	Т	Т	Т	R
Maximum Queue (ft)	598	375	475	1481	2319	592	1660	275
Average Queue (ft)	230	252	461	1267	1449	241	1567	121
95th Queue (ft)	469	404	513	1914	3039	688	1902	310
Link Distance (ft)	968			1368	2212	490	1542	
Upstream Blk Time (%)					29	23	19	34
Queuing Penalty (veh)				407	326	272	438	
Storage Bay Dist (ft)		350	450					250
Storage Blk Time (%)	5	4	37	0			34	0
Queuing Penalty (veh)	14	5	328	1			71	2

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served	LR	TR	LT	
Maximum Queue (ft)	577	114	938	
Average Queue (ft)	330	4	775	
95th Queue (ft)	675	49	1241	
Link Distance (ft)	625	1542	843	
Upstream Blk Time (%)		18		31
Queuing Penalty (veh)	0		401	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	B40	NB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	Т	R	Т	L	Т	R	L	Т	TR	
Maximum Queue (ft)	134	971	525	268	351	64	16	396	501	179	299	749	728	
Average Queue (ft)	45	461	311	144	117	18	1	197	173	10	66	428	391	
95th Queue (ft)	106	1156	704	250	266	61	11	361	368	96	242	738	700	
Link Distance (ft)		920			512		1885		617			813	813	
Upstream Blk Time (%)			32			1				0			5	3
Queuing Penalty (veh)		0			2				1			0	0	
Storage Bay Dist (ft)	250		500	250		40		400		275	275			
Storage Blk Time (%)		0	41	3	34	0		1	2	0	0	41		
Queuing Penalty (veh)		0	69	6	79	2		4	11	0	0	11		

Transportation Impact Study

Intersection: 9: Edmonston Road & Odell Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB LTR 97 28 78 509	WB LT 56 9 40 488	WB R 61 6 34	NB LT 212 39 121 419	SB LTR 12 0 6 365
Storage Bay Dist (ft)			50		
Storage Blk Time (%)		2	0		
Queuling Fenalty (ven)		0	0		
Intersection: 10: Powder Mill I	Road &	Poultry	Road		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	EB LT 114 55 90 97 1	B69 T 4 0 4 313 0	WB TR 123 75 108 858		
Intersection: 11: Powder Mill I	Road				
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	NB L 33 13 39 46	0			

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 12: Powder Mill Road

EB	WB	SB
L	TR	LR
34	8	103
2	0	47
16	6	83
	153	467
50		
0		
0		
	EB L 34 2 16 50 0	EB WB L TR 34 8 2 0 16 6 153 50 0 0

0

Intersection: 13: Powder Mill Road

Movement	EB	WB	SB	SB
Directions Served	TR	L	L	TR
Maximum Queue (ft)	8	49	60	261
Average Queue (ft)	0	14	47	97
95th Queue (ft)	6	39	58	196
Link Distance (ft)	153			850
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		225	25	
Storage Blk Time (%)			47	23
Queuing Penalty (veh)			97	57
Intersection: 14: Powder Mi	ll Road			
Movement	EB			
Directions Served				
Maximum Quaua (ft)	L 00	26	L 67	
maximum Queue (II)	ōΖ	20	07	97
Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	30 61	2 13 268	35 60	33 64 857
---	--------------------------------------	-----------------------------------	-----------------------------------	-------------------------------------
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250		50 5 5	1 1
Intersection: 15: Powder Mill F	Road			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	EB T 174 85 146 546	EB R 54 7 32 260	WB L 106 38 82 300	WB T 209 102 180 792
Intersection: 16: Powder Mill F	Road			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	EB R 26 13 34 14 0	NW LT 51 23 1635 2		

Intersection: 17:

Movement	WB	NB	SB
Directions Served	L	TR	Т
Maximum Queue (ft)	3	14	3
Average Queue (ft)	0	1	0
95th Queue (ft)	4	9	3
Link Distance (ft)	14	460	46
Upstream Blk Time (%)		0	0
Queuing Penalty (veh)	0		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	SB	
Directions Served	Т	
Maximum Queue (ft)	4	
Average Queue (ft)	0	
95th Queue (ft)	3	
Link Distance (ft)	39	
Upstream Blk Time (%)		0
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	SB
Directions Served	R
Maximum Queue (ft)	6
Average Queue (ft)	0
95th Queue (ft)	6
Link Distance (ft)	115
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	

Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 26: MD 201 & Lane Drop

Movement	NW	NW	
Directions Served	Т	Т	
Maximum Queue (ft)	627	628	
Average Queue (ft)	366	375	
95th Queue (ft)	723	726	
Link Distance (ft)	610	610	
Upstream Blk Time (%)		5	6
Queuing Penalty (veh)	33	41	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Intersection: 47: MD 201			
Movement	SB	SB	NE
Directions Served	R	R	L
Maximum Queue (ft)	654	790	8
Average Queue (ft)	530	634	0
95th Queue (ft)	776	970	0
Link Distance (ft)	617	617	843
Upstream Blk Time (%)		6	60
Queuing Penalty (veh)	40	387	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Intersection: 61: MD 201 & R	amp to	Northbo	und I-

1-95 ηþ

Movement	NB	NB	NB
Directions Served	Т	Т	Т
Maximum Queue (ft)	30	45	49
Average Queue (ft)	1	1	1
95th Queue (ft)	17	18	22

 Link Distance (ft)
 215
 215
 215

 Upstream Blk Time (%)
 0
 0
 0
 0

 Queuing Penalty (veh)
 0
 0
 0
 0

 Storage Bay Dist (ft)
 Storage Blk Time (%)
 Upueuing Penalty (veh)
 Upueuing Penalty (veh)

Network Summary Network wide Queuing Penalty: 3260

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Simulation Summary

No Action Conditions PM 12/16/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) # of Intervals		1 2:52 4:00 68 60 5	10 2:52 4:00 68 60 5	2 2:52 4:00 68 60 5	3 2:52 4:00 68 60 5	4 2:52 4:00 68 60 5	5 2:52 4:00 68 60 5	6 2:52 4:00 68 60 5	7 2:52 4:00 68 60 5	8 2:52 4:00 68 60 5	9 2:52 4:00 68 60 5	Avg 2:52 4:00 68 60 5	
# of Recorded Intervals		0	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		12459	12792	12612	12655	12795	12761	12864	12393	12728	12741	12684	•
Vehs Exited		12336	12538	12402	12442	12573	12501	12721	12225	12467	12547	12480	
Starting Vehs		587	574	596	630	609	555	590	600	566	587	583	
Ending Vehs		710	828	806	843	831	815	733	768	827	781	782	
Travel Distance (mi)		13342	13496	13758	13500	13726	13697	13591	13488	13743	13587	13593	
Travel Time (hr)		997.5	914.0	939.5	896.1	993.4	850.5	825.5	929.3	993.9	911.9	925.1	
Total Delay (hr)		613.6	526.3	542.7	508.4	597.4	456.3	434.6	541.2	597.6	520.6	533.9	
Total Stops		16312	16332	16909	16434	17844	15764	15719	16485	16702	16130	16458	
Fuel Used (gal)		561.0	551.1	560.1	544.8	570.0	539.3	534.9	548.1	569.8	550.9	553.0	
Interval #0 Information Start Time 2 End Time 3 Total Time (min) 8 Volumes adjusted by Gr No data recorded this in	Seedin 2:52 3:00 3 rowth F iterval.	eg Factors.											
Interval #1 Information	Record	ling											
Start Time	3:00 3:15												
Total Time (min)	15												
Volumes adjusted by Gr	rowth F	actors.											
				-	-		_	-	_	-	-		
Run Number		1	10	2	3	4	5	6	1	8	9	Avg	
Vens Entered		3163	3272	3158	3166	32/6	3195	3266	3146	3238	3195	3201	
vens Exited		3024	3117	3025	3090	3128	3108	3182	3008	3065	3099	3084	

Starting Vehs	587	574	596	630	609	555	590	600	566	587	583
Ending Vehs	726	729	729	706	757	642	674	738	739	683	707
Travel Distance (mi)	3361	3378	3427	3333	3433	3380	3424	3401	3421	3359	3392
Travel Time (hr)	182.5	164.5	174.1	173.4	185.1	160.1	160.3	178.8	170.3	167.2	171.6
Total Delay (hr)	85.0	67.1	75.4	77.9	86.1	62.9	61.9	80.7	71.5	70.1	73.8
Total Stops	4055	3752	4017	3939	4189	3681	3637	3997	3905	3741	3885
Fuel Used (gal)	126.2	124.2	127.7	124.7	130.6	123.7	124.5	128.0	126.0	123.4	125.9
Interval #2 InformationRecordingStart Time3:15End Time3:30Total Time (min)15Volumes adjusted by Growth Factors.											
Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3139	3133	3131	3122	3185	3229	3210	3093	3189	3228	3168
Vehs Exited	3108	3108	3108	3094	3145	3121	3164	3106	3085	3159	3121
Starting Vehs	726	729	729	706	757	642	674	738	739	683	707
Ending Vehs	757	754	752	734	797	750	720	725	843	752	757
Travel Distance (mi)	3309	3351	3430	3355	3423	3355	3440	3336	3377	3401	3378
Travel Time (hr)	231.9	214.7	212.3	205.9	241.4	193.3	190.9	216.4	225.7	211.7	214.4
Total Delay (hr)	136.9	118.8	113.1	109.6	142.8	96.7	92.1	120.4	128.6	113.6	117.3
Total Stops	4184	4161	4213	4093	4527	3937	4020	4130	4384	3980	4160
Fuel Used (gal)	135.3	134.3	134.5	131.9	140.9	128.7	131.8	132.7	136.1	134.5	134.1
Interval #3 InformationRecordingStart Time3:30End Time3:45Total Time (min)15Volumes adjusted by Growth Factors.											
Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3151	3200	3187	3152	3151	3165	3139	3071	3110	3078	3133
Vehs Exited	3076	3156	3096	3107	3096	3097	3112	3032	3101	3057	3091
Starting Vehs	757	754	752	734	797	750	720	725	843	752	757
Ending Vehs	832	798	843	779	852	818	747	764	852	773	799
Travel Distance (mi)	3322	3402	3502	3367	3444	3460	3354	3428	3476	3361	3412
Travel Time (hr)	275.9	249.4	249.8	236.5	265.3	230.1	227.1	254.3	273.3	251.4	251.3

Total Delay (hr)180.6151.6148.9139.9166.1130.2130.5155.6173.0154.8153.1Total Stops42174323431441654633395940274265407040174198Fuel Used (gal)146.2143.3144.5139.1145.4139.2136.4142.0147.9141.5142.6

Interval #4 InformationRecordingStart Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3006	3187	3136	3215	3183	3172	3249	3083	3191	3240	3162
Vehs Exited	3128	3157	3173	3151	3204	3175	3263	3079	3216	3232	3177
Starting Vehs	832	798	843	779	852	818	747	764	852	773	799
Ending Vehs	710	828	806	843	831	815	733	768	827	781	782
Travel Distance (mi)	3350	3364	3400	3444	3426	3501	3373	3323	3469	3466	3412
Travel Time (hr)	307.2	285.4	303.3	280.3	301.5	267.0	247.1	279.8	324.5	281.7	287.8
Total Delay (hr)	211.1	188.9	205.3	181.0	202.5	166.6	150.1	184.5	224.4	182.0	189.6
Total Stops	3856	4096	4365	4237	4495	4187	4035	4093	4343	4392	4206
Fuel Used (gal)	153.3	149.3	153.4	149.1	153.0	147.7	142.2	145.3	159.8	151.5	150.4

Bureau	of Engraving and Printing	SimTraffic Report
LBG	Page 0	

Queuing and Blocking ReportNo Action Conditions PM12/16/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т
Maximum Queue (ft)	134	512	451	149	225	241	161	163
Average Queue (ft)	24	107	24	65	59	109	60	69
95th Queue (ft)	77	309	242	124	147	203	127	136
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)			0	0				

Queuing Penalty (veh)00Storage Bay Dist (ft)325Storage Blk Time (%)Queuing Penalty (veh)

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	332	373	287	280	155	186	193	168	188	212	
Average Queue (ft)	165	218	173	156	63	94	102	84	92	98	
95th Queue (ft)	271	320	254	240	122	156	167	148	161	177	
Link Distance (ft)		1405	1405			282	282	215	215	215	
Upstream Blk Time (%)									0	0	0
Queuing Penalty (veh)								0	0	1	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)		0	0	0							
Queuing Penalty (veh)		0	0	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	46	213	101	74	222	257	279	201	167	97	105	144
Average Queue (ft)	14	106	41	22	85	142	141	11	73	17	29	34
95th Queue (ft)	37	180	80	58	179	238	242	91	139	59	76	96
Link Distance (ft)	239	429			266	266	266			783	783	783
Upstream Blk Time (%)						0	0	0				
Queuing Penalty (veh)					0	1	2					
Storage Bay Dist (ft)			250	250				200	300			
Storage Blk Time (%)		0			0		1	0				
Queuing Penalty (veh)		0			0		3	0				

Intersection: 4: MD 201 & Ivy Lane

Movement	NB	NB	SB	SB
Directions Served	L	L	Т	Т
Maximum Queue (ft)	138	173	126	153

58	90	51	91
114	144	109	145
	783	1193	1193
350			
	58 114 350	58 90 114 144 783 350	58 90 51 114 144 109 783 1193 350

Intersection: 5: MD 201 & Cherrywood Lane

Movement	EB	EB	EB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	L	Т	Т	Т	Т	R
Maximum Queue (ft)	214	236	302	220	174	191	248	292	239
Average Queue (ft)	118	141	144	98	62	61	127	161	64
95th Queue (ft)	192	213	251	179	154	159	215	254	156
Link Distance (ft)		1306	1306		1193	1193	610	610	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250			750					250
Storage Blk Time (%)	0	0						1	0
Queuing Penalty (veh)	0	0						2	0

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	SB	SB
Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	1022	375	475	1329	268	1652	275
Average Queue (ft)	949	372	418	573	20	1342	131
95th Queue (ft)	1167	402	535	1168	249	2024	322
Link Distance (ft)	968			1368	2212	1546	
Upstream Blk Time (%)		62			1		24
Queuing Penalty (veh)	0			18		267	
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	26	42	13	1		39	0
Queuing Penalty (veh)	158	115	141	4		68	1

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served	LTR	TR	LT	
Maximum Queue (ft)	568	50	915	
Average Queue (ft)	282	2	619	
95th Queue (ft)	584	26	1159	
Link Distance (ft)	626	1546	837	
Upstream Blk Time (%)		6		26
Queuing Penalty (veh)	0		288	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR	
Maximum Queue (ft)	275	977	525	178	275	64	425	671	300	293	476	458	
Average Queue (ft)	220	395	124	60	108	20	300	373	98	117	287	263	
95th Queue (ft)	332	759	477	129	215	63	479	663	329	262	453	429	
Link Distance (ft)		1433			523			618			816	816	
Upstream Blk Time (%)									3			0	0
Queuing Penalty (veh)								36			0	0	
Storage Bay Dist (ft)	250		500	250		40	400		275	275			
Storage Blk Time (%)	7	17	1		31	1	4	11	0	0	12		
Queuing Penalty (veh)	51	109	3		42	2	31	73	1	0	12		

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	118	30	26	210	33
Average Queue (ft)	34	2	2	32	2
95th Queue (ft)	94	14	14	125	40
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					0
Queuing Penalty (veh)				0	
Storage Bay Dist (ft)			50		

Storage Blk Time (%)	0	0
Queuing Penalty (veh)	0	0

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	B69	WB	SB
Directions Served	LT	Т	TR	LR
Maximum Queue (ft)	197	178	127	25
Average Queue (ft)	153	47	68	6
95th Queue (ft)	203	137	106	23
Link Distance (ft)	97	325	866	391
Upstream Blk Time (%)		32		
Queuing Penalty (veh)	227			
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 11: Powder Mill Road

Movement	EB	NB	
Directions Served	TR	L	
Maximum Queue (ft)	64	52	
Average Queue (ft)	6	21	
95th Queue (ft)	34	49	
Link Distance (ft)	383	48	
Upstream Blk Time (%)			1
Queuing Penalty (veh)		0	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: Powder Mill Road & Springfield Road

Movement	EB	EB	SB
Directions Served	L	Т	LR
Maximum Queue (ft)	34	3	284
Average Queue (ft)	6	0	121
95th Queue (ft)	27	3	229

Link Distance (ft)		609	467
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	50		
Storage Blk Time (%)	0		
Queuing Penalty (veh)	0		

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement	EB	WB	SB	SB	
Directions Served	TR	L	L	TR	
Maximum Queue (ft)	40	99	62	898	
Average Queue (ft)	3	42	50	792	
95th Queue (ft)	23	79	56	1086	
Link Distance (ft)	153			850	
Upstream Blk Time (%)		0			78
Queuing Penalty (veh)	0			0	
Storage Bay Dist (ft)		225	25		
Storage Blk Time (%)			98	12	
Queuing Penalty (veh)			143	34	

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	NB	NB	
Directions Served	L	Т	TR	L	TR	
Maximum Queue (ft)	258	224	48	75	597	
Average Queue (ft)	125	25	11	61	297	
95th Queue (ft)	234	185	37	90	753	
Link Distance (ft)		550	268		857	
Upstream Blk Time (%)			0			11
Queuing Penalty (veh)		0			0	
Storage Bay Dist (ft)	250			50		
Storage Blk Time (%)	3	0		77	6	
Queuing Penalty (veh)	21	0		38	4	

Intersection: 15: Soil Conservation Road & Powder Mill Road

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	T 235 139 214 546	R 66 9 41	L 76 29 66	T 240 117 201 792	L 417 230 363 892	R 49 0 0
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	0 0	260	300	0 0	0 0	475 0 0
Intersection: 16: Powder Mill	Road					
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB T 53 23 44 19 4	WB TR 6 0 5 796 10	SE L 80 16 56 50 6	1		
Intersection: 17:						
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	WB L 3 0 4 19 0	NB TR 59 8 37 462 0	SB T 6 0 6 48 0	0		

Intersection: 18: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	NB	NB	NB	SB	SB	SB
Directions Served	Т	Т	R	Т	Т	Т
Maximum Queue (ft)	2	4	23	14	2	8
Average Queue (ft)	0	0	1	1	0	0
95th Queue (ft)	2	4	14	7	2	4
Link Distance (ft)	115	115	115	39	39	39
Upstream Blk Time (%)					0	
Queuing Penalty (veh)				0		
Storage Bay Dist (ft)						
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	NB	NB	SB	SB	SB
Directions Served	Т	Т	Т	Т	R
Maximum Queue (ft)	49	59	2	12	34
Average Queue (ft)	2	2	0	0	1
95th Queue (ft)	50	60	2	6	13
Link Distance (ft)	542	542	115	115	115
Upstream Blk Time (%)			0		

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 26: MD 201 & Lane Drop

Movement	NW	NW	
Directions Served	Т	Т	
Maximum Queue (ft)	392	404	
Average Queue (ft)	179	187	
95th Queue (ft)	457	465	
Link Distance (ft)	610	610	
Upstream Blk Time (%)		0	0
Queuing Penalty (veh)	1	1	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			
Queuing Penalty (veh)			

0

Intersection: 28: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 40: Powder Mill Road

Movement Directions Served Maximum Queue (ft)

Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 43: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 44: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 45: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	
Intersection: 47: MD 201	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	SB R 588 288 615 618 6
Intersection: 48: Powder Mill F	Road
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft)	

SB

R

NE

L

Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 49: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 50: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 56: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 57: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 61: MD 201 & Ramp to Northbound I-95

Movement	NB	NB	
Directions Served	Т	Т	
Maximum Queue (ft)	4	21	
Average Queue (ft)	0	1	
95th Queue (ft)	6	21	
Link Distance (ft)	215	215	
Upstream Blk Time (%)			0
Queuing Penalty (veh)		0	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 66: Powder Mill Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 72: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 74: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Network Summary Network wide Queuing Penalty: 1971

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Simulation Summary Action Alternative AM 11/05/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) # of Intervals		1 5:52 7:00 68 60 5	10 5:52 7:00 68 60 5	2 5:52 7:00 68 60 5	3 5:52 7:00 68 60 5	4 5:52 7:00 68 60 5	5 5:52 7:00 68 60 5	6 5:52 7:00 68 60 5	7 5:52 7:00 68 60 5	8 5:52 7:00 68 60 5	9 5:52 7:00 68 60 5	Avg 5:52 7:00 68 60 5	
# of Recorded Interval	s	U	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		9985	9948	9952	9696	9893	9783	10017	9854	10018	9924	9907	
Vehs Exited		9432	9364	9279	9176	9316	9311	9441	9288	9392	9359	9337	
Starting Vehs		536	539	539	507	529	554	504	522	537	509	524	
Ending Vens		1089	1123	1212	1027	1106	1026	1080	1088	1163	1074	1093	
Travel Time (hr)		1049.8	996 1	929 1	982.2	1027.8	997 7	990 7	1074 7	1005.9	962.2	1001 6	
Total Delay (hr)		721.4	671.6	603.5	661.9	703.1	674.1	665.7	751.6	675.8	637.7	676.6	
Total Stops		19292	19395	18555	18573	19519	19080	19266	19906	19029	18933	19150	
Fuel Used (gal)		525.7	509.8	496.9	502.4	517.8	511.4	507.8	524.9	515.6	501.2	511.4	
Interval #0 Information Start Time End Time Total Time (min)	Seedir 5:52 6:00 8	ng											
No data recorded this	interval.												
Interval #1 Information	Record	dina											
Start Time	6:00	anig											
End Time	6:15												
Total Time (min)	15												
Run Number Vehs Entered Vehs Exited Starting Vehs		1 2738 2501 536 772	10 2555 2331 539 762	2 2531 2369 539 701	3 2522 2231 507 708	4 2550 2376 529 702	5 2593 2395 554 752	6 2550 2317 504 727	7 2692 2450 522 764	8 2520 2323 537 724	9 2547 2385 509 671	Avg 2576 2368 524 727	
Linulity vens		113	103	101	190	103	152	131	104	104	011	151	

Travel Distance (mi)		3045	2951	2989	2916	3033	2924	2868	3023	2943	3018	2971
Travel Time (hr)		170.8	162.7	154.8	165.4	161.4	164.9	158.7	174.6	166.1	151.7	163.1
Total Delay (hr)		85.5	79.8	70.8	83.6	76.3	82.7	77.7	90.0	83.2	67.0	79.7
Total Stops		4051	3847	3758	3992	3930	3921	3802	4168	3985	3796	3917
Fuel Used (gal)		116.2	111.1	111.0	110.5	112.8	111.6	107.5	115.4	111.7	110.6	111.8
Interval #2 Information Start Time End Time Total Time (min)	n Recor 6:15 6:30 15	ding										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2565	2517	2497	2512	2571	2530	2594	2497	2557	2546	2542
Vehs Exited		2389	2391	2353	2429	2303	2390	2412	2309	2365	2372	2369
Starting Vehs		773	763	701	798	703	752	737	764	734	671	737
Ending Vehs		949	889	845	881	971	892	919	952	926	845	903
Travel Distance (mi)		3043	2868	2943	2859	2906	2989	2976	2932	2997	2892	2941
Travel Time (hr)		232.4	217.6	202.6	224.8	215.7	213.4	221.7	230.0	220.3	197.4	217.6
Total Delay (hr)		147.5	137.0	120.0	144.7	133.7	129.3	138.4	147.5	136.1	116.0	135.0
Total Stops		4968	4861	4219	4736	4878	4724	4520	4798	4442	4310	4643
Fuel Used (gal)		127.5	119.8	119.4	121.1	120.6	122.5	123.4	123.4	124.3	116.2	121.8
Interval #3 Information Start Time End Time Total Time (min)	n Recor 6:30 6:45 15	ding										
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2376	2496	2524	2389	2486	2471	2436	2439	2535	2452	2455
Vehs Exited		2316	2371	2308	2287	2351	2294	2347	2324	2357	2313	2326
Starting Vehs		949	889	845	881	971	892	919	952	926	845	903
Ending Vehs		1009	1014	1061	983	1106	1069	1008	1067	1104	984	1029
Travel Distance (mi)		2818	2865	2837	2869	2850	2860	2901	2789	2889	2867	2855
Travel Time (hr)		286.0	277.5	249.7	263.1	293.7	272.5	282.3	295.9	272.8	271.1	276.5
Total Delay (hr)		206.8	196.9	169.7	182.7	213.9	192.6	201.1	217.6	191.5	190.7	196.3
Total Stops		5135	5238	5006	4954	5620	5386	5163	5717	5206	5211	5262
Fuel Used (gal)		133.1	132.1	125.0	129.3	136.4	132.1	134.1	134.5	130.7	130.5	131.8

Interval #4 Information Start Time End Time	Record 6:45 7:00	ding										
Total Time (min)	15											
Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2306	2380	2400	2273	2286	2189	2437	2226	2406	2379	2325
Vehs Exited		2226	2271	2249	2229	2286	2232	2365	2205	2347	2289	2269
Starting Vehs		1009	1014	1061	983	1106	1069	1008	1067	1104	984	1029
Ending Vehs		1089	1123	1212	1027	1106	1026	1080	1088	1163	1074	1093
Travel Distance (mi)		2802	2866	2828	2781	2789	2767	2831	2787	2907	2791	2815
Travel Time (hr)		360.5	338.3	322.1	328.8	357.0	346.9	328.0	374.3	346.7	342.0	344.5
Total Delay (hr)		281.7	257.9	242.9	250.9	279.2	269.6	248.5	296.5	265.1	263.9	265.6
Total Stops		5138	5449	5572	4891	5091	5049	5781	5223	5396	5616	5318
Fuel Used (gal)		148.9	146.8	141.4	141.5	147.9	145.2	142.7	151.6	148.9	143.9	145.9

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Performance Report Action Alternative AM 11/05/2019

1: MD 201 & I-95 SB off-Ramp Performance by movement

Movement	EBL	EBR	NBT	SBT	All
Denied Del/Veh (s)	0.6	0.6	0.2	0.0	0.3
Total Del/Veh (s)	46.0	3.9	5.4	3.4	7.3

2: MD 201 & I-95 NB Off Ramp Performance by movement

Movement	WBL	WBR	NBT	SBT	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0
Total Del/Veh (s)	22.6	99.7	18.1	12.3	42.4

3: MD 201 & SHA Dist. 3/Crescent Drive Performance by movement

Movement	EBL	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All
Denied Del/Veh (s)	0.1	0.1	0.4	0.4	3.9	0.0	0.0	0.0	0.1	0.0	0.0	0.1
Total Del/Veh (s)	20.8	8.8	41.8	35.7	27.8	58.3	53.3	32.7	59.3	4.9	4.6	34.4

4: MD 201 & Ivy Lane Performance by movement

Movement	EBR	NBL	NBT	SBT	SBR	All
Denied Del/Veh (s)	0.2	0.0	3.8	0.0	0.0	2.2
Total Del/Veh (s)	1.6	46.8	91.2	5.1	3.3	54.7

5: MD 201 & Cherrywood Lane Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Del/Veh (s)	170.2	34.4	69.1	207.0	13.6	6.1	117.3

6: MD 201 & Sunnyside Avenue Performance by movement

Movement	EBL	EBR	NBL	NBT	SBT	SBR	All
Denied Del/Veh (s)	318.0	330.9	0.0	0.0	1.2	0.9	49.7
Total Del/Veh (s)	532.0	268.2	100.7	30.0	112.4	102.7	113.0

7: MD 201 & Beaver Dam Road Performance by movement

Movement	WBL	WBR	NBT	NBR	SBL	SBT	All
Denied Del/Veh (s)	66.3	82.8	0.1	0.0	13.4	24.5	13.1
Total Del/Veh (s)	1897.4	1690.7	5.2	4.6	64.2	57.0	49.3

8: MD 201 & Powder Mill Road Performance by movement

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	All
Denied Del/Veh (s)	109.1	111.2	114.8	0.1	0.0	0.0	0.0	0.0	0.2	7.6	4.8	3.6	32.1
Total Del/Veh (s)	95.0	88.0	96.4	63.6	39.4	11.7	29.6	15.1	3.2	81.7	108.5	77.4	59.7

9: Edmonston Road & Odell Road Performance by movement

Movement	EBL	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBT	SBR	All
Denied Del/Veh (s)	0.1	0.1	0.1	0.1	5.0	0.5	0.5	2.9	0.7	0.6	0.6

Total Del/Veh (s) 53.0 21.5 48.3 31.8 13.5 7.7 2.4 0.9 1.2 0.3 2.9

10: Powder Mill Road & Poultry Road Performance by movement

Movement	EBL	EBT	WBT	WBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0
Total Del/Veh (s)	18.6	16.8	125.7	124.2	77.4

11: Powder Mill Road Performance by movement

Movement	NBL	SET	SER	NWT	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0
Total Del/Veh (s)	60.5	0.2	0.1	2.2	3.0

12: Powder Mill Road Performance by movement

Movement	EBL	EBT	WBT	WBR	SBL	SBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.2	0.2	0.0
Total Del/Veh (s)	7.8	1.0	1.1	0.6	23.7	18.2	3.9

13: Powder Mill Road Performance by movement

Movement	EBT	EBR	WBL	WBT	SBL	SBT	SBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	29.2	42.7	28.1	10.0
Total Del/Veh (s)	1.4	0.9	4.7	2.2	145.6	123.1	131.5	49.3

14: Powder Mill Road Performance by movement

Movement	EBL	EBT	WBT	WBR	NBL	NBT	NBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	4.3	2.7	2.0	1.1
Total Del/Veh (s)	8.4	1.6	2.3	1.0	88.9	67.1	66.4	25.2

15: Powder Mill Road Performance by movement

Movement	EBT	EBR	WBL	WBT	NBL	NBR	All
Denied Del/Veh (s)	0.0	0.0	3.5	0.4	0.3	3.7	0.4
Total Del/Veh (s)	25.7	1.0	35.8	17.5	17.8	1.2	15.5

16: Powder Mill Road Performance by movement

Movement	EBT	EBR	SET	NWL	NWT	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Del/Veh (s)	0.3	2.9	0.1	22.2	22.3	18.5

17: Performance by movement

Movement	WBL	NBT	NBR	SBT	All
Denied Del/Veh (s)	0.0	0.1	0.1	0.0	0.1
Total Del/Veh (s)	1.0	20.1	19.1	0.7	12.4

21: MD 201 /MD 201 & I-95 NB On Ramp Performance by movement

Movement	NBT	NBR	SBT	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0
Total Del/Veh (s)	0.3	1.2	0.2	0.5

23: I-95 SB On Ramp & MD 201 Performance by movement

Movement	NBT	SBT	SBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0
Total Del/Veh (s)	2.0	0.3	1.2	1.3

26: MD 201 & Lane Drop Performance by movement

Movement	SET	NWT	All
Denied Del/Veh (s)	0.0	1.4	0.8
Total Del/Veh (s)	1.4	97.5	57.1

47: MD 201 Performance by movement

Movement	SBT	SBR	NEL	NET	All
Denied Del/Veh (s)	0.0	12.0	0.1	0.0	6.2
Total Del/Veh (s)	52.8	101.9	4.4	1.9	54.2

61: MD 201 & Ramp to Northbound I-95 Performance by movement

Movement	NBT	SBT	SBR	All
Denied Del/Veh (s)	0.0	0.0	0.0	0.0
Total Del/Veh (s)	16.1	1.3	1.3	9.9

Total Network Performance

- Denied Del/Veh (s) 38.8 Total Del/Veh (s) 195.1
- Bureau of Engraving and Printing SimTraffic Report LBG Page 0

Queuing and Blocking Report Action Alternative AM 11/05/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	Т	Т	Т	Т	Т
Maximum Queue (ft)	170	247	152	156	210	108	128
Average Queue (ft)	43	131	71	44	97	40	46
95th Queue (ft)	126	208	131	108	179	88	101
Link Distance (ft)		734	1249	1249	1249	542	542
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)	325						
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	B6004	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	R	Т	UT	Т	Т	Т	Т	Т
Maximum Queue (ft)	332	940	1505	325	508	164	196	197	204	213	244
Average Queue (ft)	88	247	647	263	124	79	101	94	89	92	114

95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 3: MD 201 & SH	201 400 0 0 A Dist. 3	637 1405 1 3 3/Cresce	1567 1405 0 28 145 ent Drive	372 19 300 16 84	473 465 0	147 15 250	167 282 0 0 0	163 282 0 0	166 215 0 0	174 215 0 1	208 215 0 2	0
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB LTR 52 5 29 239	WB LT 186 89 155 429 0	WB R 122 47 93 250	NB L 265 51 174 0 250 0 0	NB T 461 215 498 266 0 113 20 8	NB T 496 290 600 266 20 281	NB T 492 294 603 266 49 286 51 21	NB R 225 79 257 49 200 0 0	SB L 82 22 61 300	SB T 82 15 56 783	SB T 94 24 69 783	SB TR 138 34 94 783
Intersection: 4: MD 201 & Ivy	Lane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 95 30 76 350	NB L 832 484 1069 783 36 0 0	NB T 831 523 1123 783 6 104	NB T 833 523 1120 783 18 87	SB T 70 8 40 1193 15	SB T 114 28 83 1193						

Intersection: 5: MD 201 & Cherrywood Lane

Movement	EB	EB	EB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	L	Т	Т	Т	Т	R
Maximum Queue (ft)	274	747	202	775	1230	1232	241	317	262
Average Queue (ft)	209	383	46	616	1012	1011	115	156	66
95th Queue (ft)	328	824	145	1098	1604	1601	216	278	166
Link Distance (ft)		1306	1306		1193	1193	610	610	
Upstream Blk Time (%)						17	19		
Queuing Penalty (veh)					136	153			
Storage Bay Dist (ft)	250			750					250
Storage Blk Time (%)	12	38		0	70			1	0
Queuing Penalty (veh)	22	66		1	153			3	0

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	SB	SB
Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	1022	375	475	1380	780	1662	275
Average Queue (ft)	866	325	424	638	152	1531	120
95th Queue (ft)	1239	473	534	1532	797	1965	307
Link Distance (ft)	968			1368	2212	1542	
Upstream Blk Time (%)		62			6		32
Queuing Penalty (veh)	0			97		404	
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	69	10	17	0		34	0
Queuing Penalty (veh)	199	18	205	0		71	1

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served	LR	TR	LT	
Maximum Queue (ft)	573	66	938	
Average Queue (ft)	309	4	753	
95th Queue (ft)	659	40	1251	
Link Distance (ft)	625	1542	843	
Upstream Blk Time (%)		13		30
Queuing Penalty (veh)	0		379	
Storage Bay Dist (ft)				
Storage Blk Time (%)				

Queuing Penalty (veh)

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	B40	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	Т	L	Т	R	L	Т	TR
Maximum Queue (ft)	136	975	525	241	243	65	41	324	364	268	300	778	749
Average Queue (ft)	39	549	312	131	103	16	5	162	148	8	123	458	415
95th Queue (ft)	94	1222	717	222	238	58	70	282	286	90	329	799	768
Link Distance (ft)		920			512		1885		617			813	813
Upstream Blk Time (%)			40			2				0			6
Queuing Penalty (veh)		0			6				1			0	0
Storage Bay Dist (ft)	250		500	250		40		400		275	275		
Storage Blk Time (%)		1	47	2	36	0		0	1	0	0	44	
Queuing Penalty (veh)		6	110	4	83	1		0	5	0	0	27	

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	115	76	66	187	16
Average Queue (ft)	36	12	5	37	1
95th Queue (ft)	92	49	34	118	8
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		
Storage Blk Time (%)		2	0		
Queuing Penalty (veh)		0	0		

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	B69	B74	WB	B56
Directions Served	LT	Т	Т	TR	Т
Maximum Queue (ft)	206	254	9	914	281
Average Queue (ft)	159	67	0	694	136
95th Queue (ft)	216	197	7	1161	413
Link Distance (ft)	97	313	1099	858	371

Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	302	44 4	1	326	44 20	
Intersection: 11: Powder Mill	Road					
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 47 18 48 46 2	NW T 44 16 58 46 10 39	5			
Intersection: 12: Powder Mill	Road					
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	EB L 31 4 19 50 0	WB TR 10 0 7 153	SB LR 161 65 123 467			
Intersection: 13: Powder Mill	Road					
Movement Directions Served	EB TR	WB L	WB T	SB L	SB TR	

Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	2 0 2 153	48 14 38	6 0 3 550	59 50 55	832 566 1001 850	24
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		225		25 84 230	0 48 121	
Intersection: 14: Powder Mill	Road					
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB L 64 25 52	WB TR 13 1 8 268	NB L 75 73 82	NB TR 653 313 660 857	3	
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250		50 84 80	0 2 7		
Intersection: 15: Powder Mill	Road					
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB T 161 84 142 546	EB R 46 4 25	WB L 95 36 75	WB T 234 119 203 792	NB L 218 118 194 892	
Storage Blk Time (%) Queuing Penalty (ven)		260	300			

Intersection: 16: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB R 34 13 36 14 0	SE T 3 0 46 2	NW LT 543 122 573 1635
Intersection: 17:			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	WB L 3 0 3 14 0	NB TR 62 8 55 460 0	SB T 3 0 3 46 0

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	SB	SB
Directions Served	Т	Т
Maximum Queue (ft)	8	6
Average Queue (ft)	0	0
95th Queue (ft)	4	4
Link Distance (ft)	39	39
Upstream Blk Time (%)		0
Queuing Penalty (veh)	0	

Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	SB
Directions Served	R
Maximum Queue (ft)	8
Average Queue (ft)	0
95th Queue (ft)	0
Link Distance (ft)	115
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 26: MD 201 & Lane Drop

NW	NW	
Т	Т	
640	646	
604	611	
657	662	
610	610	
	3	8
26	67	
SB	SB	NE
R	R	L
650	790	5
514	615	0
	NW T 640 604 657 610 26 SB R 650 514	NW NW T T 640 646 604 611 657 662 610 610 3 26 67 8 SB SB R R 650 790 514 615

788	988	5
617	617	843
	5	59
35	380	
	788 617 35	788 988 617 617 5 35 380

Intersection: 61: MD 201 & Ramp to Northbound I-95

NB	NB	NB	
Т	Т	Т	
241	289	267	
95	114	112	
269	314	306	
215	215	215	
	2	11	14
10	61	82	
	NB T 241 95 269 215 10	NB NB T T 241 289 95 114 269 314 215 215 10 61	NB NB NB T T T 241 289 267 95 114 112 269 314 306 215 215 215 2 11 10 61 82

Network Summary Network wide Queuing Penalty: 5114

Bureau of Engraving and Printing SimTraffic Report LBG Page 0
SimTraffic Simulation Summary Action Alternative PM 12/16/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min)	1 2:52 4:00 68 60 5	10 2:52 4:00 68 60 5	2 2:52 4:00 68 60 5	3 2:52 4:00 68 60 5	4 2:52 4:00 68 60 5	5 2:52 4:00 68 60 5	6 2:52 4:00 68 60 5	7 2:52 4:00 68 60 5	8 2:52 4:00 68 60 5	9 2:52 4:00 68 60 5	Avg 2:52 4:00 68 60 5	
# of Recorded Intervals	5	4	۵ ۵	4	J 4	J 4	4	۵ ۵	4	4	4	Δ
Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops	12991 12555 721 1157 14188 1492.7 1080.6 17997	13065 12659 722 1128 14017 1515.6 1108.2 17627	13006 12631 685 1060 14103 1339.3 929.0 17432	12844 12405 655 1094 14077 1433.8 1025.3 17378	13180 12673 664 1171 14211 1366.6 953.4 17472	13113 12640 693 1166 13873 1385.4 983.0 18067	13121 12630 654 1145 14120 1397.6 988.7 17667	12979 12544 740 1175 14069 1491.1 1082.0 17408	12870 12457 724 1137 13916 1449.1 1043.6 17171	13129 12635 648 1142 14200 1372.7 959.9 17370	13030 12585 682 1136 14077 1424.4 1015.4 17558	
Fuel Used (gal)	685.6	689.9	653.2	673.0	659.3	654.5	664.8	684.9	671.7	666.6	670.3	
Interval #0 InformationSeedinStart Time2:52End Time3:00Total Time (min)8Volumes adjusted by Growth INo data recorded this interval.	ng Factors.											
Interval #1 InformationRecordStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Growth I	ding Factors.											
Run Number Vehs Entered Vehs Exited	1 3366 3107	10 3380 3164	2 3335 3142	3 3286 3073	4 3341 3108	5 3425 3148	6 3353 3153	7 3373 3147	8 3243 3058	9 3359 3110	Avg 3346 3122	

Starting Vehs	721	722	685	655	664	693	654	740	724	648	682
Ending Vehs	980	938	878	868	897	970	854	966	909	897	909
Travel Distance (mi)	3620	3596	3573	3535	3635	3615	3516	3638	3456	3629	3581
Travel Time (hr)	232.4	245.8	219.9	226.4	216.7	221.8	216.0	245.4	235.5	206.8	226.7
Total Delay (hr)	127.1	141.1	115.9	123.6	110.5	117.2	113.7	139.5	134.3	101.1	122.4
Total Stops	4506	4615	4593	4331	4299	4684	4384	4614	4218	3986	4418
Fuel Used (gal)	143.4	146.9	139.5	140.3	140.1	139.9	137.5	147.8	140.0	139.5	141.5
Interval #2 InformationRStart Time3:End Time3:Total Time (min)15Volumes adjusted by Gro	ecording 15 30 5 wth Factors.										
Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3170	3263	3206	3225	3304	3235	3329	3179	3214	3329	3244
Vehs Exited	3106	3112	3118	3074	3147	3177	3211	3109	3085	3161	3131
Starting Vehs	980	938	878	868	897	970	854	966	909	897	909
Ending Vehs	1044	1089	966	1019	1054	1028	972	1036	1038	1065	1024
Travel Distance (mi)	3494	3514	3529	3488	3548	3453	3610	3505	3487	3482	3511
Travel Time (hr)	329.1	340.4	299.9	309.7	303.7	299.0	297.8	334.3	313.4	299.6	312.7
Total Delay (hr)	227.7	238.1	197.2	208.1	200.4	198.2	193.2	232.2	212.0	198.3	210.5
Total Stops	4486	4573	4244	4282	4339	4721	4420	4382	4073	4370	4384
Fuel Used (gal)	160.4	164.4	155.4	156.4	156.2	152.0	157.1	161.9	157.6	155.9	157.7
Interval #3 InformationRStart Time3:3End Time3:4Total Time (min)15Volumes adjusted by Grow	ecording 30 45 5 wth Factors.										
Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3246	3269	3277	3156	3342	3380	3312	3196	3195	3194	3253
Vehs Exited	3138	3224	3202	3097	3218	3206	3108	3109	3151	3122	3159
Starting Vehs	1044	1089	966	1019	1054	1028	972	1036	1038	1065	1024
Ending Vehs	1152	1134	1041	1078	1178	1202	1176	1123	1082	1137	1127
Travel Distance (mi)	3535	3459	3538	3513	3575	3537	3557	3403	3522	3503	3514
Travel Time (hr)	420.3	424.3	366.8	401.7	381.9	374.8	394.6	413.6	412.5	389.2	398.0

Total Delay (hr)317.6323.5263.8300.1278.6272.0291.7314.5310.1287.1295.9Total Stops44774239441243004530450245004058431943664369Fuel Used (gal)181.4180.7170.3177.1174.2171.6175.9176.5179.5174.8176.2

Interval #4 InformationRecordingStart Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3209	3153	3188	3177	3193	3073	3127	3231	3218	3247	3179
Vehs Exited	3204	3159	3169	3161	3200	3109	3158	3179	3163	3242	3174
Starting Vehs	1152	1134	1041	1078	1178	1202	1176	1123	1082	1137	1127
Ending Vehs	1157	1128	1060	1094	1171	1166	1145	1175	1137	1142	1136
Travel Distance (mi)	3539	3449	3463	3541	3453	3268	3438	3522	3451	3586	3471
Travel Time (hr)	511.0	505.1	452.7	496.0	464.3	489.9	489.2	497.9	487.7	477.1	487.1
Total Delay (hr)	408.3	405.5	352.1	393.6	363.8	395.6	390.0	395.8	387.2	373.3	386.5
Total Stops	4528	4200	4183	4465	4304	4160	4363	4354	4561	4648	4378
Fuel Used (gal)	200.4	197.8	188.0	199.2	188.8	191.0	194.3	198.6	194.5	196.4	194.9

Bureau	of Engraving and Printing	SimTraffic Report
LBG	Page 0	-

Queuing and Blocking Report Action Alternative PM 12/16/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т
Maximum Queue (ft)	122	466	302	147	200	233	134	141
Average Queue (ft)	23	103	11	66	62	110	54	69
95th Queue (ft)	72	259	157	124	145	202	110	124
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)			0	0				
Queuing Penalty (veh)		0	0					
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	296	348	303	266	148	165	178	170	190	232	
Average Queue (ft)	161	215	170	152	67	90	98	81	87	117	
95th Queue (ft)	262	310	260	234	123	147	159	143	155	208	
Link Distance (ft)		1405	1405			282	282	215	215	215	
Upstream Blk Time (%)									0	0	0
Queuing Penalty (veh)								0	0	3	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)		0	0	0							
Queuing Penalty (veh)		0	1	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	46	230	118	87	214	262	266	178	153	114	131	179
Average Queue (ft)	12	108	41	21	82	137	133	12	65	19	32	48
95th Queue (ft)	35	193	84	62	182	240	236	94	123	68	87	126

Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	239	429 0 0	250 0 0	250	266 0 0 0	266 0 1	266 0 1 1 2	0 200 0 0	300	783	783	783
Intersection: 4: MD 201 & Ivy	Lane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	NB L 142 56 113 350	NB L 164 89 140 783	SB T 137 51 112 1193	SB T 171 95 156 1193								
Intersection: 5: MD 201 & Che	errywood	d Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (yeb)	EB L 215 116 186	EB L 254 139 208 1306	EB R 281 148 253 1306	NB L 213 98 174	NB T 199 66 152 1193	NB T 205 62 154 1193	SB T 280 143 237 610	SB T 325 182 282 610	SB R 275 66 178			
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250 0 0	0 0		750				1 5	250 0 0			
Intersection: 6: MD 201 & Sun	inyside /	Avenue										
Movement	EB	EB	NB	NB	B35	SB	SB					

Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	1026	375	475	1352	167	1654	275
Average Queue (ft)	935	372	425	596	9	1455	135
95th Queue (ft)	1193	395	524	1209	113	1994	331
Link Distance (ft)	968			1368	2212	1546	
Upstream Blk Time (%)		58			1		31
Queuing Penalty (veh)	0			16		459	
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	28	40	14	2		40	0
Queuing Penalty (veh)	175	111	150	7		94	1

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served	LTR	TR	LT	
Maximum Queue (ft)	594	39	922	
Average Queue (ft)	345	1	795	
95th Queue (ft)	652	22	1188	
Link Distance (ft)	626	1546	837	
Upstream Blk Time (%)		14		43
Queuing Penalty (veh)	0		643	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB	
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR	
Maximum Queue (ft)	275	1402	525	275	616	64	424	672	300	300	752	707	
Average Queue (ft)	218	664	311	274	574	14	311	389	101	162	418	390	
95th Queue (ft)	341	1350	705	278	651	54	471	666	335	351	756	719	
Link Distance (ft)		1433			523			618			816	816	
Upstream Blk Time (%)			5			90			3			6	4
Queuing Penalty (veh)		0			712			32			0	0	
Storage Bay Dist (ft)	250		500	250		40	400		275	275			
Storage Blk Time (%)	7	23	11	94	30	2	2	13	0	0	37		
Queuing Penalty (veh)	52	149	70	297	165	11	18	84	1	0	36		

Intersection: 9: Edmonston Road & Odell Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB LTR 100 32 79 509	WB LT 30 3 16 488	WB R 26 3 16	NB LT 230 32 132 419	SB LTR 15 1 11 365
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		0 0	50	0 0	
Intersection: 10: Powder Mill R	load & F	Poultry F	Road		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	EB LT 206 173 204 97 613	B69 T 403 268 493 325 87 285	WB TR 558 138 411 866 41 5	SB LR 406 410 391 2 0	99
Intersection: 11: Powder Mill R	load				
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB TR 77 9 43 383	NB L 49 21 48 48	1		

Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 12: Powder Mill Road & Springfield Road

0

Movement	EB	EB	SB	
Directions Served	L	Т	LR	
Maximum Queue (ft)	32	40	464	
Average Queue (ft)	5	3	299	
95th Queue (ft)	24	43	542	
Link Distance (ft)		609	467	
Upstream Blk Time (%)				23
Queuing Penalty (veh)			0	
Storage Bay Dist (ft)	50			
Storage Blk Time (%)	0	0		
Queuing Penalty (veh)	0	0		

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement	EB	WB	WB	SB	SB	
Directions Served	TR	L	Т	L	TR	
Maximum Queue (ft)	68	148	2	58	885	
Average Queue (ft)	15	60	0	48	845	
95th Queue (ft)	66	116	2	57	990	
Link Distance (ft)	153		550		850	
Upstream Blk Time (%)		0				91
Queuing Penalty (veh)	3				0	
Storage Bay Dist (ft)		225		25		
Storage Blk Time (%)				99	8	
Queuing Penalty (veh)				145	24	

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	NB	NB
Directions Served	L	Т	TR	L	TR
Maximum Queue (ft)	257	230	48	75	709

Average Queue (ft)	131	45	11	64	362	
95th Queue (ft)	246	270	35	89	832	
Link Distance (ft)		550	268		857	
Upstream Blk Time (%)			1			11
Queuing Penalty (veh)		11			0	
Storage Bay Dist (ft)	250			50		
Storage Blk Time (%)	5	0		84	8	
Queuing Penalty (veh)	38	0		41	6	

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement	EB	EB	WB	WB	NB
Directions Served	Т	R	L	Т	L
Maximum Queue (ft)	258	79	82	241	384
Average Queue (ft)	140	8	29	120	225
95th Queue (ft)	227	46	67	207	353
Link Distance (ft)	546			792	892
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		260	300		
Storage Blk Time (%)	0			0	
Queuing Penalty (veh)	1			0	

Intersection: 16: Powder Mill Road

Movement	EB	WB	SE
Directions Served	Т	TR	L
Maximum Queue (ft)	48	12	78
Average Queue (ft)	21	1	19
95th Queue (ft)	40	7	63
Link Distance (ft)	19	796	50
Upstream Blk Time (%)		13	
Queuing Penalty (veh)	6		11
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

1

Intersection: 17:

Movement	WB	NB	SB
Directions Served	L	TR	Т
Maximum Queue (ft)	17	61	9
Average Queue (ft)	1	9	0
95th Queue (ft)	9	38	5
Link Distance (ft)	19	462	48
Upstream Blk Time (%)		0	
Queuing Penalty (veh)	0		0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

0

0

Intersection: 18: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement	NB	NB	SB	SB	SB
Directions Served	Т	R	Т	Т	Т
Maximum Queue (ft)	2	35	12	2	9
Average Queue (ft)	0	2	0	0	1
95th Queue (ft)	2	19	5	2	6
Link Distance (ft)	115	115	39	39	39
Upstream Blk Time (%)				0	
Queuing Penalty (veh)			0		0
Storage Bay Dist (ft)					

Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	NB	SB	SB	SB	
Directions Served	Т	Т	Т	R	
Maximum Queue (ft)	57	2	7	49	
Average Queue (ft)	2	0	0	3	
95th Queue (ft)	58	2	6	24	
Link Distance (ft)	542	115	115	115	
Upstream Blk Time (%)		0			0
Queuing Penalty (veh)	0			0	
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 26: MD 201 & Lane Drop

NW	NW	
Т	Т	
434	430	
186	195	
420	432	
610	610	
	0	0
1	0	
	NW T 434 186 420 610 1	NW NW T T 434 430 186 195 420 432 610 610 0 1

Intersection: 28: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 40: Powder Mill Road

Movement	WB	
Directions Served	Т	
Maximum Queue (ft)	1990	
Average Queue (ft)	1640	
95th Queue (ft)	2607	
Link Distance (ft)	1906	
Upstream Blk Time (%)		70
Queuing Penalty (veh)	554	
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 43: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 44: Powder Mill Road

Movement

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)			
Intersection: 45: Powder I	Mill Road		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)			
Intersection: 47: MD 201			
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	SB R 647 491 793 618 47	SB R 790 596 991 618 7 359	NE L 269 22 181 837 51 1

0

Intersection: 48: Powder Mill Road

Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 49: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 50: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 56: Powder Mill Road

Movement	NW
Directions Served	Т
Maximum Queue (ft)	32
Average Queue (ft)	2
95th Queue (ft)	29
Link Distance (ft)	383
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	
Intersection: 57: Powder Mill R	load

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 61: MD 201 & Ramp to Northbound I-95

Movement	NB	NB	NB
Directions Served	Т	Т	Т
Maximum Queue (ft)	4	10	3

Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	0 4 215	0 8 215	0 3 215
Intersection: 66: Powder Mi	ll Road		
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 72: Powder Mil	WB T 1193 508 1415 1121 269	35	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	WB T 414 260 547 306 487	B53 T 959 533 1259 876 63 389	50

Intersection: 74: Powder Mill Road

Movement	NE	SW	B69	
Directions Served	Т	Т	Т	
Maximum Queue (ft)	426	417	130	
Average Queue (ft)	145	129	30	
95th Queue (ft)	470	428	111	
Link Distance (ft)	1121	325	97	
Upstream Blk Time (%)			28	14
Queuing Penalty (veh)		214	105	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Network Summary Network wide Queuing Penalty: 6913

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

SimTraffic Simulation Summary Action Alternative AM with Mitigation 12/09/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) 60 # of Intervals	0	1 5:52 7:00 68 60 5	10 5:52 7:00 68 60 5	2 5:52 7:00 68 60 5	3 5:52 7:00 68 60 5	4 5:52 7:00 68 60 5	5 5:52 7:00 68 60 5	6 5:52 7:00 68 60 5	7 5:52 7:00 68 60 5	8 5:52 7:00 68 60 5	9 5:52 7:00 68 60 5	Avg 5:52 7:00 68
# of Recorded Intervals		4	4	4	4	4	4	4	4	4	4	4
Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) 1	2057	10221 10194 518 545 13267	10713 10499 493 707 13166	10409 10343 534 600 13196	10522 10390 507 639 13154	10459 10294 537 702 13155	10521 10257 473 737 13139	10418 10341 485 562 13275	10613 10390 497 720 13188	10365 10211 517 671 13002	10423 10270 480 633 13150	10457 10320 501 648
Travel Time (hr)	2001	549.7	632.2	591.1	622.9	604.0	622.0	582.1	662.5	610.2	580.6	605.7
Total Delay (hr) Total Stops Fuel Used (gal)		189.1 14080 462.8	262.2 17094 491.7	224.7 16469 479.1	255.7 17211 486.8	237.9 16350 480.4	255.1 16442 483.6	216.8 15976 476.5	292.6 18308 495.6	243.8 16673 480.0	218.4 15675 471.2	239.6 16424 480.8
Interval #0 Information S	Seedin	a										
Start Time 5: End Time 6: Total Time (min) 8	:52 :00	9										
Volumes adjusted by Gro No data recorded this inte	owth F erval.	actors.										
Interval #1 InformationFStart Time6:End Time6:Total Time (min)1:Volumes adjusted by Gro	Record :00 :15 5 owth F	ling actors.										
Run Number Vehs Entered Vehs Exited		1 2507 2540	10 2724 2639	2 2612 2576	3 2687 2576	4 2534 2529	5 2636 2514	6 2569 2502	7 2686 2523	8 2561 2511	9 2600 2550	Avg 2612 2547

Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)	3188	518 485 3339 127.7 39.1 2825 111.1	493 578 3279 142.4 49.5 3699 120.2	534 570 3293 142.5 51.5 4050 118.3	507 618 3222 147.7 56.0 3899 120.9	537 542 3206 140.2 50.9 3940 116.0	473 595 3215 136.6 47.0 3486 115.1	485 552 3342 139.4 50.3 3810 116.3	497 660 3220 151.7 58.6 4253 122.7	517 567 3248 136.4 47.4 3721 114.9	480 530 3255 136.7 46.1 3449 117.1	501 563 140.1 49.6 3708 117.3
Interval #2 Information Start Time End Time Total Time (min) Volumes adjusted by	n Recor 6:15 6:30 15 Growth	ding Factors.										
Run Number Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)	3267	1 2644 2567 485 562 3286 136.0 45.1 3382 115.9	10 2651 2639 578 590 3374 144.2 52.6 3945 119.6	2 2669 2642 570 597 3211 151.1 57.4 4349 122.9	3 2518 2521 618 615 3280 149.2 59.7 4153 117.6	4 2565 2532 542 575 3399 138.7 47.6 3601 116.9	5 2663 2651 595 607 3236 157.6 63.1 4342 124.4	6 2577 2519 552 610 3334 149.1 59.0 4181 118.5	7 2617 2637 660 640 3359 168.5 75.9 4623 123.9	8 2637 2544 567 660 3141 151.4 57.9 4290 121.7	9 2567 2577 530 520 3289 139.2 51.2 3907 113.0	Avg 2604 2583 563 589 148.5 57.0 4074 119.5
SimTraffic Simulation Action Alternative AM	Summa with Mit	ry igation	12/09/2	2019								
Interval #3 Information Start Time End Time Total Time (min) Volumes adjusted by 9	n Recor 6:30 6:45 15 Growth	ding Factors.										
Run Number Vehs Entered Vehs Exited		1 2520 2535	10 2666 2585	2 2524 2548	3 2649 2607	4 2641 2563	5 2591 2563	6 2622 2641	7 2634 2597	8 2541 2621	9 2611 2559	Avg 2595 2581

Starting Vehs		562	590	597	615	575	607	610	640	660	520	589
Ending Vehs		547	671	573	657	653	635	591	677	580	572	609
Travel Distance (mi)	3250	3291	3231	3324	3281	3196	3340	3250	3335	3291	3279	
Travel Time (hr)		142.0	167.6	143.3	163.8	153.2	154.9	147.5	164.2	161.1	145.3	154.3
Total Delay (hr)		51.4	75.6	53.4	71.2	61.4	66.0	54.6	73.6	68.0	53.8	62.9
Total Stops		3903	4469	3934	4659	4201	3954	4007	4542	4342	3968	4194
Fuel Used (gal)		117.7	125.1	116.9	122.9	120.5	118.5	121.6	122.0	122.3	118.8	120.6

Interval #4 InformationRecordingStart Time6:45End Time7:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2550	2672	2604	2668	2719	2631	2650	2676	2626	2645	2647
Vehs Exited		2552	2636	2577	2686	2670	2529	2679	2633	2535	2584	2610
Starting Vehs		547	671	573	657	653	635	591	677	580	572	609
Ending Vehs		545	707	600	639	702	737	562	720	671	633	648
Travel Distance (mi)	3251	3352	3281	3368	3371	3355	3348	3349	3273	3321	3327	
Travel Time (hr)		144.0	178.1	154.3	162.2	171.9	172.8	146.1	178.0	161.4	159.4	162.8
Total Delay (hr)		53.5	84.4	62.4	68.8	78.0	79.0	52.9	84.5	70.4	67.3	70.1
Total Stops		3970	4981	4136	4500	4608	4660	3978	4890	4320	4351	4434
Fuel Used (gal)		118.1	126.8	121.0	125.4	127.0	125.7	120.1	126.9	121.0	122.3	123.4

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

Queuing and Blocking Report Action Alternative AM with Mitigation 12/09/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement		EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т	
Maximum Queue (ft)	216	278	74	143	144	190	112	132	
Average Queue (ft)	51	137	3	69	45	91	44	49	
95th Queue (ft)		153	233	76	125	107	165	95	111
Link Distance (ft)			734	734	1249	1249	1249	542	542
Upstream Blk Time (%))				0				
Queuing Penalty (veh)				0					
Storage Bay Dist (ft)	325								
Storage Blk Time (%)		0							
Queuing Penalty (veh))	0							

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement		WB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	181	240	358	320	142	166	159	207	244	282	
Average Queue (ft)	83	136	233	218	68	93	86	104	113	128	
95th Queue (ft)		155	205	319	308	122	150	142	179	205	234
Link Distance (ft)			1405	1405			282	282	215	215	215
Upstream Blk Time (%)								0	0	1
Queuing Penalty (veh)								0	1	3	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)			1	0							
Queuing Penalty (veh)			4	1							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement		EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR	
Maximum Queue (ft)	48	172	113	97	193	242	267	22	95	105	105	146	
Average Queue (ft)	4	84	40	35	38	90	92	1	27	16	25	36	
95th Queue (ft)		25	142	77	76	120	187	203	23	70	62	69	99

Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh))	239 0 0	429 250	250	0 0	266 0	266 0 0 1 0	266 0 1 200	0 300		783	783	783
Intersection: 4: MD 207	1 & Ivy I	_ane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	L 120 30	NB L 207 64	NB T 361 60	NB T 300 53	NB T 68 8	SB T 117 31	SB						
95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh))	84	140 783	319 783	296 783	40 1193	86 1193						
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	350	0 0											
Intersection: 5: MD 207	1 & Che	rrywood	l Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	L 261 171	EB L 376 176	EB R 139 40	EB L 668 296	NB T 1094 609	NB T 1087 570	NB T 268 150	SB T 351 193	SB R 275 94	SB			
95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh))	277	366 1306	104 1306	820	1234 1193 26	1219 1193 3 15	243 610 2	302 610	222			
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250 6 11	7 12		750 0 0	23 51			2 7	250 0 0				

Queuing and Blocking Report Action Alternative AM with Mitigation 12/09/2019 Intersection: 6: MD 201 & Sunnyside Avenue

Movement		EB	EB	NB	NB	NB	B6006	B6006	SB	SB	SB
Directions Served	L	R	L	Т	TR	Т		Т	Т	R	
Maximum Queue (ft)	317	281	437	300	213	594	551	775	727	275	
Average Queue (ft)	164	113	293	97	77	517	256	486	439	164	
95th Queue (ft)		288	222	436	281	158	773	682	748	707	347
Link Distance (ft)		414			939	939	492	492	1541	1541	
Upstream Blk Time (%)		0					19	2		
Queuing Penalty (veh)		0					166	20			
Storage Bay Dist (ft)		350	450							250	
Storage Blk Time (%)	0	0	2	0					19	0	
Queuing Penalty (veh)	1	0	12	0					39	1	

Intersection: 7: MD 201 & Beaver Dam Road

Movement		WB	NB
Directions Served	LR	Т	
Maximum Queue (ft)	85	9	
Average Queue (ft)	27	0	
95th Queue (ft)		64	6
Link Distance (ft)		614	1541
Upstream Blk Time (%	6)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)		

Intersection: 8: MD 201 & Powder Mill Road

Movement		EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	Т	Т	R	L	L	Т	R	L	Т	L	Т	TR	
Maximum Queue (ft)	120	181	146	145	121	130	208	64	309	282	211	347	340	
Average Queue (ft)	39	84	33	8	60	57	94	16	161	137	57	190	170	
95th Queue (ft)		86	147	104	82	105	105	176	58	261	240	133	298	288
Link Distance (ft)			587	587				578			599		809	809
Upstream Blk Time (%))													
Queuing Penalty (veh))													

Storage Bay Dist (ft)	250	500	500	500		40	400	275	
Storage Blk Time (%)					32	0	0	0	2
Queuing Penalty (veh)					73	1	0	0	1

Intersection: 9: Edmonston Road & Odell Road

Movement		EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR	
Maximum Queue (ft)	132	57	47	211	5	
Average Queue (ft)	37	7	4	43	0	
95th Queue (ft)		100	33	28	134	2
Link Distance (ft)		509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)						
Storage Bay Dist (ft)			50			
Storage Blk Time (%)		1	0	0		
Queuing Penalty (veh)		0	0	0		

Intersection: 10: Powder Mill Road & Poultry Road

Movement		EB	B40	WB	WB
Directions Served	L	Т	Т	R	
Maximum Queue (ft)	168	98	177	147	
Average Queue (ft)	72	5	79	64	
95th Queue (ft)		136	87	144	115
Link Distance (ft)			578	1365	
Upstream Blk Time (%)				
Queuing Penalty (veh)					
Storage Bay Dist (ft)	200			200	
Storage Blk Time (%)	0		0	0	
Queuing Penalty (veh)	0		0	0	

Queuing and Blocking Report Action Alternative AM with Mitigation 12/09/2019

Intersection: 11: Powder Mill Road

Movement NB SE

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	L 42 12)	TR 7 0 38 46 0	7 371 0			
Intersection: 12: Powd	er Mill R	load				
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	L 32 3	EB T 118 34	EB TR 171 105	WB LR 203 103	SB	
95th Queue (ft)	-	18	91 3475	184	174 467	
Upstream Blk Time (%)		5475	101	2	
Storage Bay Dist (ft)	50			19		
Storage Blk Time (%) Queuing Penalty (veh)	0 0	4 0				
Intersection: 13: Powd	er Mill R	load				
Movement	т	EB	EB	WB T	WB	SB
Maximum Queue (ft)	1 158	87	L 77	184	L 264	222
Average Queue (ft)	89	37 154	24 74	75 59	151 151	89 236
Link Distance (ft)	`	151	151 1	00	550	200
Queuing Penalty (veh))	2	I			
Storage Bay Dist (ft) Storage Blk Time (%)			225	0	300 0	0
Queuing Penalty (veh)				0	0	0

SB

169 850

Intersection: 14: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft)	L 212 47	EB T 296 168	EB T 259 97	WB R 148 58	WB T 18 1	B51 L 302 195	NB TR 187 40	NB
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%))	133	262 550	194 264 2	124 0	15 546	292	127 857
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	, 250)	1 1	6 17	100 0 0		300 1 1	0 0	
Intersection: 15: Powd	ler Mill F	Road						
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	T 194 94	EB R 55 8	EB L 94 37	WB T 221 114	WB L 225 119	NB		
95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (yeh)	o)	167 546	37	78	193 792	193 892		
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	, 0) 0	260	300					
Queuing and Blocking Action Alternative AM	Report with Mit	igation	12/09/	2019				
Intersection: 16: Powd	ler Mill F	Road						
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	R 26 13	EB T 2 0	SE LT 66 4	NW				

95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) 0 Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	33 14 2	0 46	31 1635
Intersection: 17:			
Movement Directions Served T	NB R		
Maximum Queue (ft) 9 Average Queue (ft) 0 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	6 460		
Intersection: 18: Sunnysi	de Avenue	;	
Movement Directions Served Maximum Queue (ft) 12 Average Queue (ft) 0	EB T 2		
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	12 531		

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	R 13 1	NB T 2 0 9 115	SB T 2 0 2 39	SB 2 39	
Intersection: 23: I-95 S	B On R	amp & I	MD 201		
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	T 40 1	NB R 3 0	SB		
95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh))	41 542	0 115		
Queuing and Blocking Action Alternative AM	Report with Mit	igation	12/09/2	2019	
Intersection: 26: MD 2	01 & La	ne Drop			
Movement Directions Served Maximum Queue (ft) Average Queue (ft)	T 930 324	B35 776 93	B35 T 662 568	NW T 665 559	NW
95th Queue (ft) Link Distance (ft) Upstream Blk Time (%))	950 939 0	489 939 0	803 610 9	822 610 6

Queuing Penalty (veh) 1 79 48 0 Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 47: MD 201 Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 61: MD 201 & Ramp to Northbound I-95

Movement	т	NB T	NB T	SB TD	SB
Directions Served	-	1	-		
Maximum Queue (ft)	5	3	1	41	
Average Queue (ft)	0	0	0	1	
95th Queue (ft)		5	3	8	24
Link Distance (ft)		215	215	266	266
Upstream Blk Time (%)				
Queuing Penalty (veh)					
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					
Network Summary					
Network wide Queuing	Penalty	/: 619			

Bureau of Engraving and Printing SimTraffic Report

Transportation Impact Study

LBG Page 0

SimTraffic Simulation Summary Action Conditions PM with Mitigation 12/09/2019

Summary of All Intervals

Run Number Start Time End Time Total Time (min) Time Recorded (min) 60 # of Intervals	1 2:52 4:00 68 60 5	10 2:52 4:00 68 60 5	2 2:52 4:00 68 60 5	3 2:52 4:00 68 60 5	4 2:52 4:00 68 60 5	5 2:52 4:00 68 60 5	6 2:52 4:00 68 60 5	7 2:52 4:00 68 60 5	8 2:52 4:00 68 60 5	9 2:52 4:00 68 60 5	Avg 2:52 4:00 68 5
# of Recorded Intervals Vehs Entered Vehs Exited Starting Vehs Ending Vehs Travel Distance (mi) 155	4 13706 13558 692 840 91 15304	4 13775 13549 696 922 15246	4 13634 13385 663 912 15297	4 13714 13505 698 907 15151	4 13643 13450 641 834 15688	4 13887 13559 691 1019 15387	4 13763 13415 646 994 15505	4 13953 13708 660 905 15431	4 13760 13515 659 904 15437	4 13797 13521 625 901 15404	4 13765 13518 667 910
Travel Time (hr) Total Delay (hr) Total Stops Fuel Used (gal)	943.3 485.0 19904 620.9	884.1 435.1 19112 598.7	920.8 473.1 19100 607.6	872.2 425.4 18791 598.4	801.8 359.2 18878 579.2	938.2 477.0 20432 620.6	923.4 473.1 18983 606.1	822.6 367.9 19285 593.3	900.5 447.6 19583 608.4	898.5 446.2 19512 607.1	890.5 439.0 19354 604.0
Interval #0 InformationSeeStart Time2:52End Time3:00Total Time (min)8Volumes adjusted by GrowNo data recorded this interval	eding 2) th Factors. /al.										
Interval #1 InformationRefStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Grow	cording) 5 th Factors.										
Run Number Vehs Entered Vehs Exited	1 3426 3350	10 3452 3368	2 3472 3306	3 3477 3429	4 3370 3239	5 3463 3368	6 3436 3296	7 3504 3411	8 3450 3363	9 3387 3230	Avg 3444 3337

Starting Vehs		692	696	663	698	641	691	646	660	659	625	667
Ending Vehs		768	780	829	746	772	786	786	753	746	782	775
Travel Distance (mi)	3946	3787	3785	3918	3698	3888	3917	3896	3779	3743	3836	
Travel Time (hr)		196.2	186.5	184.2	189.7	175.3	183.4	193.7	182.3	183.7	180.3	185.5
Total Delay (hr)		80.2	75.4	72.7	75.5	67.5	69.4	79.1	68.3	72.8	70.8	73.2
Total Stops		4891	4653	4721	4672	4498	4808	4768	4474	4768	4537	4671
Fuel Used (gal)		147.9	141.0	141.8	146.3	136.6	144.1	145.6	143.7	141.6	139.2	142.8

Interval #2 InformationRecordingStart Time3:15End Time3:30Total Time (min)15Volumes adjusted by Growth Factors.

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		3542	3413	3389	3355	3339	3620	3420	3466	3426	3533	3449
Vehs Exited		3411	3372	3334	3347	3349	3474	3315	3442	3357	3451	3385
Starting Vehs		768	780	829	746	772	786	786	753	746	782	775
Ending Vehs		899	821	884	754	762	932	891	777	815	864	832
Travel Distance (mi)	3956	3841	3879	3717	3806	4049	3797	3883	3851	3916	3869	
Travel Time (hr)		225.6	204.3	215.4	195.3	193.5	225.6	214.6	198.4	202.2	212.9	208.8
Total Delay (hr)		109.3	91.0	101.0	86.3	82.4	106.3	103.3	84.1	88.9	98.0	95.1
Total Stops		5267	4746	4744	4640	4623	5414	4600	4969	4991	5127	4908
Fuel Used (gal)		154.3	146.4	150.2	141.7	142.8	157.3	147.4	146.6	147.0	151.7	148.5

SimTraffic Simulation Summary Action Conditions PM with Mitigation 12/09/2019 Interval #3 InformationRecordingStart Time3:30End Time3:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		3398	3502	3411	3452	3497	3387	3423	3498	3453	3451	3446
Vehs Exited		3455	3413	3409	3320	3443	3320	3363	3481	3362	3421	3403
Starting Vehs		899	821	884	754	762	932	891	777	815	864	832
Ending Vehs		842	910	886	886	816	999	951	794	906	894	886
Travel Distance (mi)	3988	3887	3860	3721	3812	3851	3829	3882	3860	3911	3860	
Travel Time (hr)		255.9	231.2	247.3	222.6	210.0	251.5	244.7	212.8	236.7	242.6	235.5
Total Delay (hr)		138.8	116.9	134.6	114.3	98.7	138.4	133.1	99.1	123.5	128.0	122.5
Total Stops		5098	4788	5089	4662	4970	5200	4772	4847	4961	4987	4931
Fuel Used (gal)		162.6	153.8	156.9	148.1	147.8	157.2	153.3	150.2	154.8	156.6	154.1

Interval #4 InformationRecordingStart Time3:45End Time4:00Total Time (min)15

Volumes adjusted by Growth Factors.

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		3340	3408	3362	3430	3437	3417	3484	3485	3431	3426	3412
Vehs Exited		3342	3396	3336	3409	3419	3397	3441	3374	3433	3419	3394
Starting Vehs		842	910	886	886	816	999	951	794	906	894	886
Ending Vehs		840	922	912	907	834	1019	994	905	904	901	910
Travel Distance (mi)	3700	3788	3722	3940	3836	3901	3844	3844	3941	3868	3838	
Travel Time (hr)		265.5	262.1	273.9	264.5	223.1	277.7	270.4	229.0	278.0	262.7	260.7
Total Delay (hr)		156.8	151.7	164.9	149.4	110.6	163.0	157.5	116.4	162.3	149.4	148.2
Total Stops		4648	4925	4546	4817	4787	5010	4843	4995	4863	4861	4825
Fuel Used (gal)		156.2	157.5	158.7	162.2	152.1	162.0	159.8	152.8	165.0	159.6	158.6

Bureau of Engraving and Printing SimTraffic Report LBG Page 0

Queuing and Blocking Report Action Conditions PM with Mitigation 12/09/2019

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement		EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	Т	
Maximum Queue (ft)	109	404	441	162	188	221	160	171	
Average Queue (ft)	20	94	21	67	52	107	71	83	
95th Queue (ft)		65	238	226	130	127	194	138	148
Link Distance (ft)			734	734	1249	1249	1249	542	542
Upstream Blk Time (%)		0	0					
Queuing Penalty (veh)		0	0						
Storage Bay Dist (ft)	325								
Storage Blk Time (%)									
Queuing Penalty (veh)									

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement		WB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	305	361	304	280	167	196	181	192	244	289	
Average Queue (ft)	157	214	174	152	70	98	104	92	104	146	
95th Queue (ft)		262	316	270	238	131	163	166	164	189	247
Link Distance (ft)			1405	1405			282	282	215	215	215
Upstream Blk Time (%)								0	0	2
Queuing Penalty (veh)								0	2	10	
Storage Bay Dist (ft)	400			300	250						
Storage Blk Time (%)		0	0	0							
Queuing Penalty (veh)		0	0	0							

Intersection: 3: MD 201 & SHA Dist. 3/Crescent Drive

Movement		EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR	
Maximum Queue (ft)	52	224	120	82	230	266	306	224	157	109	136	206	
Average Queue (ft)	15	108	41	21	87	144	139	15	71	20	35	62	
95th Queue (ft)		42	180	87	60	184	244	245	105	130	68	92	152

Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh))	239 0 0	429 250 0 0	250	0 0 0	266 0 1	266 0 2 2 3	266 0 200 0 0	300		783	783	783
Intersection: 4: MD 201	1 & Ivy I	_ane											
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	L 127 54) 350	NB L 152 87 108	NB T 77 3 137 783 0	NB T 159 60 79 783 0	SB T 197 108 125 1193	SB 168 1193							
Intersection: 5: MD 207	1 & Che	rrywood	l Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh)	L 221 134)	EB L 221 123 211	EB R 306 157 199 1306	EB L 213 107 283 1306	NB T 195 69 186	NB T 180 49 158 1193	NB T 336 185 135 1193	SB T 393 230 284 610	SB R 275 109 342 610	SB 275			
Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	250 0 0	0 0		750				4 17	250 0 1				

Queuing and Blocking Report Action Conditions PM with Mitigation 12/09/2019 Intersection: 6: MD 201 & Sunnyside Avenue

Movement		EB	EB	NB	NB	NB	B6006	SB	SB	SB
Directions Served	L	R	L	Т	TR	Т	Т	Т	R	
Maximum Queue (ft)	1003	375	471	555	420	159	1652	1648	275	
Average Queue (ft)	694	335	330	205	126	6	1246	1231	229	
95th Queue (ft)		1235	456	518	549	319	96	1973	1983	376
Link Distance (ft)		958			941	941	501	1544	1544	
Upstream Blk Time (%)	33					0	41	39	
Queuing Penalty (veh)	0					0	308	293		
Storage Bay Dist (ft)		350	450						250	
Storage Blk Time (%)	32	13	11	0				51	0	
Queuing Penalty (veh)	196	35	60	0				118	2	

Intersection: 7: MD 201 & Beaver Dam Road

	WB	NB	SB	SB
LTR	Т	Т	Т	
299	2	725	750	
97	0	244	248	
	283	2	795	809
	615	1544	838	838
5)			9	10
)		69	75	
)				
	LTR 299 97	WB LTR T 299 2 97 0 283 615)	WB NB LTR T T 299 2 725 97 0 244 283 2 615 1544 5) 69	WB NB SB LTR T T T 299 2 725 750 97 0 244 248 283 2 795 615 1544 838 5) 9 69 75

Intersection: 8: MD 201 & Powder Mill Road

Movement		EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	Т	R	L	L	Т	R	L	Т	R	L	Т	TR	
Maximum Queue (ft)	273	323	233	153	266	392	478	68	413	466	28	234	308	315	
Average Queue (ft)	183	164	121	13	151	191	278	39	234	253	1	110	185	175	
95th Queue (ft)		287	279	200	109	239	380	513	84	386	424	29	223	291	282
Link Distance (ft)								589			598	598		808	808
Upstream Blk Time (%)							3			0				
Queuing Penalty (veh)	1						25			0					
Storage Bay Dist (ft)	250		500	500	500		40	400		275					
-----------------------	-----	---	-----	-----	-----	-----	----	-----	---	-----	---				
Storage Blk Time (%)	6	0			0	70	2	1	1	2	1				
Queuing Penalty (veh)	12	1			0	384	16	5	2	5	1				

Intersection: 9: Edmonston Road & Odell Road

Movement		EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR	
Maximum Queue (ft)	121	23	26	281	58	
Average Queue (ft)	32	2	3	32	2	
95th Queue (ft)		86	13	16	147	30
Link Distance (ft)		509	488		419	365
Upstream Blk Time (%)				0	
Queuing Penalty (veh)				0		
Storage Bay Dist (ft)			50			
Storage Blk Time (%)				0		
Queuing Penalty (veh)				0		

Intersection: 10: Powder Mill Road & Poultry Road

Movement		EB	EB	B69	WB	WB	SB	SB
Directions Served	L	Т	Т	Т	R	L	R	
Maximum Queue (ft)	46	426	53	228	28	302	212	
Average Queue (ft)	3	254	3	92	3	142	83	
95th Queue (ft)		29	418	23	178	17	252	156
Link Distance (ft)			354	691	1386		347	347
Upstream Blk Time (%))		3				0	
Queuing Penalty (veh)		21				0		
Storage Bay Dist (ft)	200				200			
Storage Blk Time (%)		13		1				
Queuing Penalty (veh)		1		0				

Queuing and Blocking Report Action Conditions PM with Mitigation 12/09/2019

Intersection: 11: Powder Mill Road

Movement EB NB

TR	L		
209	57		
32	23		
	124	4	53
	38	3	48
)			4
	1		
	TR 209 32)	TR L 209 57 32 23 12 38) 1	TR L 209 57 32 23 124 383) 1

Intersection: 12: Powder Mill Road & Springfield Road

Movement		EB	EB	WB	SB
Directions Served	L	Т	TR	LR	
Maximum Queue (ft)	68	922	138	510	
Average Queue (ft)	11	447	52	460	
95th Queue (ft)		42	873	110	580
Link Distance (ft)			3486	151	467
Upstream Blk Time (%)			0	79
Queuing Penalty (veh)			1	0	
Storage Bay Dist (ft)	50				
Storage Blk Time (%)	0	35			
Queuing Penalty (veh)	1	7			

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement		EB	EB	WB	WB	SB	SB
Directions Served	Т	R	L	Т	L	TR	
Maximum Queue (ft)	164	122	146	123	295	174	
Average Queue (ft)	156	54	70	44	181	41	
95th Queue (ft)		175	96	123	99	274	104
Link Distance (ft)		151	151		550		850
Upstream Blk Time (%)	19	0				
Queuing Penalty (veh)	120	0					
Storage Bay Dist (ft)			225		300		
Storage Blk Time (%)				0	1		
Queuing Penalty (veh)				0	1		

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft)	L 233 120	EB T 214 104	EB T 153 46	WB R 143 61	WB L 151 69	NB TR 63 23	NB
95th Queue (ft) Link Distance (ft)	、	212 550	201 264	112	118	130 857	51
Queuing Penalty (veh))						
Storage Bay Dist (ft) Storage Blk Time (%)	250 1		1	100 1	300		
Queuing Penalty (veh)	4		4	3			

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement Directions Served	т	EB R	EB L	WB T	WB L	NB
Maximum Queue (ft)	369	218	71	237	410	
Average Queue (ft)	185	21	28	113	221	
95th Queue (ft)		299	114	63	200	350
Link Distance (ft)		546			792	892
Upstream Blk Time (%)					
Queuing Penalty (veh)						
Storage Bay Dist (ft)		260	300			
Storage Blk Time (%)	2	0		0	0	
Queuing Penalty (veh)	8	0		0	0	
Queuing and Blocking Action Conditions PM	gation	12/09/2	2019			
Intersection: 16: Powde	er Mill R	load				
Movement Directions Served	т	EB TR	WB L	SE		

Maximum Queue (ft)	52	24	98
Average Queue (ft)	22	1	26

95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)) 10	42 19 21	13 796 18	76 50 2
Intersection: 17: Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	L 18 1) 0	WB TR 89 16 10 19 0	NB T 15 1 61 462 0	SB 8 48 0
Intersection: 18: Powde Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)	er Mill R	oad		

Intersection: 21: MD 201 /MD 201 & I-95 NB On Ramp

Movement		NB	NB	NB	SB	SB	SB
Directions Served	Т	Т	R	Т	Т	Т	
Maximum Queue (ft)	16	2	27	7	6	9	
Average Queue (ft)	1	0	1	0	0	0	
95th Queue (ft)		8	2	13	4	3	5
Link Distance (ft)		115	115	115	39	39	39
Upstream Blk Time (%	b)						0
Queuing Penalty (veh)					0	
Storage Bay Dist (ft)							
Storage Blk Time (%)							
Queuing Penalty (veh)						

Intersection: 23: I-95 SB On Ramp & MD 201

Movement	_	SB	SB	SB
Directions Served	Т	Т	R	
Maximum Queue (ft)	7	3	36	
Average Queue (ft)	0	0	2	
95th Queue (ft)		5	3	20
Link Distance (ft)		115	115	115
Upstream Blk Time (%)			
Queuing Penalty (veh)				
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Queuing and Blocking Report Action Conditions PM with Mitigation 12/09/2019

Intersection: 26: MD 201 & Lane Drop

Movement		B35	B35	NW	NW
Directions Served	Т		Т	Т	
Maximum Queue (ft)	977	994	213	66	
Average Queue (ft)	848	676	10	2	
95th Queue (ft)		1209	1315	109	47
Link Distance (ft)		941	941	610	610
Upstream Blk Time (%)	4	2	0	

Queuing Penalty (veh) 39 21 0 Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 28: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 40: Powder Mill Road EΒ EΒ Movement Т **Directions Served** Т Т Maximum Queue (ft) 64 112 66 Average Queue (ft) 20 10 8 95th Queue (ft) 37 41 Link Distance (ft) 589 589 Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 43: Powder Mill Road Movement

WB

170

1838

Directions Served Maximum Queue (ft)

Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 44: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Queuing and Blocking Report Action Conditions PM with Mitigation 12/09/2019 Intersection: 45: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)

Queuing Penalty (veh)

Intersection: 47: MD 201

Movement		SB	SB
Directions Served	Т	Т	
Maximum Queue (ft)	194	244	
Average Queue (ft)	39	49	
95th Queue (ft)		259	321
Link Distance (ft)		598	598
Upstream Blk Time (%	6)	0	4
Queuing Penalty (veh) 1	26	
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)		

Intersection: 56: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 57: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)

Intersection: 61: MD 201 & Ramp to Northbound I-95

Movement Directions Served Maximum Queue (ft) Average Queue (ft)	T 12 0	NB TR 20 1	SB
95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh))	9 215	14 266
Queuing and Blocking Action Conditions PM	Report with Mit	igation	12/09/2019
Intersection: 66: Powd	er Mill F	Road	
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (% Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh))) '		

Intersection: 72: Powder Mill Road

Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 74: Powder Mill Road Movement **Directions Served** Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh) Network Summary Network wide Queuing Penalty: 1934 Bureau of Engraving and Printing SimTraffic Report LBG Page 0

16. APPENDIX I: SENSITIVITY ANALYSIS

Page intentionally left blank.

TABLE OF CONTENTS

L	IST OF FIGURES	553
1	INTRODUCTION	555
2	FUTURE CONDITIONS	558
	Development of the No Action Alternative Development of Action Alternative Traffic Analysis	558 570 576
	Intersection Operations Comparison (Critical Lane Volume and Highway Capacity N	Manual) 576
3	ACTION ALTERNATIVE WITH MITIGATION	
	Identification of Mitigation Strategies Traffic Analysis	603 605
4	SUMMARY	622
5	REFERENCES	622
6	ATTACHMENT A (CRITICAL LANE VOLUME (CLV) REPORTS)	623
7	ATTACHMENT B (SYNCHRO™ REPORTS)	647
8	ATTACHMENT C (SIMTRAFFIC™ REPORTS)	739
9	ATTACHMENT D (TRANSMODELER™ REPORTS)	771

LIST OF FIGURES

Figure 1-1A	AM and PM BEP Peak Hour Traffic Volumes – Map 1	.556
Figure 1-1B	AM and PM BEP Peak Hour Traffic Volumes – Map 2	.557
Figure 2-1	Planned Development Trips Generation Summary	.559
Figure 2-2	Planned Development Trip Distribution	.563
Figure 2-3A	Regional Growth Turning Movement Volumes – Map 1	.564
Figure 2-3B	Regional Growth Turning Movement Volumes – Map 2	.565
Figure 2-4A	Planned Background Development Turning Movement Volumes – Map 1	.566
Figure 2-4B	Planned Background Development Turning Movement Volumes – Map 2	.567
Figure 2-5A	AM and PM BEP Peak Hour No Action Alternative Turning Movement Volumes – Map 1	.568
Figure 2-5B	AM and PM BEP Peak Hour No Action Alternative Turning Movement Volumes – Map 2	.569
Figure 2-6	BEP Trip Generation Summary	.570
Figure 2-7	Proposed BEP Vehicle Trip Generation by Route	.571
Figure 2-8A	Proposed BEP Facility Generated Turning Movement Volumes – Map 1	.572

Figure 2-8B	Proposed BEP Facility-Generated Turning Movement Volumes – Map 2573
Figure 2-9A	AM and PM BEP Peak Hour Action Alternative Turning Movement Volumes – Map 1
Figure 2-9B	AM and PM BEP Peak Hour Action Alternative Turning Movement Volumes – Map 2
Figure 2-10	No Action Alternative Traffic Operations Summary – CLV Method577
Figure 2-11	No Action Alternative Traffic Operations Summary – HCM Method578
Figure 2-12	Action Alternative Traffic Operations Summary – CLV Method579
Figure 2-13	Action Alternative Traffic Operations Summary – HCM Method580
Figure 2-14	Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations
Figure 2-15	Comparison of No Action Alternative Sensitivity Analysis and Transportation Impact Assessment Intersection Operations
Figure 2-16	Comparison of Action Alternative Sensitivity Analysis and Transportation Impact Assessment Intersection Operations
Figure 2-17	Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing
Figure 3-1	Action Alternative Intersection Mitigation Requirement Summary604
Figure 3-2	Action Alternative with Mitigation Traffic Operations Summary – CLV Method
Figure 3-3	Action Alternative with Mitigation Traffic Operations Summary – HCM Method
Figure 3-4	Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations
Figure 3-5	Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour SimTraffic Queuing617
Figure 3-6	Action Alternative with Mitigation Intersection AM and PM Peak Hour TransModeler Queuing Analysis621

1 INTRODUCTION

This sensitivity analysis is an addendum to the Transportation Impact Study (TIS) prepared for the Bureau of Engraving and Printing (BEP), which evaluated the potential transportation impacts of the proposed permanent relocation of the BEP production facility to a site within the U.S. Department of Agriculture (USDA) Beltsville Agriculture Research Center (BARC). The Project Team conducted this sensitivity analysis in response to requests for further analysis by agencies that reviewed the TIS, including the Maryland-National Capital Park and Planning Commission (M-NCPPC), the City of Greenbelt, the Maryland State Highway Administration (Maryland SHA), the National Capital Planning Commission (NCPC), and the National Park Service (NPS). Specifically, this document further evaluates the future conditions of vehicular traffic, which pertain to the No Action Alternative, the Action Alternative, and recommended mitigation strategies for the Action Alternative.

Most of the assumptions used for the TIS were maintained for this sensitivity analysis, including (1) existing traffic conditions; (2) existing and future roadway lane use and geometry coded into the Synchro[™] and SimTraffic[™] traffic model software; and (3) future condition traffic forecasts about regional background traffic growth, the number of trips forecasted to be generated by the BEP facility, and the trip distributions of planned development and BEP site-generated traffic.

The sensitivity analysis modifies the future condition traffic forecasts for the No Action Alternative and the Action Alternative based on the following changes requested by reviewing agencies:

- 1. The trip generation for the planned developments included in the TIS were based on the Institute of Transportation Engineers (ITE) 10th Edition of the *Trip Generation Manual* trip rates rather than the 9th Edition.
- 2. The size of the residential uses within the planned Greenbelt Town Center for the Beltway Plaza planned development were updated to more recent approved residential units.

The following sections provide in-depth information regarding the modified forecasts and an evaluation of the vehicular operational and queueing impacts in future conditions. **Figure 1-1** depicts the existing AM and PM weekday peak hour turning movement volumes, as a reference to the baseline volumes used to develop future conditions forecasts. The cream-colored polygon along Poultry Road displayed in all turning movement figures represents the proposed BEP production facility.

Figure 1-1A AM and PM BEP Peak Hour Traffic Volumes – Map 1

Figure 1-1B AM and PM BEP Peak Hour Traffic Volumes – Map 2

2 FUTURE CONDITIONS

This section summarizes development of the future traffic volumes under the No Action Alternative and the Action Alternative using the revised sources. The operational and queueing results of the No Action and Action Alternative conditions from the sensitivity analysis are compared with the results from the TIS.

Development of the No Action Alternative

In this sensitivity analysis, forecasts of future traffic under the No Action Alternative differ from the forecasts included in the TIS with respect to the planned developments in two ways. First, in the TIS, trips generated by each of the four planned developments were based on either the Prince George's County trip rates published in the M-NCPPC's *Transportation Review Guidelines* (M-NCPPC 2012) or the ITE 9th Edition of the *Trip Generation Manual* trip rates. This sensitivity analysis replaces the ITE 9th Edition trip rates with trip rates from the ITE 10th Edition (ITE 2020). The trip rates based on the M-NCPPC's Transportation Review Guidelines context and the same. Second, the residential uses of the development program for the planned development known as Greenbelt Town Center at Beltway Plaza were modified to match the latest approved development plan. Whereas this development was assumed to include 2,250 multifamily housing units and 250 townhouses in the TIS, the sensitivity analysis assumes 2,500 multifamily housing units and no townhouses.

After modifying the trip generation assumptions accordingly, the four planned developments that were also included in the submitted TIS would add 2,785 trips during the AM peak hour and 3,577 trips during the PM peak hour. Like the TIS, the sensitivity study applied the same modal splits and internal capture procedures following the National Cooperative Highway Research Program (NCHRP) Report 684 (TRB 2011) to account for non-vehicle trips generated at mixed use planned developments. The sensitivity study also applied the diurnal adjustment to match the planned development vehicle trip rates to the proposed BEP commute peak hours. **Figure 2-1** contains the AM and PM study peak hour vehicle trips generated. Based on Prince George's County trip generation rates, 250 townhouses would create 45 AM peak hour and 51 PM peak hour more trips than apartments, respectively. The change in land use would lower the number of forecasted trips at the Greenbelt Town Center at Beltway Plaza.

BBO JECT		AM PE	AK HO	JR TRIPS	PM PE	EAK HOU	IR TRIPS
PROJECT	UNITS/SIZE/ CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
North Core (West side of Greenbelt Station Parkway)		-	_		-		
General Office (ITE - 710) ^a	1,200,000 square feet	1,197	195	1,392	221	1,159	1,380
Internal Capture Trips (following NCHRP 684 Tables)		-95	-55	-150	-44	-143	-187
Net External Trips		1,102	140	1,242	177	1,016	1,193
Transit Credit (following Maryland Jurisdiction Guidance)							
b	25% credit	-276	-35	-311	-44	-254	-298
Net External Vehicle Trips		826	105	931	133	762	895
Diurnal Adjustment ^c		-207	-26	-233	-17	-98	-115
Net External Diurnally Adjusted Vehicle Trips		619	79	698	116	664	780
Shopping Center (ITE - 820)	1,100,000 square feet	435	267	702	1,538	1,666	3,204
Internal Capture Trips (following NCHRP 684 Tables)		-68	-50	-118	-250	-278	-528
Net External Trips		367	217	584	1,288	1,388	2,676
I ransit Credit (following Maryland Jurisdiction Guidance)	OE% and it	00	E A	140	200	247	660
Not External Vahiala Trina	25% credit	-92	-54	-140	-322	-347	-009
Net External vehicle rips	000/	275	103	436	900	1,041	2,007
Pass-by Trips (based on overall retail development) ^a	20% pass-by	-44	-44	-88	-201	-200	-401
Net External Venicle and Pass-by Trips		231	119	350	765	841	1,606
Diurnal Adjustment ^c		-58	-30	-88	-99	-108	-207
Net External Diurnally Adjusted Vehicle Trips		173	89	262	666	733	1,399
Apartments (Prince George's County Guidance)	1,267 units	127	532	659	494	266	760
Internal Capture Trips (following NCHRP 684 Tables)		-3	-16	-19	-247	-130	-377
Net External Trips		124	516	640	247	136	383
I ransit Credit (following Maryland Jurisdiction Guidance)	20% aradit	27	155	100	74	44	115
Not External Vahiala Trina	30% credit	-37	-100	-192	-/4	-41	-115
Net External Venicle Trips		07	301	448	173	95	208
		-22	-91	-113	-22	-12	-34
Net External Diurnally Adjusted Vehicle Trips		65	270	335	151	83	234

Figure 2-1 Planned Development Trips Generation Summary

PROJECT		AM PE	EAK HOU	R TRIPS	PM P	PEAK HOU	IR TRIPS
PROJECT	UNITS/SIZE/ CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
Hotel (ITE - 310)	300 rooms	85	60	145	101	98	199
Internal Capture Trips (following NCHRP 684 Tables)		0	-44	-44	-24	-14	-38
Net External Trips		85	16	101	77	84	161
Transit Credit (following Maryland Jurisdiction							
Guidance) ^b	25% credit	-21	-4	-25	-19	-21	-40
Net External Vehicle Trips		64	12	76	58	63	121
Diurnal Adjustment ^c		-16	-3	-19	-7	-8	-15
Net External Diurnally Adjusted Vehicle Trips		48	9	57	51	55	106
TOTAL VEHICLE TRIPS		905	447	1,352	984	1,535	2,519

Figure 2-1 Planned Development Trips Generation Summary (continued)

^a Per Prince George's County Guidance, ITE trip rates were followed for developments exceeding 108,000 square feet.

^b Maryland SHA, M-NCPPC, Prince George's County, Washington Metropolitan Area Transportation Authority, and the City of Greenbelt

^c Diurnal adjustment based on the total Automatic Traffic Recorder (ATR) volumes assembled for the 6:00–7:00 AM hour as a percentage of the total ATR volumes assembled for the 8:00–9:00 AM hour; and the 3:00–4:00 PM hour as a percentage of the total ATR volumes assembled for the 5:00–6:00 PM hour. Approximately a 25% reduction is applied to the AM hour, and a 13% reduction is applied to the PM hour.

^d Per Prince George's County Guidance, a 20% pass-by trip reduction is applied for shopping centers exceeding 600,000 square feet.

BBO JECT	UNITS/SIZE/	AM F	PEAK HO	JR TRIPS	PM PE	EAK HOU	IR TRIPS
PROJECT	CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
Greenbelt Town Center at Beltway Plaza							
Existing Shopping Center (to be removed) (ITE - 820)	800,000 square feet	342	210	552	1,215	1,317	2,532
Pass-by Trips ^d	20% pass-by	-55	-55	-110	-253	-253	-506
Net External and Pass-by Trips		287	155	442	962	1,064	2,026
Diurnal Adjustment ^c		-72	-39	-111	-124	-137	-261
Net External Diurnally Adjusted Vehicle Trips		215	116	331	838	927	1,765
Approved Shopping Center (to be added) (ITE - 820)	700,000 square feet	311	191	502	1,101	1,192	2,293
Internal Capture Trips (following NCHRP 684 Tables)		-11	-5	-16	-110	-310	-420
Net External Trips		300	186	486	991	882	1,873
Pass-by Trips ^d	20% pass-by	-49	-48	-97	-188	-187	-375
Net External and Pass-by Trips		251	138	389	803	695	1,498
Diurnal Adjustment ^c		-63	-35	-98	-103	-90	-193
Net External Diurnally Adjusted Vehicle Trips		188	103	291	700	605	1,305
Apartments (Prince George's County Guidance)	2,500 units	250	1,050	1,300	975	525	1,500
Internal Capture Trips (following NCHRP 684 Tables)		-5	-11	-16	-310	-110	-420
Net External Trips		245	1,039	1,284	665	415	1,080
Diurnal Adjustment ^c		-61	-261	-322	-86	-53	-139
Net External Diurnally Adjusted Vehicle Trips		184	778	962	579	362	941
TOTAL NET-NEW VEHICLE TRIPS		157	765	922	441	40	481

Figure 2-1 Planned Development Trips Generation Summary (continued)

^c Diurnal adjustment based on the total ATR volumes assembled for the 6:00–7:00 AM hour as a percentage of the total ATR volumes assembled for the 8:00– 9:00 AM hour; and the 3:00–4:00 PM hour as a percentage of the total ATR volumes assembled for the 5:00–6:00 PM hour. Approximately a 25% reduction is applied to AM and a 13% reduction is applied to PM.

^d Per Prince George's County Guidance, a 20% pass-by trip reduction is applied for shopping centers exceeding 600,000 square feet.

DRO JECT		AM P	EAK HO		PM F	PEAK HO	OUR TRIPS
PROJECT	UNITS/SIZE/ CREDITS	IN	OUT	TOTAL	IN	OUT	TOTAL
Greenbelt Metro (North of Ivy Lane)			-				
Apartments (Prince George's County Guidance)	354 units	35	149	184	138	74	212
Diurnal Adjustment ^c		-9	-37	-46	-18	-10	-28
Net External Diurnally Adjusted Vehicle Trips		26	112	138	120	64	184
TOTAL VEHICLE TRIPS		26	112	138	120	64	184
USDA George Washington Carver Center Modernizat	ion						
Single-Tenant Office (ITE - 715)	1,065 employees	492	61	553	75	428	503
Transit Credit (USDA shuttle to Greenbelt Station)	10% credit	-49	-6	-55	-8	-43	-51
External Vehicle Trips		443	55	498	67	385	452
Diurnal Adjustment ^c		-111	-14	-125	-9	-50	-59
Net External Diurnally Adjusted Vehicle Trips		332	41	373	58	335	393
TOTAL VEHICLE TRIPS		332	41	373	58	335	393

Figure 2-1 Planned Development Trips Generation Summary (continued)

^c Diurnal adjustment based on the total ATR volumes assembled for the 6:00–7:00 AM hour as a percentage of the total ATR volumes assembled for the 8:00– 9:00 AM hour; and the 3:00–4:00 PM hour as a percentage of the total ATR volumes assembled for the 5:00–6:00 PM hour. Approximately a 25% reduction is applied to AM and a 13% reduction is applied to PM. Consistent with the assumptions of the TIS, trip distributions for each planned development and the applied yearly background growth rate of 1.2% remain the same. A summary of the planned development trip distributions is shown as **Figure 2-2**.

	North C	ore	Greenholt		
Origin-Destination	Residential and Office	Retail	Town Center	Greenbelt Metro	USDA GWCC
MD 201 north via Sunnyside Avenue	-	-	-	-	25%
MD 201 south via Sunnyside Avenue	-	-	-	-	25%
MD 201 north via Cherrywood Lane	7.5%	12.5%	20%	20%	-
MD 201 south via Cherrywood Lane	7.5%	12.5%	-	70%	-
MD 201 south via I-95 (Capital Beltway) from the west	-	-	20%	-	-
MD 201 south via I-95 (Capital Beltway) from the east	-	-	20%	-	-

|--|

Vehicle trips from the planned developments, background growth, and existing turning movement counts were combined to create the No Action Alternative turning movement volumes for the study area intersections. Consistent with the TIS, traffic signal timing splits and offsets along Edmonston Road/Kenilworth Avenue and Powder Mill Road were optimized to reflect that Maryland SHA and/or Prince George's County Department of Public Works and Transportation would most likely perform these upgrades over the next ten years. Within the traffic model software, the traffic signal timing splits and offsets were optimized to most efficiently process the future No Action Alternative forecasted traffic volumes. **Figure 2-3** shows the turning movement volumes resulting from background regional growth. **Figure 2-4** presents the assigned turning movement volumes of the planned developments, and **Figure 2-5** shows the total No Action Alternative AM and PM peak hour turning movement volumes.

Figure 2-3A Regional Growth Turning Movement Volumes – Map 1

Figure 2-3B Regional Growth Turning Movement Volumes – Map 2

Figure 2-4A Planned Background Development Turning Movement Volumes – Map 1

Figure 2-4B Planned Background Development Turning Movement Volumes – Map 2

Figure 2-5A AM and PM BEP Peak Hour No Action Alternative Turning Movement Volumes – Map 1

Figure 2-5B AM and PM BEP Peak Hour No Action Alternative Turning Movement Volumes – Map 2

Development of Action Alternative

Forecasts for future traffic under the Action Alternative combine the No Action Alternative volumes, as depicted in Figure 2-1, and the vehicle trips generated by the BEP facility. The forecast assumptions for the BEP facility in this sensitivity analysis remain the same as they were in the TIS. As demonstrated in Figure 2-6, 254 administrative staff and 884 production staff would travel to and from the BEP facility during the peak hours corresponding to shift changes and would generate 850 AM peak hour vehicle trips and 851 PM peak hour vehicle trips. All trips would travel inbound during the AM peak hour and outbound during the PM peak hour. Reverse direction trips would occur one hour after the BEP AM peak hour once the shift change was complete and one hour before the BEP PM peak hour prior to the shift change occurring. Like the TIS, the sensitivity analysis calculated the administrative trips using the ITE Trip Generation Manual to forecast the adjacent roadway peak hour trips, subtracted the total administrative employees from the ITE forecast and divided the remainder by 50% to estimate the number of vehicle trips that would occur during the BEP peak hour (254 minus 135 = 119; 119 divided by 2 = 60). Following the TIS and agreed M-NCPPC scoping form (TIS, Appendix A), the sensitivity analysis applied a 10% transit/bicycle credit covering administrative staff trips, who are not required to arrive and depart during shift changes. Trip distributions with the associated number of vehicle trips by each route are depicted in Figure 2-7.

PROJECT	UNITS/SIZE/ CREDITS	AM PEAK HOUR TRIPS			PM PEAK HOUR TRIPS			
		IN	Ουτ	TOTAL	IN	Ουτ	TOTAL	
Bureau of Engraving and Printing								
Single-Tenant Office (ITE - 715) (Trips produced during the adjacent street peak hour)	254 administrative staff	135	0	135	0	130	130	
Arrivals and Departures During Shift Peak Hour (50% of remaining trips after removing trips produced during the adjacent street peak hour)		60	0	60	0	62	62	
	884 production staff	884	0	884	0	884	884	
Total External Trips		944	0	944	0	946	946	
Transit/Bicycle Credit (includes USDA shuttle to Greenbelt Station)	10% credit	-94	0	-94	0	-95	-95	
Total External Vehicle Trips		850	0	850	0	851	851	
TOTAL VEHICLE TRIPS		850	0	850	0	851	851	

Fiaure 2-6	BEP Trip Generation	Summarv
i igui c 🖬 v		Gammary

Route	Trip Distribution	AM Trips	PM Trips
I-95 (Capital Beltway) from the west	12%	102	102
I-95 (Capital Beltway) from the east	24%	204	204
BW Parkway from the south	30%	255	255
BW Parkway from the north	8%	68	68
Powder Mill Road from the west	8%	68	68
Powder Mill Road from the east	5%	42	43
Edmonston Road from the north	4%	34	34
Sunnyside Avenue from the west	7%	60	60
MD 201 from the south	2%	17	17
TOTAL (88% of total trip generation)	100%	850	851

Figure 2-7 Proposed BEP Vehicle Trip Generation by Route

Vehicle trips generated from the No Action Alternative and the Action Alternative were combined to create the Action Alternative turning movement volumes. **Figure 2-8** shows the proposed BEP facility-generated AM and PM peak hour turning movement volumes, and **Figure 2-9** shows the total Action Alternative AM and PM peak hour turning movement volumes.

Figure 2-8A Proposed BEP Facility Generated Turning Movement Volumes – Map 1

Figure 2-8B Proposed BEP Facility-Generated Turning Movement Volumes – Map 2

Figure 2-9A AM and PM BEP Peak Hour Action Alternative Turning Movement Volumes – Map 1

Figure 2-9B AM and PM BEP Peak Hour Action Alternative Turning Movement Volumes – Map 2

Traffic Analysis

Intersection Operations Comparison (Critical Lane Volume and Highway Capacity Manual)

The Project Team (A/E) evaluated the vehicle delay, level of service (LOS), and critical lane volume (CLV) operation of each study intersection based on the turning movement volumes depicted in Figure 2-5 for the No Action Alternative and Figure 2-9 for the Action Alternative. The sensitivity analysis follows the methods that were used in the TIS: i.e., Synchro™ software was used to calculate the vehicle delay and LOS operation based on the Highway Capacity Manual (HCM) 6th Edition method for each study area intersection for all intersections, except for the MD 201 intersections with Ivy Lane and Sunnyside Avenue. Within the Synchro™ software, the algorithms following the HCM 6th Edition are not able to calculate the LOS for those two intersections based on the Maryland SHA assigned traffic signal timings. the HCM 2000 method is not as restrictive and was therefore used to calculate the LOS. The CLV method was applied to signalized intersections of the study area. The following pages present a summary of the sensitivity analysis results, followed by a summary comparison of the sensitivity analysis results with the results of the TIS. (The TIS contains descriptions of the two analysis methods in the section titled "Intersection Operations Analysis Method.") Figure 2-10 depicts the CLV LOS grades for the signalized intersections for the AM and PM peak hours for the No Action Alternative. The overall signalized intersection LOS grades and worst unsignalized lane group LOS grades are depicted in Figure 2-11 for the AM and PM peak hours (HCM). Figures 2-12 and 2-13 offer comparable depictions for the Action Alternative. Figure 2-14 shows the results of the LOS capacity analysis and the intersection vehicle delay comparing the No Action Alternative and the Action Alternative during the AM and PM peak hours. Attachment A provides CLV analysis worksheets, and Attachment B provides Synchro™ analysis reports.

Figure 2-10 No Action Alternative Traffic Operations Summary – CLV Method

Figure 2-11 No Action Alternative Traffic Operations Summary – HCM Method

Figure 2-12 Action Alternative Traffic Operations Summary – CLV Method

Figure 2-13 Action Alternative Traffic Operations Summary – HCM Method

							No Ac	tion Alte	ernative									Acti	on Alter	native				
				AM F	Peak Ho	our			PM I	Peak Ho	our				AM F	Peak Ho	our			PM I	Peak Ho	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
1	MD 201 (Kenilworth Avenu	ie) and I	-95 SB (Off-Ram	p (Signa	alized)		-	-	-	-			-		-			-		-	-		
	EB (I-95 SB Off-Ramp)	L	0.68	49.7	D			0.69	49.7	D				0.78	47.8	D			0.69	49.7	D			
	EB Overall (I-95 SB Off-Ra	mp)		49.7	D				49.7	D			Pass		47.8	D				49.7	D			Pass
	NB (Kenilworth Avenue)	Т	0.36	2.6	Α			0.50	3.3	А				0.38	3.8	Α			0.50	3.3	Α			
	NB Overall (Kenilworth Av	enue)		2.6	Α				3.3	Α			Pass		3.8	Α				3.3	Α			Pass
	SB (Kenilworth Avenue)	Т	0.41	3.0	Α			0.57	4.0	А			-	0.43	4.2	А			0.57	4.1	Α			
	SB Overall (Kenilworth Av	enue)		3.0	Α				4.0	Α			Pass		4.2	Α				4.1	Α			Pass
	Overall			5.2	Α	606	Α		5.5	Α	883	Α	Pass		7.9	Α	667	Α		5.5	Α	893	Α	Pass
2	MD 201 (Kenilworth Avenu (Signalized)	ie) and I-	-95 NB (Off-Ram	р															_				_
	WB (I-95 NB Off-Ramp)	L	0.46	21.3	С			0.73	33.0	С			-	0.42	18.3	В			0.73	33.0	С			
	WB (I-95 NB Off-Ramp)	R	0.89	34.6	С			0.83	37.9	D			-	1.00	52.7	F			0.83	37.9	D			
	WB Overall (I-95 SB Off-Ra	amp)		29.4	С				35.4	D			Pass		40.9	D				35.4	D			Pass
	NB (Kenilworth Avenue)	Т	0.31	17.8	В			0.37	12.4	В			-	0.41	21.6	С			0.37	12.4	В			
	NB Overall (Kenilworth Av	enue)		17.8	В				12.4	В			Pass		21.6	С				12.4	В			Pass
	SB (Kenilworth Avenue)	Т	0.62	22.1	С			0.59	15.1	В				0.68	26.1	С			0.68	16.6	В			
	SB Overall (Kenilworth Av	enue)		22.1	С				15.1	В			Pass		26.1	С				16.6	В			Pass
	Overall			24.7	С	861	Α		21.3	С	966	Α	Pass		32.3	С	974	Α		21.6	С	1048	В	Pass
3	MD 201 (Kenilworth Avenu	ie) and S	HA Dis	trict 3/C	rescent	Road	(Signa	lized)											-					•
	EB (SHA District 3)	LTR	0.04	30.6	С			0.17	32.1	С				0.04	30.6	С			0.17	32.1	С			
	EB Overall (SHA District 3)		30.6	С				32.1	C			Pass		30.6	С				32.1	С			Pass
	WB (Crescent Road)	LT	0.81	62.7	E			0.89	76.6	E				0.81	62.7	E			0.89	76.6	E			
	WB (Crescent Road)	R	0.27	31.2	С			0.27	32.0	С				0.27	31.2	С			0.27	32.0	С			
	WB Overall (Crescent Roa	d)		50.3	D				60.8	Е			Fail		50.3	D				60.8	E			Fail
	NB (Kenilworth Avenue)	L	0.73	62.9	E			0.60	62.4	E				0.73	62.9	E			0.60	62.4	E			
	NB (Kenilworth Avenue)	Т	0.58	15.4	В			0.60	18.4	В				0.73	18.1	В			0.60	18.4	В			
	NB (Kenilworth Avenue)	R	0.00	0.0	Α			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	Α			
	NB Overall (Kenilworth Av	enue)		16.7	В				19.1	В			Pass		19.1	В				19.1	В			Pass
	SB (Kenilworth Avenue)	L	0.75	66.5	Е			0.80	56.0	E				0.75	66.5	Е			0.80	54.7	D			
	SB (Kenilworth Avenue)	TR	0.58	32.5	С			0.58	31.4	С				0.58	32.5	С			0.70	35.0	D			
	SB Overall (Kenilworth Av	enue)		32.7	С				32.5	С			Pass		32.7	С				35.4	D			Pass
	Overall			26.3	С	665	Α		29.2	С	800	Α	Pass		26.6	С	785	Α		31.1	С	919	Α	Pass

Figure 2-14 Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations

l igu		n Alterna			nemativ	<u>e inters</u>	No Ac	tion Alte	ernative		erations	s (contin	lucuj					Actio	on Alter	native				
				AM	Peak Ho	our			PM I	Peak Ho	our				AMI	Peak Ho	our			PM F	Peak Ho	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
4	MD 201 (Kenilworth Avenue) an	d Ivy La	ne (Sigr	nalized) ^a		-		-	-	-	-					-				_		-		
	EB (Ivy Lane)	R	0.14	0.2	А			0.18	0.3	А				0.14	0.2	А			0.18	0.3	А			
	EB Overall (Ivy Lane)			0.2	Α				0.3	Α			Pass		0.2	Α				0.3	Α			Pass
	NB (Kenilworth Avenue)	L	0.45	26.8	С			0.57	24.0	С				0.45	26.7	С			0.57	24.0	С			
	NB (Kenilworth Avenue)	Т	0.45	0.4	Α			0.40	0.3	Α				0.56	0.5	А			0.40	0.3	А			
	NB Overall (Kenilworth Avenue))		2.7	Α				3.7	Α			Pass		2.4	Α				3.7	Α			Pass
	SB (Kenilworth Avenue)	Т	0.53	0.8	А			0.60	1.8	Α				0.53	0.8	А			0.73	3.4	А			
	SB (Kenilworth Avenue)	R	0.01	0.0	Α			0.01	0.3	Α				0.01	0.0	А			0.01	0.2	А			
	SB Overall (Kenilworth Avenue)			0.8	Α				1.8	Α			Pass		0.8	Α				3.4	Α			Pass
	Overall			1.8	Α	653	Α		2.5	Α	910	Α	Pass		1.7	Α	653	Α		3.2	Α	1088	В	Pass
5	MD 201 (Kenilworth Avenue/Edu	monston	Road)	and Che	errywoo	d Lane	(Signa	alized)													-			
	EB (Cherrywood Lane)	L	0.86	52.2	D			0.71	42.5	D				0.86	52.2	D			0.71	42.5	D			
	EB (Cherrywood Lane)	R	0.35	38.3	D			0.95	80.5	F				0.35	38.3	D			0.95	80.5	F			
	EB Overall (Cherrywood Lane)			50.0	D				56.9	Е			Fail		50.0	D				56.9	Е			Fail
	NB (Kenilworth Avenue)	L	0.88	33.0	С			0.78	25.3	С				0.88	31.9	С			0.87	42.8	D			
	NB (Kenilworth Avenue)	Т	0.55	7.6	Α			0.52	8.3	Α				0.71	9.9	Α			0.52	8.3	А			
	NB Overall (Kenilworth Avenue))		11.9	В				10.8	В			Pass		12.9	В				13.5	В			Pass
	SB (Edmonston Road)	Т	0.68	17.2	В			0.69	17.3	В				0.68	17.2	В			0.89	26.6	С			
	SB (Edmonston Road)	R	0.54	15.8	В			0.47	14.6	В				0.54	15.8	В			0.49	15.7	В			
	SB Overall (Edmonston Road)			16.8	В				16.7	В			Pass		16.8	В				24.5	С			Pass
	Overall			19.3	В	977	Α		21.8	С	1104	В	Pass		19.0	В	977	Α		26.2	С	1282	С	Pass
6	MD 201 (Edmonston Road) and	Sunnysi	ide Aveı	nue (Sig	nalized) ^a			_				-											
	EB (Sunnyside Avenue)	L	1.32	297.6	F			1.36	261.8	F			-	2.05	605.5	F			1.36	261.8	F			
	EB (Sunnyside Avenue)	R	0.64	61.7	E			1.11	125.0	F				0.64	61.7	E			1.17	145.2	F			
	EB Overall (Sunnyside Avenue)			126.8	F				167.5	F			Fail		264.0	F				181.5	F			Fail
	NB (Edmonston Road)	L	1.43	280.0	F			1.23	187.0	F			-	1.43	280.0	F			1.23	187.0	F			
	NB (Edmonston Road)	TR	0.66	4.7	А			0.90	20.9	С				0.90	15.1	В			0.90	20.9	С			
	NB Overall (Edmonston Road)			110.5	F				66.9	E			Fail		97.9	F				66.9	Е			Fail
	SB (Edmonston Road)	Т	1.36	212.3	F			1.17	125.7	F				1.36	212.3	F			1.55	290.1	F			
	SB (Edmonston Road)	R	0.24	14.4	В			0.15	9.9	Α				0.24	14.4	В			0.21	10.4	В			
	SB Overall (Edmonston Road)			180.1	F				108.6	F			Fail		180.1	F				248.3	F			Fail
	Overall			141.3	F	1718	F		105.3	F	1699	F	Fail		149.9	F	1778	F		163.2	F	2022	F	Fail

Figure 2-14 Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations (continued)

l Igui			ve unu r	Action A	incinati	ive inte	No Act	ion Alte	rnative	<u>n mour</u> (<i>operatio</i>		inacay					Actio	on Alter	native				
				AM Pe	ak Ho	ur			PM F	Peak Ho	our				AM F	Peak Ho	our			PM F	Peak Ho	our		
ID	Intersection Land Name and Approach Grou	p V Ra	/C D ntio (:	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
7	MD 201 (Edmonston Road) and Be	aver D	am Roa	ad (TWS	SC)					-				-										
	WB (Beaver Dam Road) LR	3.	38 17	753.5	F			1.61	689.9	F				18.59	Err	F			0.23	Err	F			
	WB Overall (Beaver Dam Road)	-	17	753.5	F				689.9	F			Fail		Err	F				Err	F			Fail
	SB (Edmonston Road) LT	0.	06 1	12.6	В			0.09	14.5	В				0.09	17.3	С			0.09	14.5	В			
	SB Overall (Edmonston Road)	-	-	0.2					0.4				Pass		0.3					0.3				Pass
	Overall		2	22.3		n/a	n/a		8.3		n/a	n/a	Pass		122.8		n/a	n/a		0.5		n/a	n/a	Fail
8	MD 201 (Edmonston Road) and Po	vder N	Aill Roa	ad (Sign	nalized)								-					-					
	EB (Powder Mill Road) L	0.2	29 5	58.4	Е			0.74	63.1	E				0.29	58.4	E			0.87	83.7	F			
	EB (Powder Mill Road) T	0.3	31 4	48.2	D			0.80	61.2	E				0.50	52.9	D			0.80	61.2	Е			
	EB (Powder Mill Road) R	0.	00	0.0	0			0.00	0.0	0				0.00	0.0	A			0.00	0.0	А			
	EB Overall (Powder Mill Road)	-	{	51.7	D				61.9	Е			Fail		54.2	D				70.1	E			Fail
	WB (Powder Mill Road) L	0.	73 7	71.8	Е			0.55	53.2	D				0.91	101.3	F			2.85	905.0	F			
	WB (Powder Mill Road) T	0.3	32 4	40.6	D			0.28	34.9	С				0.32	40.6	D			0.39	37.2	D			
	WB (Powder Mill Road) R	0.	00	0.0	А			0.00	0.0	Α				0.00	0.0	А			0.00	0.0	А			
	WB Overall (Powder Mill Road)	-		58.0	E				41.3	D			Fail		74.4	E				614.3	F			Fail
	NB (Edmonston Road)	0.9	92 6	61.4	Е			0.88	55.5	Е				0.92	61.4	E			0.88	55.5	Е			
	NB (Edmonston Road) T	0.	59 2	20.1	С			0.71	29.7	С				0.59	20.1	С			0.71	29.7	С			
	NB (Edmonston Road) R	0.	00	0.0	А			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	А			
	NB Overall (Edmonston Road)	-	3	38.3	D				40.3	D			Pass		38.3	D				40.3	D			Pass
	SB (Edmonston Road)	0.	13 3	39.3	D			0.46	57.1	Е				0.31	44.2	D			0.46	57.1	Е			
	SB (Edmonston Road) TR	0.8	87 6	68.7	Е			0.82	70.3	Е				0.87	68.7	E			0.82	70.3	Е			
	SB Overall (Edmonston Road)	-	6	67.5	Е				68.4	Е			Fail		66.5	Е				68.4	Е			Fail
	Overall		5	51.7	D	1079	В		53.3	D	1226	С	Pass		54.4	D	1116	В		186.9	F	1609	F	Fail
9	MD 201 (Edmonston Road) and Od	ell Roa	ad (TW	ISC)																				
	EB (Odell Road) LTR	0.2	29 6	66.3	F			0.35	63.0	F				0.31	71.9	F			0.37	67.9	F			
	EB Overall (Odell Road)	-	6	66.3	F				63.0	F			Fail		71.9	F				67.9	F			Fail
	WB (Odell Road) LT	0.	08 4	48.0	Е			0.03	46.0	E				0.09	50.7	F			0.04	48.4	Е			
	WB (Odell Road) R	0.	00 1	13.8	В			0.01	13.3	В				0.00	13.8	В			0.01	13.7	В			
	WB Overall (Odell Road)	-	4	43.7	E				32.9	D			Fail		46.1	Е				34.5	D			Fail
	NB (Edmonston Road) LT	0.	06	9.5	А			0.04	9.9	Α				0.06	9.6	Α			0.04	9.9	А			
	NB Overall (Edmonston Road)	-		0.8					0.4				Pass		0.8					0.4				Pass
	SB (Edmonston Road) LTR	-	-	0.0	Α			0.00	9.2	Α					0.0	А			0.00	9.3	А			
	SB Overall (Edmonston Road)	-		0.0					0.0				Pass		0.0					0.0				Pass
	Overall			1.8		n/a	n/a		1.6		n/a	n/a	Pass		1.8		n/a	n/a		1.7		n/a	n/a	Pass

Figure 2-14 Comparison of NO Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations (contin	Figure 2-14
--	-------------

							No Ac	tion Alte	ernative									Acti	on Alter	native				
				AM F	Peak Ho	our			PM F	Peak Ho	our				AM I	Peak Ho	our			PM P	eak Ho	ur		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
10	Powder Mill Road and Poultry R	oad (AW	/SC)	_	-	-		-	_	-	-			_			-		-					
	EB (Powder Mill Road)	LT	0.25	8.9	Α			1.02	59.3	F				1.06	72.8	F			1.92	283.6	F			
	EB Overall (Powder Mill Road)			8.9	Α				59.3	F			Fail		72.8	F				283.6	F			Fail
	WB (Powder Mill Road)	TR	0.51	11.3	В			0.45	11.7	В				1.09	76.1	F			0.89	29.3	D			
	WB Overall (Powder Mill Road)			11.3	В				11.7	В			Pass		76.1	F				29.3	D			Fail
	SB (Poultry Road)	LR	0.00	8.3	Α			0.02	9.7	Α				0.00	10.3	В			1.92	354.3	F			
	SB Overall (Poultry Road)			0.0	-		-		9.7	Α		r	Pass		0.0	-		1		354.3	F			Fail
	Overall			10.6	В	n/a	n/a		45.6	E	n/a	n/a	Fail		74.6	F	n/a	n/a		276.8	F	n/a	n/a	Fail
11	Powder Mill Road and Research	Road (1	WSC)								-													
	NB (Research Road)	L	0.06	14.6	В			0.16	24.7	С	1			0.11	25.1	D			0.30	48.2	Е			
	NB Overall (Research Road)			14.6	В				24.7	C			Pass		25.1	D				48.2	E			Fail
	Overall			0.4		n/a	n/a		0.7		n/a	n/a	Pass		0.4		n/a	n/a		1.0		n/a	n/a	Pass
12	Powder Mill Road and Springfie	ld Road	(TWSC)																					
	EB (Powder Mill Road)	L	0.01	9.2	A	_		0.02	8.3	A	-			0.01	11.4	В	-		0.02	8.3	А			
	EB Overall (Powder Mill Road)			0.3					0.3		_		Pass		0.3					0.2				Pass
	SB (Springfield Road)	LR	0.61	31.1	D	_		1.37	229.8	F				1.20	184.1	F			2.38	693.7	F			
	SB Overall (Springfield Road)			31.1	D		1		229.8	F		r	Fail		184.1	F		1		693.7	F			Fail
	Overall			5.6		n/a	n/a		52.9		n/a	n/a	Fail		23.1		n/a	n/a		125.2		n/a	n/a	Fail
13	Powder Mill Road and MD 295 S	B Ramp	s (TWS	C)							-													
	WB (Powder Mill Road)	L	0.10	8.5	A			0.21	11.5	В	ļ			0.10	8.5	A	-		0.30	15.2	С			
	WB Overall (Powder Mill Road)			1.7		_			3.7		_		Pass		1.0		-			5.0		•		Pass
	SB (MD 295 SB Off-Ramp)	L	1.35	223.1	F	-		2.87	929.9	F	-			2.33	668.5	F	-		4.54	1718.4	F			
	SB (MD 295 SB Off-Ramp)	TR	0.43	15.1	С			0.21	11.3	В				0.96	70.8	F			0.21	11.3	В			
	SB Overall (MD 295 SB Off-Ram	p)		129.6	F				619.4	F			Fail		357.1	F				1141.5	F			Fail
	Overall			50.5		n/a	n/a		151.7		n/a	n/a	Fail		121.3		n/a	n/a		231.3		n/a	n/a	Fail

Figure 2-14 Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations (continued)

							No Ac	tion Alt	ernative			•	,					Acti	on Alter	native				
				AM F	Peak Ho	our			PM I	Peak He	our				AM F	Peak Ho	ur			PM F	Peak Ho	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
14	Powder Mill Road and MD 295 N	B Ramp	s (TWS	C)	-				-	-	-			_	_		_		_	-				
	EB (Powder Mill Road)	L	0.15	10.2	В			0.46	14.4	В				0.16	10.5	В			0.57	16.5	С			
	EB Overall (Powder Mill Road)			2.2					4.2				Pass		2.2					5.4				Pass
	NB (MD 295 NB Off-Ramp)	L	0.66	67.9	F			2.59	991.1	F				3.11	1020.3	F			4.22	1860.5	F			
	NB (MD 295 NB Off-Ramp)	TR	0.20	12.4	В			0.14	15.5	С				0.20	12.4	В			0.14	16.3	С			
	NB Overall (MD 295 NB Off-Ran	ו p)		37.2	Е				599.3	F			Fail		796.1	F				1119.8	F			Fail
	Overall			5.8		n/a	n/a		38.3		n/a	n/a	Fail		217.2		n/a	n/a		67.0		n/a	n/a	Fail
15	Powder Mill Road and Soil Con	servatior	n Road ((Signaliz	ed)	_			-	_	_													
	EB (Powder Mill Road)	Т	0.46	30.5	С			0.74	37.6	D				0.46	30.5	С			0.83	43.5	D			
	EB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	Α			
	EB Overall (Powder Mill Road)			30.5	С				37.6	D			Pass		30.5	C				43.5	D			Pass
	WB (Powder Mill Road)	L	0.36	42.2	D			0.41	53.1	D				0.36	42.2	D			0.41	53.1	D			
	WB (Powder Mill Road)	Т	0.51	20.8	С			0.48	22.3	С				0.58	22.3	С			0.48	22.3	С			
	WB Overall (Powder Mill Road)			24.0	С				25.4	С			Pass		24.9	С				25.4	С			Pass
	NB (Soil Conservation Road)	L	0.58	22.5	С			0.84	30.9	С				0.58	22.5	С			0.84	30.9	С			
	NB (Soil Conservation Road)	R	0.00	0.0	A			0.00	0.0	Α				0.00	0.0	А			0.00	0.0	Α			
	NB (Soil Conservation Road)			22.5	С				30.9	С			Pass		22.5	С				30.9	С			Pass
	Overall			24.7	С	639	Α		31.2	С	1001	В	Pass		25.1	С	681	Α		33.1	С	1044	В	Pass

Figure 2-14 Comparison of No Action Alternative and Action Alternative Intersection AM and PM Peak Hour Operations (continued)

Notes:

^a Highway Capacity Manual 2000 results (Intersections #4 and #6)

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

LOS = Level of Service

V/C = Volume-to-Capacity ratio

LTR = left / through / right lanes

TWSC = Two-way STOP-controlled unsignalized intersection (TWSC intersections do not have an overall LOS)

AWSC = All-way STOP-controlled unsignalized intersection

Delay is measured in seconds per vehicle

Red cells denote intersections or approaches operating at unacceptable conditions.

Page 586 of 876

As shown in **Figure 2-14**, most study intersections would operate at acceptable overall conditions during the AM and PM peak hours under the Action Alternative. However, the following signalized intersections in the study area would operate with overall unacceptable conditions (LOS E or LOS F) using the HCM 6th Edition or HCM 2000 method (where the average control delay exceeds 55 seconds per vehicle) or LOS C using the CLV method (with a CLV greater than 1,300):

- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) during the AM and PM peak hours
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) during the PM peak hour

Compared with the No Action Alternative, the MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) would continue to experience an overall LOS F but with greater delays during the AM and PM peak hours. At the MD 201 (Edmonston Road)/Powder Mill Road intersection, the LOS for PM peak hour would degrade from LOS D to LOS F based on the HCM method and from LOS C to LOS F based on the CLV method.

The results indicate an imperceptible difference between the sensitivity analysis and the TIS because the LOS grades for MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6) and MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8) would be the same for the same study peak hours in both the sensitivity analysis and TIS. However, minor differences would occur in overall intersection vehicle delays or CLVs. All other signalized study intersections would operate with acceptable conditions, with imperceptible changes in overall intersection vehicle delays or CLVs. **Figure 2-15** compares the overall operations of the signalized and all-way stop-controlled intersections and the worst-approach operations of the two-way stop-controlled intersections under the No Action Alternative between the TIS and the sensitivity analysis. **Figure 2-16** provides a similar comparison for the Action Alternative.

Einen 0 45	Or man a start of Nie Artista Alternative Or			
Figure 2-15	Comparison of No Action Alternative Sel	ensitivity Analysis and Trans	sportation impact Assessment interse	ection Operations

			No Action Alternative																
					Traffic	Impact	Assessme	nt					S	ensitivit	ty Analysis				
			A	AM Peak	Hour		P	M Peak	Hour		Α	M Peak	Hour		F	PM Peak	Hour		
ID	Intersection	Control Type ^a	HCM Delay (sec/veh)	HCM LOS	CLV	CLV LOS	HCM Delay (sec/veh)	HCM LOS	CLV	CLV LOS	HCM Delay (sec/veh)	HCM LOS	CLV	CLV LOS	HCM Delay (sec/veh)	HCM LOS	CLV	CLV LOS	Changes in LOS
1	MD 201 (Kenilworth Avenue) and I-95 SB Off-Ramp	Signalized	5.2	A	606	А	5.5	A	885	А	5.2	A	606	А	5.5	A	883	А	None
2	MD 201 (Kenilworth Avenue) and I-95 NB Off-Ramp	Signalized	24.7	С	860	A	21.3	с	969	A	24.7	с	861	A	21.3	С	966	A	None
3	MD 201 (Kenilworth Avenue) and SHA District 3/Crescent Road	Signalized	26.2	С	666	A	29.6	с	797	A	26.3	с	665	A	29.2	С	800	A	None
4	MD 201 (Kenilworth Avenue) and Ivy Lane ^b	Signalized	1.8	А	652	Α	2.4	Α	906	Α	1.8	Α	653	А	2.5	А	910	А	None
5	MD 201 (Kenilworth Avenue/Edmonston Road) and Cherrywood Lane	Signalized	19.5	В	980	А	21.2	С	1100	В	19.3	В	977	А	21.8	С	1104	В	None
6	MD 201 (Edmonston Road) and Sunnyside Avenue ^b	Signalized	141.4	F	1719	F	106.1	F	1702	F	141.3	F	1718	F	105.3	F	1699	F	None
7	MD 201 (Edmonston Road) and Beaver Dam Road	Two-Way Stop Control	1753.5	F	n/a	n/a	739.6	F	n/a	n/a	1753.5	F	n/a	n/a	689.9	F	n/a	n/a	None
8	MD 201 (Edmonston Road) and Powder Mill Road	Signalized	51.7	D	1080	В	54.7	D	1225	с	51.7	D	1079	В	53.3	D	1226	С	None
9	MD 201 (Edmonston Road) and Odell Road	Two-Way Stop Control	66.3	F	n/a	n/a	63.0	F	n/a	n/a	66.3	F	n/a	n/a	63.0	F	n/a	n/a	None
1	Powder Mill Road and Poultry Road	All-Way Stop Control	10.6	В	n/a	n/a	45.6	Е	n/a	n/a	10.6	В	n/a	n/a	45.6	Е	n/a	n/a	None
1	Powder Mill Road and Research Road	Two-Way Stop Control	14.6	В	n/a	n/a	24.7	С	n/a	n/a	14.6	В	n/a	n/a	24.7	С	n/a	n/a	None
1	Powder Mill Road and Springfield Road	Two-Way Stop Control	31.1	D	n/a	n/a	229.8	F	n/a	n/a	31.1	D	n/a	n/a	229.8	F	n/a	n/a	None
1	Powder Mill Road and MD 295 SB Ramps	Two-Way Stop Control	129.6	F	n/a	n/a	619.4	F	n/a	n/a	129.6	F	n/a	n/a	619.4	F	n/a	n/a	None
1 4	Powder Mill Road and MD 295 NB Ramps	Two-Way Stop Control	37.2	Е	n/a	n/a	599.3	F	n/a	n/a	37.2	Е	n/a	n/a	599.3	F	n/a	n/a	None
1 5	Powder Mill Road and Soil Conservation Road	Signalized	24.7	С	639	A	31.2	с	1001	В	24.7	С	639	А	31.2	С	1001	В	None

Notes: Delay is measured in seconds per vehicle. ^a The HCM vehicle delays and LOS grades are based on the overall intersection for signalized and all-way stop controlled intersection, and the worst approach of two-way stop-controlled intersections. ^b Highway Capacity Manual 2000 results (Intersections #4 and #6)

Figure 2-16	Comparison of Action Alternativ	o Sonsitivity Analys	sis and Transportatio	n Imnact Assassment Ir	tersection Operations
Figure Z-10	Comparison of Action Alternativ	e Sensitivity Analys	SIS anu mansportatio	11 IIIIpaci Assessilleili II	itersection Operations

									A	ction A	Iternative								
					Traffic	Impac	t Assessme	ent					Sei	nsitivit	y Analysis				
			A	A Peak	Hour		PI	M Peak	Hour		A	/ Peak	Hour		PN	/ Peak	Hour		
ID	Intersection	Control Type ^a	HCM Delay (sec/veh)	HC M LOS	CLV	CLV LO S	Changes in LOS												
1	MD 201 (Kenilworth Avenue) and I-95 SB Off- Ramp	Signalized	7.9	А	667	А	5.5	A	894	А	7.9	А	667	А	5.5	А	893	А	None
2	MD 201 (Kenilworth Avenue) and I-95 NB Off- Ramp	Signalized	32.2	с	973	A	21.7	с	105 1	В	32.3	с	974	А	21.6	с	104 8	в	None
3	MD 201 (Kenilworth Avenue) and SHA District 3/Crescent Road	Signalized	26.6	С	785	A	31.6	С	917	A	26.6	С	785	A	31.1	с	919	A	None
4	MD 201 (Kenilworth Avenue) and Ivy Lane ^b	Signalized	1.6	А	652	А	3.2	А	108 4	В	1.7	А	653	А	3.2	A	108 8	В	None
5	MD 201 (Kenilworth Avenue/Edmonston Road) and Cherrywood Lane	Signalized	19.2	В	980	А	25.3	с	127 8	с	19.0	В	977	А	26.2	с	128 2	с	None
6	MD 201 (Edmonston Road) and Sunnyside Avenue ^b	Signalized	150.0	F	177 9	F	164.0	F	202 5	F	149.9	F	177 8	F	163.2	F	202 2	F	None
7	MD 201 (Edmonston Road) and Beaver Dam Road	Two-Way Stop Control	Err	F	n/a	n/a	None												
8	MD 201 (Edmonston Road) and Powder Mill Road	Signalized	54.5	D	111 7	В	164.5	F	160 8	F	54.4	D	111 6	В	186.9	F	160 9	F	None
9	MD 201 (Edmonston Road) and Odell Road	Two-Way Stop Control	73.1	F	n/a	n/a	67.9	F	n/a	n/a	71.9	F	n/a	n/a	67.9	F	n/a	n/a	None
10	Powder Mill Road and Poultry Road	All-Way Stop Control	74.6	F	n/a	n/a	276.8	F	n/a	n/a	74.6	F	n/a	n/a	276.8	F	n/a	n/a	None
11	Powder Mill Road and Research Road	Two-Way Stop Control	25.1	D	n/a	n/a	48.2	Е	n/a	n/a	25.1	D	n/a	n/a	48.2	Е	n/a	n/a	None
12	Powder Mill Road and Springfield Road	Two-Way Stop Control	184.1	F	n/a	n/a	693.7	F	n/a	n/a	184.1	F	n/a	n/a	693.7	F	n/a	n/a	None
13	Powder Mill Road and MD 295 SB Ramps	Two-Way Stop Control	357.1	F	n/a	n/a	1141.5	F	n/a	n/a	357.1	F	n/a	n/a	1141.5	F	n/a	n/a	None
14	Powder Mill Road and MD 295 NB Ramps	Two-Way Stop Control	796.1	F	n/a	n/a	1119.8	F	n/a	n/a	796.1	F	n/a	n/a	1119.8	F	n/a	n/a	None
15 Note	Powder Mill Road and Soil Conservation Road	Signalized	25.1	с	681	А	33.1	с	104 4	В	25.1	с	681	А	33.1	С	104 4	В	None

Delay is measured in seconds per vehicle.

^a The HCM vehicle delays and LOS grades are based on the overall intersection for signalized and all-way stop controlled intersection, and the worst approach of two-way stop-controlled intersections.

^b Highway Capacity Manual 2000 results (Intersections #4 and #6)

Using the HCM 6th Edition method, all seven unsignalized intersections have lane groups and/or approaches that would operate under unacceptable conditions (LOS E or LOS F) during the AM and PM peak hours under the Action Alternative, including the following:

- MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7)
 - Westbound Beaver Dam Road would operate at LOS F during the AM peak hour, with worse delays under the Action Alternative compared to those under the No Action Alternative. During the PM peak hour, this approach would operate at LOS E under the Action Alternative compared to LOS F under the No Action Alternative.
 - The sensitivity analysis shows no detrimental change from the TIS in the LOS grades at this intersection for the study peak hours.
- MD 201 (Edmonston Road)/Odell Road (Intersection #9)
 - Eastbound Odell Road would operate at LOS F during the AM and PM peak hours, with worse delays under the Action Alternative compared to those under the No Action Alternative.
 - Westbound Odell Road would operate at LOS E during the AM peak hour, with a worse delay under the Action Alternative than under the No Action Alternative.
 - The westbound shared through-right lane of Odell Road would operate at LOS F during the AM peak hour, with a worse delay under the Action Alternative than under the No Action Alternative.
 - The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.
- Powder Mill Road/Poultry Road (Intersection #10)
 - Eastbound Powder Mill Road would operate at LOS F during the AM and PM peak hours. The AM peak hour would degrade from LOS A under the No Action Alternative to LOS F under the Action Alternative. During the PM peak hour, the eastbound approach would experience LOS F, but with worse delays under the Action Alternative than under the No Action Alternative.
 - Westbound Powder Mill Road would operate at LOS F during the AM peak hour, degrading from LOS B under the No Action Alternative.
 - Southbound Poultry Road would operate at LOS F during the PM peak hour, degrading from LOS A under the No Action Alternative.
 - The intersection would operate at an overall LOS F during the AM peak hour, degrading from LOS B under the No Action Alternative. During the PM peak hour, it would operate at an overall LOS F, degrading from LOS E under the No Action Alternative.
 - The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.
- Powder Mill Road/Research Road (Intersection #11)
 - Northbound Research Road would operate at LOS E during the PM peak hour, degrading from LOS C under the No Action Alternative.

- The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.
- Powder Mill Road/Springfield Road (Intersection #12)
 - During the AM peak hour, the southbound approach would degrade from LOS D to LOS
 F. During the PM peak hour, the LOS F delays under the No Action Alternative would be longer than the delays under the Action Alternative.
 - The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.
- Powder Mill Road/MD 295 (BW Parkway) Southbound Ramps (Intersection #13)
 - Southbound BW Parkway southbound off-ramp during the AM and PM peak hours would remain LOS F but with longer delays under the Action Alternative than under the No Action Alternative.
 - The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.
- Powder Mill Road/MD 295 (BW Parkway) Northbound Ramps (Intersection #14)
 - The northbound approach of the BW Parkway off-ramp would degrade from LOS E under the No Action alternative to LOS F under the Action Alternative during the AM peak hour. During the PM peak hour, the northbound approach would operate at LOS F but with longer delays under the Action Alternative than under the No Action Alternative.
 - The sensitivity analysis shows no change from the TIS in the LOS grades at this intersection for the study peak hours.

These results indicate that there would be imperceptible differences in operational conditions for the No Action and Action Alternatives between the sensitivity analysis and the TIS. As a corollary, the same study intersections that would trigger mitigation based on the operational analysis under the TIS would require the same mitigation according to the sensitivity analysis. No new intersections would require mitigation according to the operational analysis results of this sensitivity analysis.

Intersection Queuing Comparison

The Project Team (A/E) used SimTraffic[™] to calculate the 95th percentile queue lengths. Following the TIS methods for the sensitivity analysis, the simulation model included a seeding time (the time for vehicles to completely travel the network) plus four 15-minute recording times (totaling 60 minutes). Based on the distance from the farthest points on the network, an 8-minute seed time was applied. Ten simulation runs were conducted for each peak hour condition under the No Action Alternative and the Action Alternative.

Based on the SimTraffic[™] analysis, the following intersection lane groups would experience failing queue lengths under the Action Alternative:

- MD 201 (Kenilworth Avenue)/I-95 northbound off-ramp (Intersection #2)
 - Under the Action Alternative, the I-95 northbound off-ramp westbound right-turning movement would have failing queue lengths compared to the acceptable queue lengths

under the No Action Alternative. This queue failure is consistent with the results of the TIS.

- Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- MD 201 (Kenilworth Avenue)/SHA District 3 Driveway/Crescent Road (Intersection #3)
 - The MD 201 (Kenilworth Avenue) northbound right-turning movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length under the No Action Alternative. This queue failure is consistent with the results of the TIS.
 - Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- MD 201 (Kenilworth Avenue)/Ivy Lane (Intersection #4)
 - The MD 201 (Kenilworth Avenue) northbound left-turning movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length under the No Action Alternative. This queue failure is consistent with the results of the TIS.
 - The MD 201 (Kenilworth Avenue) northbound through movement would have a failing queue length during the AM peak hour, while this movement would have an acceptable queue length under the No Action Alternative. This queue failure is consistent with the results of the TIS.
 - Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- MD 201 (Kenilworth Avenue/Edmonston Road)/Cherrywood Lane (Intersection #5)
 - The Cherrywood Lane eastbound left-turning movement would have a failing queue during the AM peak hour under both the No Action Alternative and the Action Alternative. This lane would have failing queues under the No Action Alternative, but queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
 - The MD 201 (Kenilworth Avenue/Edmonston Road) northbound left-turning movement would have a failing queue during the AM peak hour under the Action Alternative. Under the No Action Alternative, this lane would have acceptable queue lengths. This queue failure is consistent with the results of the TIS.
 - The MD 201 (Kenilworth Avenue/Edmonston Road) northbound through movement would have a failing queue during the AM peak hour under the Action Alternative. Under the No Action Alternative, this lane group would have acceptable queue lengths. This queue failure is consistent with the results of the TIS.
 - Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)

- The Sunnyside Avenue eastbound right-turning movement would have failing queue lengths during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
- The MD 201 (Edmonston Road) northbound left-turning movement would have failing queue lengths during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
- The MD 201 (Edmonston Road) southbound through movement would have failing queues during the AM and PM peak hours. This lane group would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
- The MD 201 (Edmonston Road) southbound right-turning movement would have failing queues during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
- Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
 - The Powder Mill Road eastbound left-turning movement would have failing queues during the PM peak hour. This lane would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
 - The Powder Mill Road eastbound through movement would have failing queues during the PM peak hour of the Action Alternative but not under the No Action Alternative. This queue failure is unique to the sensitivity analysis and did not occur in the analysis in the TIS.
 - The Powder Mill Road eastbound right-turning movement would have failing queues during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative during the AM peak hour, but queuing would not increase by more than 150 feet under the Action Alternative, consistent with the results of the TIS. The PM peak hour queue would have an acceptable length under the No Action Alternative; the failure in the PM peak hour is unique to the Action Alternative. This PM peak hour queue failure is consistent with the results of the TIS.
 - The Powder Mill Road westbound left-turning movement would have failing queues during the PM peak hour but would have acceptable queues under the No Action Alternative. This queue failure is consistent with the results of the TIS.
 - The Powder Mill Road westbound right-turning movement would have failing queues during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
 - The MD 201 (Edmonston Road) northbound left-turning movement would have a failing queue during the PM peak hour. This lane would also have a failing queue under the No

Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.

- The MD 201 (Edmonston Road) northbound right-turning movement would have a failing queue during the PM peak hour. This lane would also have a failing queue under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
- The MD 201 (Edmonston Road) southbound left-turning movement would have failing queues during the AM and PM peak hours, whereas queues under the No Action Alternative would have acceptable lengths. This queue failure is consistent with the results of the TIS.
- The MD 201 (Edmonston Road) southbound through-right movement would have a failing queue during the AM peak hour. This lane would also have a failing AM peak hour queue under the No Action Alternative; however, queuing would not increase by more than 150 feet under the Action Alternative, consistent with the results of the TIS.
- Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative, except for the case of the eastbound through movement noted above.
- Powder Mill Road/Poultry Road (Intersection #10)
 - The eastbound left-through movement queues would exceed the available storage during the AM and PM peak hours. The AM peak hour queue in this lane would operate within its storage under the No Action Alternative but would fail in the PM peak hour. The PM peak hour queue failure under the No Action Alternative would increase by more than 150 feet under the Action Alternative, consistent with the results of the TIS.
 - The westbound through-right movement queue would fail during the AM peak hour.
 Queues in this lane would operate within their storage under the No Action Alternative.
 This queue failure is consistent with the results of the TIS.
 - Compared with the TIS, the sensitivity analysis shows no additional turning movements would have failing queues under the Action Alternative.
- Powder Mill Road/MD 295 (BW Parkway Southbound Off-Ramp) (Intersection #13)
 - The MD 295 (BW Parkway Southbound Off-Ramp) southbound left-turning movement would have failing queues during the AM and PM peak hours. This lane would also have failing queues under the No Action Alternative, but queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.
 - The MD 295 (BW Parkway Southbound Off-Ramp) southbound through-right movements would have failing queues during the AM and PM peak hours. These queue failures are unique to the sensitivity analysis and did not occur for the Action Alternative results of the TIS. The PM peak hour queue would also fail for the No Action Alternative; however, the queue would not increase by more than 150 feet under the Action Alternative.
 - Powder Mill Road/MD 295 (BW Parkway Northbound Off-Ramp) (Intersection #14)
 - The MD 295 (BW Parkway Northbound Off-Ramp) northbound left-turning movement would have failing queues during the AM and PM peak hours. This lane would also have

failing queues under the No Action Alternative; however, queuing would increase by less than 150 feet under the Action Alternative, consistent with the results of the TIS.

The sensitivity analysis results indicate that overall, the queues are consistent with the results from the TIS. Two exceptions occur with the sensitivity analysis that indicate that mitigation would be needed to improve those queues:

- At MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8), the Powder Mill Road eastbound through movement would have failing queues during the PM peak hour of the Action Alternative but not under the No Action Alternative.
- At Powder Mill Road/MD 295 (BW Parkway Southbound Off-Ramp) (Intersection #13), the MD 295 (BW Parkway Southbound Off-Ramp) southbound through-right movements would have failing queues during the AM peak hour of the Action Alternative but not under the No Action Alternative.

However, Section 3 will demonstrate that the mitigation strategies proposed in the TIS would adequately improve the two additional queue issues reported through the sensitivity analysis. The remaining intersections in the study area would have acceptable queue lengths according to the SimTraffic[™] method. The results of the queuing analysis for both signalized and unsignalized intersections under the No Action and Action Alternatives are presented in **Figure 2-17**. The percentile values are expressed in feet, and an average car plus space between the next vehicle requires roughly 25 feet. The red cells denote lane groups whose queuing length exceed capacity. Attachment C provides SimTraffic[™] simulation reports.

				Turning	No Action	Alternative	Action A	Iternative
ID	Intersection Name/Street Name	Direction	Lane Group	Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
1	MD 201 (Kenilworth Avenue) a	and I-95 SB	Off-Ramp) (Signalized)			
	I-95 SB Off-Ramp	EB	L	325	65	64	129	67
	I-95 SB Off-Ramp	EB	L	1540	152	257	216	228
	I-95 SB Off-Ramp	EB	R	1540	107	211	74	228
	MD 201 (Kenilworth Avenue)	NB	Т	4600	117	152	127	153
	MD 201 (Kenilworth Avenue)	SB	Т	1400	90	132	100	115
2	MD 201 (Kenilworth Avenue) a	and I-95 NB	Off-Ramp	o (Signalized)			
	I-95 NB Off-Ramp	WB	L	400	181	247	183	253
	I-95 NB Off-Ramp	WB	L	1580	235	295	654	303
	I-95 NB Off-Ramp	WB	R	1580	295	250	1832	266
	I-95 NB Off-Ramp	WB	R	300	281	231	362	248
	MD 201 (Kenilworth Avenue)	NB	Т	250	114	128	145	132
	MD 201 (Kenilworth Avenue)	NB	Т	1400	130	167	165	160
	MD 201 (Kenilworth Avenue)	SB	Т	680	180	156	176	169
3	MD 201 (Kenilworth Avenue) a	and SHA Dis	strict 3/Cr	escent Road	l (Signalized)			
	SHA District 3	EB	LTR	130	29	39	27	36
	Crescent Road	WB	LT	1080	156	193	149	187
	Crescent Road	WB	R	250	78	78	88	89
	MD 201 (Kenilworth Avenue)	NB	L	250	75	53	200	59
	MD 201 (Kenilworth Avenue)	NB	Т	680	134	230	543	219
	MD 201 (Kenilworth Avenue)	NB	R	200	22	110	250	94
	MD 201 (Kenilworth Avenue)	SB	L	300	63	122	63	120
	MD 201 (Kenilworth Avenue)	SB	TR	740	93	83	82	96

Figure 2-17 Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing

					No Action	Alternative	Action A	Iternative
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
4	MD 201 (Kenilworth Avenue)	and Ivy Lane	e (Signali	zed)				
	MD 201 (Kenilworth Avenue)	NB	L	350	78	118	86	109
	MD 201 (Kenilworth Avenue)	NB	L	740	127	141	1026	136
	MD 201 (Kenilworth Avenue)	NB	Т	740	184	-	1097	117
	MD 201 (Kenilworth Avenue)	SB	Т	1120	65	135	64	135
5	MD 201 (Kenilworth Avenue/E	dmonston F	Road) and	d Cherrywoo	d Lane (Signali	ized)		
	Cherrywood Lane	EB	L	250	286	185	325	191
	Cherrywood Lane	EB	L	750	679	207	701	217
	Cherrywood Lane	EB	R	750	104	277	106	261
	MD 201 (Kenilworth Avenue)	NB	L	750	624	187	1098	181
	MD 201 (Kenilworth Avenue)	NB	Т	1120	927	141	1570	148
	MD 201 (Edmonston Road)	SB	Т	580	248	241	257	269
	MD 201 (Edmonston Road)	SB	R	250	178	145	180	183
6	MD 201 (Edmonston Road) an	d Sunnysid	e Avenue	e (Signalized)			
	Sunnyside Avenue	EB	L	1400	723	1181	1243	1203
	Sunnyside Avenue	EB	R	350	404	425	475	393
	MD 201 (Edmonston Road)	NB	L	450	513	546	533	545
	MD 201 (Edmonston Road)	NB	TR	4160	5566	1456	2553	1599
	MD 201 (Edmonston Road)	SB	Т	1500	1928	2041	1968	1889
	MD 201 (Edmonston Road)	SB	R	250	306	341	290	344

 Figure 2-17
 Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing (continued)

					No Action	Alternative	Action A	Iternative
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
7	MD 201 (Edmonston Road)	and Beaver	Dam Roa	ad (TWSC)				
	Beaver Dam Road	WB	LR	1300	642	618	682	678
	MD 201 (Edmonston Road)	NB	TR	1500	45	10	25	18
	MD 201 (Edmonston Road)	SB	LT	1480	1266	1192	1254	1143
8	MD 201 (Edmonston Road)	and Powde	r Mill Roa	d (Signalize	d)			
	Powder Mill Road	EB	L	250	97	321	110	337
	Powder Mill Road	EB	Т	1430	1276	699	1126	1440
	Powder Mill Road	EB	R	500	726	440	677	687
	Powder Mill Road	WB	L	250	246	141	222	282
	Powder Mill Road	WB	Т	1100	266	216	160	622
	Powder Mill Road	WB	R	40	62	64	55	50
	MD 201 (Edmonston Road)	NB	L	400	368	451	288	457
	MD 201 (Edmonston Road)	NB	Т	1480	356	596	295	650
	MD 201 (Edmonston Road)	NB	R	275	107	290	131	313
	MD 201 (Edmonston Road)	SB	L	275	266	258	305	339
	MD 201 (Edmonston Road)	SB	TR	780	891	428	782	603
9	MD 201 (Edmonston Road)	and Odell R	load (TW	SC)				
	Odell Road	EB	LTR	740	83	68	91	68
	Odell Road	WB	LT	520	41	12	37	14
	Odell Road	WB	R	50	23	13	27	16
	MD 201 (Edmonston Road)	NB	LT	760	110	118	131	137
	MD 201 (Edmonston Road)	SB	LTR	1320	7	16	6	4

 Figure 2-17
 Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing (continued)

					No Action	Alternative	Action A	Iternative		
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)		
10	Powder Mill Road and Poul	try Road (A	WSC)							
	Powder Mill Road	EB	LT	240	90	333	622	667		
	Powder Mill Road	WB	TR	1280	110	98	1653	646		
	Poultry Road	SB	LR	420	-	24	-	409		
11	Powder Mill Road and Rese	earch Road ((TWSC)							
	Powder Mill Road	EB	TR	1280	-	36	-	47		
	Powder Mill Road	WB	TR	950	-	-	67	-		
	Research Road	NB	L	65	38	47	41	49		
12	Powder Mill Road and Sprin (TWSC)	ngfield Road	1							
	Powder Mill Road	EB	L	50	12	27	18	25		
	Powder Mill Road	EB	Т	1590	-	-	-	49		
	Powder Mill Road	WB	TR	140	4	-	7	-		
	Springfield Road	SB	LR	4110	83	257	138	574		
13	Powder Mill Road and MD 2	295 SB Ram	ps (TWSC	C)						
	Powder Mill Road	EB	TR	140	-	15	2	45		
	Powder Mill Road	WB	L	225	37	83	38	119		
	Powder Mill Road	WB	Т	520	-	-	2	-		
	BW Parkway SB Ramp	SB	L	25	58	54	51	58		
	BW Parkway SB Ramp	SB	TR 1020 187 1112				1083	1072		

Figure 2-17 Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing Analysis (continued)

					No Action	Alternative	Action A	Iternative
ID	Intersection Name/Street Name	Direction	Lane Group	Turning Bay/Link Length (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
14	Powder Mill Road and MD 2	295 NB Ram	ps (TWS0	C)				
	Powder Mill Road	EB	L	250	59	204	55	241
	Powder Mill Road	EB	Т	520	-	29	-	203
	Powder Mill Road	WB	TR	850	8	33	6	43
	BW Parkway NB Ramp	NB	L	50	58	87	81	88
	BW Parkway NB Ramp	NB	TR	880	59	678	789	698
15	Powder Mill Road and Soil (Signalized)	Conservatio	on Road					
	Powder Mill Road	EB	Т	850	157	225	138	215
	Powder Mill Road	EB	R	260	31	44	31	33
	Powder Mill Road	WB	L	300	80	66	84	64
	Powder Mill Road	WB	Т	780	183	202	209	200
	Soil Conservation Road	NB	L	6400	203	375	204	352
	Soil Conservation Road	NB	R	475	-	-	-	-

Figure 2-17 Comparison of No Action Alternative and Action Alternative AM and PM Peak Hour Queuing Analysis (continued)

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

2) LTR = left / through / right lanes

3) TWSC = Two-way STOP-Controlled unsignalized intersection

4) AWSC = All-way STOP-Controlled unsignalized intersection

5) Red cells denote lane groups whose queuing length exceeds capacity.

3 ACTION ALTERNATIVE WITH MITIGATION

Identification of Mitigation Strategies

In the TIS, the Project Team (A/E) developed recommended mitigation strategies to adequately improve intersection operations and queuing based on several criteria. To reiterate the criteria outlined in the TIS, the acceptable operation of a signalized intersection based on the HCM 6th Edition method is LOS D or better, while the acceptable or passing operation of a signalized intersection for the CLV method is LOS C or better. Instances where an intersection would fail the CLV or HCM standard under the No Action Alternative and whose condition would worsen under the Action Alternative are targeted for mitigation. Intersections targeted for mitigation also encompass those that would operate acceptably under the No Action Alternative but unacceptably under the Action Alternative, based on the LOS or delay criteria as applicable to signalized or unsignalized intersections. In addition, lane group queues that would exceed the available storage under the No Action Alternative and that would increase by more than 150 feet from the No Action Alternative to the Action Alternative require mitigation. Mitigation is also targeted for intersection lane groups that would be adequately stored under the No Action Alternative but would exceed the available storage under the Action Alternative. M-NCPPC requires mitigation for unsignalized intersections operating with at least one movement on the minor street exceeding 50 seconds of delay, having more than 100 vehicles on the minor street approaches during the peak hour, and whose CLV exceeds 1,150.

Figure 3-1 presents a summary of the study intersections; indicates if they would pass the CLV, HCM, and queue tests under the Action Alternative; and notes if mitigation would be required as a result. Therefore, the following study intersections were studied for mitigation strategies for the purpose of reducing the impact on the transportation system caused by the Action Alternative:

- MD 201 (Kenilworth Avenue)/I-295 NB Off-Ramp (Intersection #2)
- MD 201 (Kenilworth Avenue)/SHA District 3 Driveway/Crescent Road (Intersection #3)
- MD 201 (Kenilworth Avenue)/Ivy Lane (Intersection #4)
- MD 201 (Kenilworth Avenue/Edmonston Road)/Cherrywood Lane (Intersection #5)
- MD 201 (Edmonston Road)/Sunnyside Avenue (Intersection #6)
- MD 201 (Edmonston Road)/Powder Mill Road (Intersection #8)
- Powder Mill Road/Springfield Road (Intersection #12)
- Powder Mill Road/MD 295 (BW Parkway) southbound ramps (Intersection #13)
- Powder Mill Road/MD 295 (BW Parkway) northbound ramps (Intersection #14)

ID	Intersection	CLV	НСМ	Queue	Mitigation Needed	Reason for No Mitigation
1	MD 201/ I-95 SB Off-Ramp	Pass	Pass	Pass	No	CLV and HCM pass
2	MD 201/I-95 NB Off-Ramp	Pass	Pass	Fail	\checkmark	-
3	MD 201/ SHA District 3/Crescent Road	Pass	Pass	Fail	\checkmark	-
4	MD 201/Ivy Lane	Pass	Pass	Fail	\checkmark	-
5	MD 201/Edmonston Road)/Cherrywood Lane	Pass	Pass	Fail	\checkmark	-
6	MD 201/Sunnyside Avenue	Fail	Fail	Fail	\checkmark	-
7	MD 201/Beaver Dam Road	n/a	Fail	Fail	No	Fewer than 100 vehicles on Beaver Dam Road
8	MD 201/Powder Mill Road	Fail	Fail	Fail	\checkmark	-
9	MD 201/Odell Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Odell Road
10	Powder Mill Road/Poultry Road	n/a	Fail	Fail	No	The intersection will be improved through site design
11	Powder Mill Road/Research Road	n/a	Fail	Pass	No	Fewer than 100 vehicles on Research Road
12	Powder Mill Road/Springfield Road	n/a	Fail	Pass	\checkmark	-
13	Powder Mill Road/MD 295 SB Ramps	n/a	Fail	Fail	\checkmark	-
14	Powder Mill Road/MD 295 NB Ramps	n/a	Fail	Fail	\checkmark	-
15	Powder Mill Road/Soil Conservation Road	Pass	Pass	Pass	No	CLV and HCM pass

Figure 3-1 Action Alternative Intersection Mitigation Requirement Summary

While the list above presents the intersections identified for mitigation, some mitigation strategies for specific intersections can result in systemic improvements that obviate the need to modify an adjacent intersection. For instance, two adjacent intersections with failing queues may be mitigated by modifying only one of the intersections (e.g., through the provision of additional turning lanes or by modifying traffic signal timings). Therefore, operations can be improved for intersections requiring mitigation by affecting other inadequate intersections without modifying the intersection in need of mitigation. This, in effect, can limit the amount of change to a transportation system to achieve acceptable outcomes.

This sensitivity analysis also reinforces the mitigation strategies that the Project Team (A/E) proposed in the TIS. In general, the mitigation strategies included the following approaches:

- Revising signal control types, timings, and phasings
- Proposing traffic signals at currently unsignalized intersections
- Revising existing lane geometry within the existing right-of-way
- Adding new turn lanes or through lanes or extending existing turning lane storage bays by assuming additional right-of-way

Traffic Analysis

The operational and queuing analysis for the Action Alternative with Mitigation was principally based on forecasts of turning movement volumes shown in Figure 2-9. The TIS included a modification to the forecasts based on a mitigation strategy for the intersection of MD 201 (Edmonston Road)/Beaver Dam Road (Intersection #7) that was also assumed for this sensitivity analysis. This adjustment was based on the proposed restriction of southbound left turns from Edmonston Road onto Beaver Dam Road during peak periods. Those vehicle trips were reassigned through the network by removing associated trips from the southbound left-turn movement of Edmonston Road at Beaver Dam Road. The 23 AM peak hour and 32 PM peak hour southbound left turns that were removed were then reassigned at the MD 201 (Edmonston Road)/Powder Mill Road) intersection (Intersection #8), which is upstream from Beaver Dam Road. Based on the proportionality of existing turning movement counts between the eastbound right-turn lane of Powder Mill Road and the southbound through movement of Edmonston Road, trips were removed from the eastbound right-turn movement of Powder Mill Road and reassigned to the eastbound through movement of Powder Mill Road; whereas trips were removed from the southbound through movement of Edmonston Road and reassigned to the southbound left-turn movement of Edmonston Road. The 23 AM peak hour and 32 PM peak hour trips are assumed to continue eastbound on Powder Mill Road and ultimately complete a right turn into Research Road. The resultant forecasts were applied in the Synchro™ and CLV-based Excel worksheet analyses.

The CLV LOS grades for signalized intersections under the Action Alternative with Mitigation are depicted in **Figure 3-2** for AM and PM peak hours. The overall signalized intersection LOS grades and worst unsignalized lane group LOS grades are depicted in **Figure 3-3** for AM and PM peak hours (HCM). **Figure 3-4** shows the results of the LOS capacity analysis and the intersection vehicle delay for the Action Alternative with Mitigation during the AM and PM peak hours for the affected intersections compared to the results from the No Action Alternative. The table shows that the intersections targeted for mitigation would improve to CLVs that are either less than 1,300 or less than those of the No Action Alternative. The table also shows that the LOS grades based on HCM methodology would improve to LOS D or better or otherwise operate better than the No Action Alternative. Attachment A provides CLV analysis worksheets, and Attachment B provides Synchro[™] analysis reports.

Figure 3-2 Action Alternative with Mitigation Traffic Operations Summary – CLV Method

Figure 3-3 Action Alternative with Mitigation Traffic Operations Summary – HCM Method

No Action Alternative AM Peak Hour PM Peak Hour																	Actio	n Alter	native w	vith Mitig	gation			
				AM F	Peak Ho	our			PM F	Peak Ho	our				AM I	Peak Ho	our			PM I	Peak Ho	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
1	MD 201 (Kenilworth Avenu	ie) and l	-95 SB (Off-Ram	p (Sign	alized)																		
	EB (I-95 SB Off-Ramp)	L	0.68	49.7	D			0.69	49.7	D				0.78	47.8	D			0.69	49.7	D			-
	EB Overall (I-95 SB Off-Ra	mp)		49.7	D				49.7	D			Pass		47.8	D				49.7	D			Pass
	NB (Kenilworth Avenue)	Т	0.36	2.6	Α			0.50	3.3	Α				0.38	3.8	Α			0.50	3.3	Α			
	NB Overall (Kenilworth Av	enue)		2.6	Α				3.3	Α			Pass		3.8	Α				3.3	Α			Pass
	SB (Kenilworth Avenue)	Т	0.41	3.0	Α			0.57	4.0	Α				0.43	4.2	Α			0.57	4.1	Α			
	SB Overall (Kenilworth Av	enue)		3.0	Α				4.0	Α			Pass		4.2	Α				4.1	Α			Pass
	Overall			5.2	Α	606	Α		5.5	Α	883	Α	Pass		7.9	Α	667	Α		5.5	Α	893	Α	Pass
2	MD 201 (Kenilworth Avenu (Signalized)	ie) and l	-95 NB (Off-Ram	р																			
	WB (I-95 NB Off-Ramp)	L	0.46	21.3	С			0.73	33.0	С				0.42	18.3	В			0.73	33.0	С			
	WB (I-95 NB Off-Ramp)	R	0.89	34.6	С			0.83	37.9	D				1.00	52.7	F			0.83	37.9	D			
	WB Overall (I-95 SB Off-Ramp)			29.4	С				35.4	D			Pass		40.9	D				35.4	D			Pass
	NB (Kenilworth Avenue)	Т	0.31	17.8	В			0.37	12.4	В				0.41	21.6	С			0.37	12.4	В			
	NB Overall (Kenilworth Av	enue)		17.8	В				12.4	В			Pass		21.6	С				12.4	В			Pass
	SB (Kenilworth Avenue)	Т	0.62	22.1	С			0.59	15.1	В				0.68	26.1	С			0.68	16.6	В			
	SB Overall (Kenilworth Av	enue)		22.1	С				15.1	В			Pass		26.1	С				16.6	В			Pass
	Overall			24.7	С	861	Α		21.3	С	966	Α	Pass		32.3	С	974	Α		21.6	С	1048	В	Pass
3	MD 201 (Kenilworth Avenu	ie) and S	HA Dis	trict 3/C	rescent	t Road	(Signa	lized)	_															
	EB (SHA District 3)	LTR	0.04	30.6	С			0.17	32.1	С				0.04	30.6	С			0.17	31.5	С			
	EB Overall (SHA District 3)		30.6	С				32.1	С			Pass		30.6	С				31.5	С			Pass
	WB (Crescent Road)	LT	0.81	62.7	E			0.89	76.6	E				0.81	62.7	E			0.87	72.7	Е			
	WB (Crescent Road)	R	0.27	31.2	С			0.27	32.0	С				0.27	31.2	С			0.26	31.2	С			
	WB Overall (Crescent Roa	d)		50.3	D				60.8	Е			Fail		50.3	D				58.0	Е			Fail
	NB (Kenilworth Avenue)	L	0.73	62.9	E			0.60	62.4	E				0.73	62.9	E			0.60	62.4	E			
	NB (Kenilworth Avenue)	Т	0.58	15.4	В			0.60	18.4	В				0.73	18.1	В			0.61	19.2	В			
	NB (Kenilworth Avenue) R		0.00	0.0	Α			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	Α			
	NB Overall (Kenilworth Avenue)			16.7	В				19.1	В			Pass		19.1	В				19.9	В			Pass
	SB (Kenilworth Avenue)	L	0.75	66.5	E			0.80	56.0	E				0.75	66.5	E			0.80	54.7	D			
	SB (Kenilworth Avenue)	TR	0.58	32.5	С			0.58	31.4	С				0.58	32.5	С			0.71	35.8	D			
	SB Overall (Kenilworth Av	enue)		32.7	С				32.5	С			Pass		32.7	С				36.1	D			Pass
	Overall			26.3	С	665	Α		29.2	С	800	Α	Pass		26.6	С	785	Α		31.6	С	919	Α	Pass

Figure 3-4 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations

liga		II Alterna				with wh	No Ac	tion Alte	ernative		r cun ric				<u>/</u>		Actio	n Alter	native w	vith Mitig	ation			
				AM	Peak Ho	our			PM	Peak H	our				AM	Peak H	our			PM	Peak He	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
4	MD 201 (Kenilworth Avenue) an	d Ivy La	ne (Sign	alized) ^a																•				
	EB (Ivy Lane)	R	0.14	0.2	Α			0.18	0.3	Α				0.14	0.2	А			0.18	0.3	А			
	EB Overall (Ivy Lane)			0.2	Α				0.3	Α			Pass		0.2	Α				0.3	Α			Pass
	NB (Kenilworth Avenue)	L	0.45	26.8	С			0.57	24.0	С				0.45	26.0	С			0.56	23.4	С			
	NB (Kenilworth Avenue)	Т	0.45	0.4	А			0.40	0.3	Α				0.56	0.5	Α			0.40	0.3	А			
	NB Overall (Kenilworth Avenue))		2.7	Α				3.7	Α			Pass		2.3	Α				3.6	Α			Pass
	SB (Kenilworth Avenue)	Т	0.53	0.8	Α			0.60	1.8	Α				0.53	0.7	Α			0.73	3.4	А			
	SB (Kenilworth Avenue)	R	0.01	0.0	Α			0.01	0.3	Α				0.01	0.0	Α			0.01	0.2	А			
	SB Overall (Kenilworth Avenue)			0.8	Α				1.8	Α			Pass		0.7	Α				3.4	Α			Pass
	Overall			1.8	Α	653	Α		2.5	Α	910	Α	Pass		1.6	Α	653	Α		3.2	Α	1,088	В	Pass
5	MD 201 (Kenilworth Avenue/Ed	monston	Road)	and Che	rrywoo	d Lane	(Signa	lized)					_		_					_				-
	EB (Cherrywood Lane)	L	0.86	52.2	D			0.71	42.5	D				0.86	52.2	D			0.71	42.5	D			
	EB (Cherrywood Lane)	R	0.35	38.3	D			0.95	80.5	F				0.35	38.3	D			0.95	80.5	F			
	EB Overall (Cherrywood Lane)			50.0	D				56.9	E			Fail		50.0	D				56.9	Е			Fail
	NB (Kenilworth Avenue)	L	0.88	33.0	С			0.78	25.3	С				0.88	31.9	С			0.87	42.8	D			
	NB (Kenilworth Avenue)	Т	0.55	7.6	А			0.52	8.3	А				0.71	9.9	А			0.52	8.3	А			
	NB Overall (Kenilworth Avenue))		11.9	В				10.8	В			Pass		12.9	В				13.5	В			Pass
	SB (Edmonston Road)	Т	0.68	17.2	В			0.69	17.3	В				0.68	17.2	В			0.89	26.6	С			
	SB (Edmonston Road)	R	0.54	15.8	В			0.47	14.6	В				0.54	15.8	В			0.49	15.7	В			
	SB Overall (Edmonston Road)			16.8	В				16.7	В			Pass		16.8	В				24.5	С			Pass
	Overall			19.3	В	977	Α		21.8	С	1104	В	Pass		19.0	В	977	Α		26.2	С	1,282	С	Pass
6	MD 201 (Edmonston Road) and	Sunnysi	ide Aver	nue (Sig	nalized) ^a					•			•										
	EB (Sunnyside Avenue)	L	1.32	297.6	F			1.36	261.8	F	_			1.17	167.1	F			1.26	189.2	F			
	EB (Sunnyside Avenue)	R	0.64	61.7	Е			1.11	125.0	F				0.51	19.9	В			1.02	71.2	Е			
	EB Overall (Sunnyside Avenue)			126.8	F				167.5	F			Fail		74.7	E				107.9	F			Fail
	NB (Edmonston Road)	L	1.43	280.0	F			1.23	187.0	F	_			1.14	93.2	F			1.09	85.8	F			
	NB (Edmonston Road)	TR	0.66	4.7	А			0.90	20.9	С				0.54	1.1	А			0.51	1.9	А			
	NB Overall (Edmonston Road)			110.5	F				66.9	E			Fail		29.9	С				25.1	С			Pass
	SB (Edmonston Road)	Т	1.36	212.3	F			1.17	125.7	F				1.04	67.0	E			1.00	52.4	D			
	SB (Edmonston Road)	R	0.24	14.4	В			0.15	9.9	A				0.25	13.5	В			0.21	10.2	В			
	SB Overall (Edmonston Road)			180.1	F				108.6	F			Fail		58.3	E				46.1	D			Fail
	Overall			141.3	F	1718	F		105.3	F	1699	F	Fail		46.2	D	1,299	С		51.8	D	1,428	D	Fail

Figure 3-4 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (continued)

Figu	Figure 3-4 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operatio No Action Alternative No Action Alternative													ns (continued) Action Alternative with Mitigation										
		-			<u> </u>		No Act	ion Alte	rnative							<u> </u>	Actio	n Alter	native v	vith Miti	gation			
		_	r		eak Ho	our	<u> </u>		PM F	Peak Ho	our					eak Ho	our			PM	Peak Ho	our		
ID	Intersection La Name and Approach Gro	ane oup	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
7	MD 201 (Edmonston Road) and B	eave	r Dam F	load (TW	SC)																			
	WB (Beaver Dam Road) L	.R	3.38	1753.5	F			1.61	689.9	F				1.20	420.3	F			0.80	227.8	F			
	WB Overall (Beaver Dam Road)			1753.5	F				689.9	F		-	Fail		420.3	F				227.8	F		ļ	Fail
	SB (Edmonston Road)	.T	0.06	12.6	В			0.09	14.5	В				-	-	-			-	-	-			
	SB Overall (Edmonston Road)	_		0.2			[0.4				Pass		0.0					0.0				Pass
	Overall			22.3		n/a	n/a		8.3		n/a	n/a	Pass		4.6		n/a	n/a		2.4		n/a	n/a	Pass
8	MD 201 (Edmonston Road) and P	owde	er Mill R	oad (Sig	nalized)																		
	EB (Powder Mill Road)	L	0.29	58.4	E			0.74	63.1	E				0.78	52.3	D			0.92	71.4	E			
	EB (Powder Mill Road)	Т	0.31	48.2	D			0.80	61.2	Е		_		0.63	37.6	D			0.81	49.9	D			
	EB (Powder Mill Road)	R	0.00	0.0	0			0.00	0.0	0				0.00	0.0	А			0.00	0.0	А			
	EB Overall (Powder Mill Road)			51.7	D				61.9	E		_	Fail		41.0	D				58.2	E			Fail
	WB (Powder Mill Road)	L	0.73	71.8	Е			0.55	53.2	D				0.75	46.6	D			0.93	62.3	Е			
	WB (Powder Mill Road)	Т	0.32	40.6	D			0.28	34.9	С				0.68	37.5	D			0.97	88.8	F			
	WB (Powder Mill Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	WB Overall (Powder Mill Road)			58.0	Е				41.3	D			Fail		42.5	D				71.1	Е			Fail
	NB (Edmonston Road)	L	0.92	61.4	Е			0.88	55.5	Е				0.93	38.3	D			0.99	63.9	Е			
	NB (Edmonston Road)	Т	0.59	20.1	С			0.71	29.7	С				0.59	11.6	В			0.77	25.8	С			
	NB (Edmonston Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	NB Overall (Edmonston Road)			38.3	D				40.3	D			Pass	-	23.4	С				41.5	D			Pass
	SB (Edmonston Road)	L	0.13	39.3	D			0.46	57.1	Е				0.30	24.3	С			0.59	48.8	D			
	SB (Edmonston Road) T	R	0.87	68.7	Е			0.82	70.3	Е				0.82	39.2	D			0.84	53.3	D			
	SB Overall (Edmonston Road)			67.5	Е				68.4	ш			Fail	-	37.6	D				52.4	D			Pass
	Overall			51.7	D	1079	В		53.3	D	1226	С	Pass		32.7	С	986	Α		54.4	D	1,249	С	Pass
9	MD 201 (Edmonston Road) and O	dell F	Road (T	WSC)																				
	EB (Odell Road)	TR	0.29	66.3	F			0.35	63.0	F				0.31	71.9	F			0.37	67.9	F			
	EB Overall (Odell Road)			66.3	F				63.0	F			Fail		71.9	F				67.9	F			Fail
	WB (Odell Road)	T	0.08	48.0	Е			0.03	46.0	Е				0.09	50.7	F			0.04	48.4	Е			
	WB (Odell Road)	R	0.00	13.8	В			0.01	13.3	В				0.00	13.8	В			0.01	13.7	В			
	WB Overall (Odell Road)			43.7	Е				32.9	D			Fail		46.1	Е				34.5	D			Fail
	NB (Edmonston Road)	T	0.06	9.5	А			0.04	9.9	А				0.06	9.6	А			0.04	9.9	А			
	NB Overall (Edmonston Road)			0.8					0.4				Pass		0.8					0.4				Pass
	SB (Edmonston Road)	TR		0.0	А			0.00	9.2	А					0.0	А			0.00	9.3	А			
	SB Overall (Edmonston Road)			0.0					0.0				Pass		0.0					0.0				Pass
	Overall			1.8		n/a	n/a		1.6		n/a	n/a	Pass		1.8		n/a	n/a		1.7		n/a	n/a	Pass

Figure 3-4	Comparison of No Action	Alternative to Action A	Iternative with Mitigation	n Intersection AM and P	M Peak Hour Operation	s (continued
------------	-------------------------	-------------------------	----------------------------	-------------------------	-----------------------	--------------

				No Action Alternative											Action Alternative with Mitigation									
				AM F	Peak Ho	our			PM F	Peak Ho	our				AM	Peak H	our			PM	Peak H	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
10	Powder Mill Road and Poultry R	Road (AV	NSC in I	No Actic	on Alter	native;	Signa	lized in	Action /	Alternat	tive wit	th Mitig	ation)											
	EB (Powder Mill Road)	LT	0.25	8.9	Α			1.02	59.3	F				n/a	n/a	n/a			n/a	n/a	n/a			
	EB (Powder Mill Road)	L	n/a	n/a	n/a			n/a	n/a	n/a				0.74	6.4	Α			0.02	14.0	В	1		
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.15	0.6	Α			0.92	31.5	С			
	EB Overall (Powder Mill Road)			8.9	Α				59.3	F			Fail		4.7	Α				31.3	С			Pass
	WB (Powder Mill Road)	TR	0.51	11.3	В			0.45	11.7	В				n/a	n/a	n/a			n/a	n/a	n/a			
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.60	9.0	Α			0.43	20.1	С			
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.67	9.8	Α			0.01	16.3	В			
	WB Overall (Powder Mill Road)			11.3	В				11.7	В			Pass		9.4	Α				20.0	С			Pass
	SB (Poultry Road)	LR	0.00	8.3	Α			0.02	9.7	Α				n/a	n/a	n/a			n/a	n/a	n/a			
	SB (Poultry Road)	L	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	Α			0.67	28.1	С			
	SB (Poultry Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	Α			0.98	62.1	Е			
	SB Overall (Poultry Road)			0.0	-				9.7	Α			Pass		0.0	-				47.3	D			Pass
	Overall			10.6	В	n/a	n/a		45.6	Е	n/a	n/a	Fail		7.2	Α	868	Α		36.8	D	1,250	С	Pass
11	Powder Mill Road and Research	n Road (TWSC)																					
	NB (Research Road)	L	0.06	14.6	В			0.16	24.7	С				0.11	25.5	D			0.31	49.8	Е			
	NB Overall (Research Road)			14.6	В				24.7	С			Pass		25.5	D				49. 8	Е			Fail
	Overall			0.4		n/a	n/a		0.7		n/a	n/a	Pass		0.4		n/a	n/a		1.1		n/a	n/a	Pass
12	Powder Mill Road and Springfie	ld Road	I (TWSC	in No A	ction A	lternat	ive; Si	gnalized	l in Acti	on Alte	rnative	with N	litigation	ı)										
	EB (Powder Mill Road)	L	0.01	9.2	А			0.02	8.3	А				0.02	4.3	Α			0.04	6.5	А			
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.18	4.0	А			0.81	16.5	В			
	EB Overall (Powder Mill Road)			0.3					0.3				Pass		4.0	Α				16.3	В			Pass
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.00	0.0	А			0.00	0.0	А			
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.98	16.3	В			0.43	5.4	А			
	WB Overall (Powder Mill Road)			n/a	n/a				n/a	n/a					16.3	В				5.4	Α			Pass
	SB (Springfield Road)	LR	0.61	31.1	D			1.37	229.8	F				0.87	68.8	E			1.00	89.3	F			
	SB Overall (Springfield Road)			31.1	D				229.8	F			Fail		68.8	Е				89.3	F			Fail
	Overall			5.6		n/a	n/a		52.9		n/a	n/a	Fail		21.1	С	1,059	В		26.8	С	1,270	С	Pass

Figure 3-4 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (continued)
							No Ac	tion Alte	ernative						<u></u>		Actio	on Alter	native v	with Miti	gation			
				AM I	Peak Ho	our			PM F	Peak Ho	our				AM F	Peak Ho	our			PM	Peak H	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
13	Powder Mill Road and MD 295	SB Ramp	os (TWS	C in No	Action	Altern	ative; S	Signalize	d in Ac	tion Alt	ernativ	e with	Mitigatio	on)										
	EB (Powder Mill Road)	Т	0.00	0.0	0			0.00	0.0	0				0.28	7.9	Α			0.84	3.2	А			
	EB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.16	7.3	Α			0.48	0.7	А			
	EB Overall (Powder Mill Road)			0.0					0.0				Pass		7.7	Α				2.4	Α			Pass
	WB (Powder Mill Road)	L	0.10	8.5	Α			0.21	11.5	В				0.18	8.3	Α			0.39	7.0	А			
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.69	2.3	Α			0.24	0.4	А			
	WB Overall (Powder Mill Road)			1.7					3.7				Pass		3.0	Α				2.6	Α			Pass
	SB (MD 295 SB Off-Ramp)	L	1.35	223.1	F			2.87	929.9	F				0.77	43.4	D			0.88	56.3	Е			
	SB (MD 295 SB Off-Ramp)	TR	0.43	15.1	С			0.21	11.3	В				0.94	67.4	E			0.50	37.3	D			
	SB Overall (MD 295 SB Off-Ran	np)		129.6	F				619.4	F			Fail		55.9	Е				49.9	D			Fail
	Overall			50.5		n/a	n/a		151.7		n/a	n/a	Fail		21.8	С	899	Α		12.0	В	1,150	В	Pass
14	Powder Mill Road and MD 295	NB Ramp	os (TWS	C in No	Action	Altern	ative; S	Signalize	ed in Ac	tion Alt	ernativ	ve with	Mitigatio	on)					-					
	EB (Powder Mill Road)	L	0.15	10.2	В			0.46	14.4	В				0.27	21.9	С			0.77	16.0	В			
	EB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.40	0.8	А			0.53	0.5	А			
	EB Overall (Powder Mill Road)			2.2					4.2				Pass		5.3	Α				5.5	Α			Pass
	WB (Powder Mill Road)	Т	n/a	n/a	n/a			n/a	n/a	n/a				0.63	27.3	С			0.28	4.7	А			
	WB (Powder Mill Road)	R	n/a	n/a	n/a			n/a	n/a	n/a				0.59	26.8	С			0.51	7.0	А			
	WB Overall (Powder Mill Road)			0.0					0.0				Pass		27.1	С				6.1	Α			Pass
	NB (MD 295 NB Off-Ramp)	L	0.66	67.9	F			2.59	991.1	F				0.89	46.1	D			1.11	188.6	F			
	NB (MD 295 NB Off-Ramp)	TR	0.20	12.4	В			0.14	15.5	С				0.28	29.9	С			0.84	107.0	F			
	NB Overall (MD 295 NB Off-Rar	np)		37.2	Е				599.3	F			Fail		42.5	D				155.7	F			Fail
	Overall			5.8		n/a	n/a		38.3		n/a	n/a	Fail		24.8	С	572	Α		14.4	В	956	Α	Pass

Figure 3-4 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (continued)

	•						No Ac	tion Alt	ernative)					, í		Actio	n Alter	native v	vith Miti	gation			
				AM F	Peak Ho	our			PM	Peak Ho	our				AM F	Peak Ho	our			РМ	Peak He	our		
ID	Intersection Name and Approach	Lane Group	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	V/C Ratio	HCM Delay (sec/ veh)	HCM LOS	CLV	CLV LOS	Check AM/ PM
15	Powder Mill Road and Soi (Signalized)	il Conser	vation F	Road																				
	EB (Powder Mill Road)	Т	0.46	30.5	С			0.74	37.6	D				0.46	30.5	С			0.83	43.5	D			
	EB (Powder Mill Road)	R	0.00	0.0	Α			0.00	0.0	Α				0.00	0.0	Α			0.00	0.0	А			
	EB Overall (Powder Mill R	oad)		30.5	С				37.6	D			Pass		30.5	С				43.5	D			Pass
	WB (Powder Mill Road)	L	0.36	42.2	D			0.41	53.1	D				0.36	42.2	D			0.41	53.1	D			
	WB (Powder Mill Road)	Т	0.51	20.8	С			0.48	22.3	С				0.58	22.3	С			0.48	22.3	С			
	WB Overall (Powder Mill F	Road)		24.0	С				25.4	С			Pass		24.9	С				25.4	С			Pass
	NB (Soil Conservation Road)	L	0.58	22.5	С			0.84	30.9	С				0.58	22.5	С			0.84	30.9	С			
	NB (Soil Conservation Road)	R	0.00	0.0	А			0.00	0.0	А				0.00	0.0	А			0.00	0.0	А			
	NB (Soil Conservation Ro	ad)		22.5	С				30.9	С			Pass		22.5	С				30.9	С			Pass
	Overall			24.7	С	639	Α		31.2	С	1001	В	Pass		25.1	С	681	Α		33.1	С	1,044	В	Pass

Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour Operations (continued) Fiaure 3-4

Notes:

^a Highway Capacity Manual 2000 results (Intersections #4 and #6)

EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

LOS = Level of Service

V/C = Volume-to-Capacity ratio

LTR = left / through / right lanes

For lane groups with two values separated by a forward slash (e.g., LT/T), the left value pertains to the LTR/LTR = No Action Alternative and the right value pertains to the Action Alternative-Build/Build with Mitigation. TWSC = Two-way STOP-controlled unsignalized intersection (TWSC intersections do not have an overall LOS)

AWSC = All-way STOP-controlled unsignalized intersection

Delay is measured in seconds per vehicle.

Red cells denote intersections or approaches operating at unacceptable conditions.

SimTraffic[™] was used to calculate the 95th percentile queue lengths to further verify the effectiveness of the mitigation measures. The queuing results of the No Action Alternative compared to the Action Alternative and the Action Alternative with Mitigation based on SimTraffic[™] are presented in **Figure 3-5**. The 95th percentile values are expressed in feet; an average car plus space between the next vehicle requires roughly 25 feet. Attachment C provides SimTraffic[™] simulation reports.

A lane drop on MD 201 north of Cherrywood Lane (or north of Intersection #5) reduces the number of northbound travel lanes from two to one. As a result, SimTraffic™ is limited in precisely reflecting the impact of the lane drop. Therefore, TransModeler™ was used to evaluate the AM peak hour queuing on northbound MD 201 (Kenilworth Avenue) for intersections extending southward from Cherrywood Lane (Intersection #5) to the Interstate 95 northbound off-ramp (Intersection #2). The 95th percentile queue under the Action Alternative with Mitigation was evaluated based on two sensitivity analysis scenarios: a scenario in which all BEP production facility trips were assumed to arrive within a 60minute interval and a more conservative scenario in which all BEP production facility trips were assumed to arrive within a 30-minute interval. Whereas a total of 1,745 AM peak hour vehicle trips are forecast to travel northbound through this lane drop, both TransModeler™ analysis scenarios simulated more vehicles per hour than the forecast, with 1,759 vehicles per hour traveling northbound in the 60-minute scenario and 1,820 vehicles per hour traveling northbound in the 30-minute scenario. Ten simulation runs were performed for each scenario, and the 95th percentile queue results are presented in Figure 3-6. The table shows that queues on northbound MD 201 south of the lane drop would be manageable in either scenario. The TransModeler™ simulation reports are provided as Attachment D.

Page intentionally left blank.

				Turning Bav/Link	No Action	Alternative	Action A	Iternative	Action Alte Mitig	rnative with ation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
1	MD 201 (Kenilworth Avenue)	and I-95 SB	Off-Ram	np (Signalized)						
	I-95 SB Off-Ramp	EB	L	325/325	65	64	129	67	125	79
	I-95 SB Off-Ramp	EB	L	1540/1540	152	257	216	228	207	256
	I-95 SB Off-Ramp	EB	R	1540/1540	107	211	74	228	-	226
	MD 201 (Kenilworth Avenue)	NB	Т	4600/4600	117	152	127	153	131	152
	MD 201 (Kenilworth Avenue)	SB	Т	1400/1400	90	132	100	115	108	135
2	MD 201 (Kenilworth Avenue)	and I-95 NB	Off-Ram	p (Signalized)						
	I-95 NB Off-Ramp	WB	L	400/400	181	247	183	253	160	258
	I-95 NB Off-Ramp	WB	L	1580/1580	235	295	654	303	206	309
	I-95 NB Off-Ramp	WB	R	1580/1580	295	250	1832	266	314	271
	I-95 NB Off-Ramp	WB	R	300/300	281	231	362	248	298	245
	MD 201 (Kenilworth Avenue)	NB	Т	250/250	114	128	145	132	132	124
	MD 201 (Kenilworth Avenue)	NB	Т	1400/1400	130	167	165	160	148	158
	MD 201 (Kenilworth Avenue)	SB	Т	680/680	180	156	176	169	208	185
3	MD 201 (Kenilworth Avenue)	and SHA Di	strict 3/C	Crescent Road (S	ignalized)					
	SHA District 3	EB	LTR	130/130	29	39	27	36	25	36
	Crescent Road	WB	LT	1080/1080	156	193	149	187	155	184
	Crescent Road	WB	R	250/250	78	78	88	89	81	79
	MD 201 (Kenilworth Avenue)	NB	L	250/250	75	53	200	59	77	58
	MD 201 (Kenilworth Avenue)	NB	Т	680/680	134	230	543	219	178	220
	MD 201 (Kenilworth Avenue)	NB	R	200/200	22	110	250	94	58	107
	MD 201 (Kenilworth Avenue)	SB	L	300/300	63	122	63	120	78	133
	MD 201 (Kenilworth Avenue)	SB	TR	740/740	93	83	82	96	74	100
4	MD 201 (Kenilworth Avenue)	and Ivy Lan	e (Signa	lized)						
	MD 201 (Kenilworth Avenue)	NB	L	350/350	78	118	86	109	70	110
	MD 201 (Kenilworth Avenue)	NB	L	740/740	127	141	1026	136	212	135
	MD 201 (Kenilworth Avenue)	NB	Т	740/740	184	-	1097	117	291	97
	MD 201 (Kenilworth Avenue)	SB	Т	1120/1120	65	135	64	135	56	152

Figure 3-5 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour SimTraffic Queuing

Page 617 of 876

				Turning Bay/Link	No Action	Alternative	Action A	Iternative	Action Alte Mitig	rnative with ation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
5	MD 201 (Kenilworth Avenue/I (Signalized)	Edmonston	Road) an	nd Cherrywood La	ane					
	Cherrywood Lane	EB	L	250/250	286	185	325	191	247	204
	Cherrywood Lane	EB	L	750/750	679	207	701	217	335	202
	Cherrywood Lane	EB	R	750/750	104	277	106	261	85	250
	MD 201 (Kenilworth Avenue)	NB	L	750/750	624	187	1098	181	666	211
	MD 201 (Kenilworth Avenue)	NB	Т	1120/1120	927	141	1570	148	1028	149
	MD 201 (Edmonston Road)	SB	Т	580/580	248	241	257	269	274	323
	MD 201 (Edmonston Road)	SB	R	250/250	178	145	180	183	215	250
6	MD 201 (Edmonston Road) a	nd Sunnysie	de Avenu	e (Signalized)						
	Sunnyside Avenue	EB	L	1400/1400	723	1181	1243	1203	309	1243
	Sunnyside Avenue	EB	R	350/350	404	425	475	393	236	449
	MD 201 (Edmonston Road)	NB	L	450/450	513	546	533	545	476	515
	MD 201 (Edmonston Road)	NB	Т	-/900	-	-	-	-	358	586
	MD 201 (Edmonston Road)	NB	TR	4160/4160	5566	1456	2553	1599	882	466
	MD 201 (Edmonston Road)	SB	Т	1500/1500	1928	2041	1968	1889	805	2019
	MD 201 (Edmonston Road)	SB	R	250/250	306	341	290	344	328	373
7	MD 201 (Edmonston Road) a	nd Beaver D	am Road	d (TWSC)						
	Beaver Dam Road	WB	LR	1300/1300	642	618	682	678	60	367
	MD 201 (Edmonston Road)	NB	TR	1500/1500	45	10	25	18	-	2
	MD 201 (Edmonston Road)	SB	LT/T	1480/1480	1266	1192	1254	1143	4	843
8	MD 201 (Edmonston Road) a	nd Powder I	Mill Road	(Signalized)						
	Powder Mill Road	EB	L	250/250	97	321	110	337	88	297
	Powder Mill Road	EB	Т	1430/1430	1276	699	1126	1440	146	347
	Powder Mill Road	EB	Т	-/600	-	-	-	-	105	241
	Powder Mill Road	EB	R	500/500	726	440	677	687	79	61
	Powder Mill Road	WB	L	250/500	246	141	222	282	103	271
	Powder Mill Road	WB	Т	1100/1440	266	216	160	622	177	442
	Powder Mill Road	WB	R	40/40	62	64	55	50	58	84
	MD 201 (Edmonston Road)	NB	L	400/400	368	451	288	457	263	383
	MD 201 (Edmonston Road)	NB	Т	1480/1480	356	596	295	650	229	408
	MD 201 (Edmonston Road)	NB	R	275/1480	107	290	131	313	-	-
	MD 201 (Edmonston Road)	SB	L	275/275	266	258	305	339	126	208
	MD 201 (Edmonston Road)	SB	TR	780/780	891	428	782	603	281	275

Figure 3-5 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour SimTraffic Queuing (continued)

Page 618 of 876

				Turning Bav/Link	No Action	Alternative	Action A	ternative	Action Alte Mitig	rnative with ation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
9	MD 201 (Edmonston Roa	d) and Odel	l Road (T	WSC)		-				-
	Odell Road	EB	LTR	740/740	83	68	91	68	73	83
	Odell Road	WB	LT	520/520	41	12	37	14	43	15
	Odell Road	WB	R	50/50	23	13	27	16	30	14
	MD 201 (Edmonston Road)	NB	LT	760/760	110	118	131	137	117	129
	MD 201 (Edmonston Road)	SB	LTR	1320/1320	7	16	6	4	5	9
10	Powder Mill Road and Po (AWSC) ^a	ultry Road	(BEP Driv	veway)						
	Powder Mill Road	EB	LT/L	-/200	-	-	-	-	139	52
	Powder Mill Road	EB	Т	240/3250	90	333	622	667	35	442
	Powder Mill Road	WB	TR/T	1280/1280	110	98	1653	646	149	189
	Powder Mill Road	WB	R	-/200	-	-	-	-	114	29
	Poultry Road	SB	LR/L	420/600	-	24	-	409	-	251
	Poultry Road	SB	-/R	-/600	-	-	-	-	-	165
11	Powder Mill Road and Re (TWSC)	esearch Roa	d							
	Powder Mill Road	EB	TR	1280/1280	-	36	-	47	-	144
	Powder Mill Road	WB	TR	950/950	-	-	67	-	-	54
	Research Road	NB	L	65/65	38	47	41	49	38	0
12	Powder Mill Road and Sp (TWSC) ^a	oringfield Ro	bad							
	Powder Mill Road	EB	L	50/50	12	27	18	25	20	42
	Powder Mill Road	EB	Т	1590/1590	-	-	-	49	91	806
	Powder Mill Road	WB	TR	140/140	4	-	7	-	187	98
	Springfield Road	SB	LR	4110/4110	83	257	138	574	177	597
13	Powder Mill Road and MI (TWSC) ^a	0 295 SB Ra	imps							
	Powder Mill Road	EB	TR/T	140/140	-	15	2	45	155	178
	Powder Mill Road	EB	-/R	-/140	-	-	-	-	74	104
	Powder Mill Road	WB	L	225/225	37	83	38	119	53	128
	Powder Mill Road	WB	Т	520/520	-	-	2	-	160	107
	BW Parkway SB Ramp	SB	L	25/300	58	54	51	58	243	297
	BW Parkway SB Ramp	SB	TR	1020/1020	187	1112	1083	1072	193	196

Figure 3-5 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour SimTraffic Queuing (continued)

Page 619 of 876

				Turning Bay/Link	No Action	Alternative	Action A	Iternative	Action Alte Mitig	rnative with ation
ID	Intersection Name/Street Name	Direction	Lane Group	Length (feet) No Action and Action/ Mitigation	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)	AM Peak Hour 95th Percentile (feet)	PM Peak Hour 95th Percentile (feet)
14	Powder Mill Road and MI (TWSC) ^a) 295 NB Ra	imps							
	Powder Mill Road	EB	L	250/250	59	204	55	241	129	207
	Powder Mill Road	EB	Т	520/520	-	29	-	203	268	196
	Powder Mill Road	WB	TR/T	850/850	8	33	6	43	187	108
	Powder Mill Road	WB	R	-/100	-	-	-	-	121	124
	BW Parkway NB Ramp	NB	L	50/300	58	87	81	88	293	123
	BW Parkway NB Ramp	NB	TR	880/880	59	678	789	698	114	55
15	Powder Mill Road and So	il Conserva	tion Roa	d (Signalized)						
	Powder Mill Road	EB	Т	850/850	157	225	138	215	178	312
	Powder Mill Road	EB	R	260/260	31	44	31	33	36	137
	Powder Mill Road	WB	L	300/300	80	66	84	64	89	64
	Powder Mill Road	WB	Т	780/780	183	202	209	200	211	217
	Soil Conservation Road	NB	L	6400/6400	203	375	204	352	197	352
	Soil Conservation Road	NB	R	475/475	-	-	-	-	-	-

Figure 3-5 Comparison of No Action Alternative to Action Alternative with Mitigation Intersection AM and PM Peak Hour SimTraffic Queuing (continued)

Notes:

^a This intersection would operate with a signal control with mitigation.

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

2) LTR = left / through / right lanes

3) For lane groups with two values separated by a forward slash (e.g., LT/T), the left value pertains to the No Action Alternative and the right value pertains to the Action Alternative with Mitigation.

4) TWSC = Two-way STOP-controlled unsignalized intersection

5) AWSC = All-way STOP-controlled unsignalized intersection

6) Red cells denote lane groups whose queuing length exceeds capacity.

Page 620 of 876

			_	Turning Bay/Link	Action Alte Mitigation (A	rnative with M Peak Hour)
ID	Intersection Name/Street Name	Directio n	Lane Grou p	Length (feet) No Action and Action/ Mitigation	30-Minute Scenario 95th Percentile (feet)	60-Minute Scenario 95th Percentile (feet)
2	MD 201 (Kenilworth Avenue) a	nd I-95 NB (Off-Ramp	(Signalized)		
	I-95 NB Off-Ramp	WB	L	400	74	77
	I-95 NB Off-Ramp	WB	L	1580	105	103
	I-95 NB Off-Ramp	WB	R	1580	222	192
	I-95 NB Off-Ramp	WB	R	300	251	180
	MD 201 (Kenilworth Avenue)	NB	Т	250	49	51
	MD 201 (Kenilworth Avenue)	NB	Т	1400	61	63
	MD 201 (Kenilworth Avenue)	SB	Т	680	64	62
3	MD 201 (Kenilworth Avenue) a	nd SHA Dis	trict 3/Cr	escent Road (Sig	nalized)	
	SHA District 3	EB	LTR	130	2	0
	Crescent Road	WB	LT	1080	29	28
	Crescent Road	WB	R	250	19	18
	MD 201 (Kenilworth Avenue)	NB	L	250	43	43
	MD 201 (Kenilworth Avenue)	NB	Т	680	50	35
	MD 201 (Kenilworth Avenue)	NB	R	200	0	0
	MD 201 (Kenilworth Avenue)	SB	L	300	41	39
	MD 201 (Kenilworth Avenue)	SB	TR	740	12	9
4	MD 201 (Kenilworth Avenue) a	nd Ivy Lane	(Signaliz	zed)		
	MD 201 (Kenilworth Avenue)	NB	L	350	0	0
	MD 201 (Kenilworth Avenue)	NB	L	740	0	0
	MD 201 (Kenilworth Avenue)	NB	Т	740	0	0
	MD 201 (Kenilworth Avenue)	SB	Т	1120	0	0
5	MD 201 (Kenilworth Avenue/Eo	dmonston R	load) and	Cherrywood Lar	ne (Signalized)	
	Cherrywood Lane	EB	L	250	103	97
	Cherrywood Lane	EB	L	750	98	95
	Cherrywood Lane	EB	R	750	0	0
	MD 201 (Kenilworth Avenue)	NB	L	750	155	142
	MD 201 (Kenilworth Avenue)	NB	Т	1120	360	22
	MD 201 (Edmonston Road)	SB	Т	580	191	187
	MD 201 (Edmonston Road)	SB	R	250	51	50

Figure 3-6 Action Alternative with Mitigation Intersection AM and PM Peak Hour TransModeler Queuing Analysis

Notes:

1) EB = Eastbound, WB = Westbound, NB= Northbound, SB = Southbound

2) LTR = left / through / right lanes

3) Red cells denote lane groups whose queuing length exceeds capacity.

4 SUMMARY

This sensitivity analysis evaluated the traffic impact of relocating the BEP production facility site to the BARC using forecast assumptions that were requested by the agencies that reviewed the TIS. The analysis methodologies used for the sensitivity analysis were generally the same as those used in the TIS; however, the forecasts of the No Action Alternative and Action Alternative conditions were modified to reflect updated development program information for the planned Greenbelt Town Center at Beltway Plaza development and using trip generation assumptions from the ITE 10th Edition of the *Trip Generation Manual*.

The key finding of this sensitivity analysis is that there would be an imperceptible difference in the intersection operational and 95th percentile queuing analysis results between the forecast assumptions of the TIS and those of this analysis. This sensitivity analysis also reinforces the mitigation strategies applied in the TIS, which would improve CLV, LOS, and queuing metrics under the Action Alternative to either acceptable conditions or to conditions better than the No Action Alternative. The Action Alternative with Mitigation queuing analysis also assessed queuing on northbound MD 201 for the intersections between the Interstate 95 northbound off-ramp and Cherrywood Lane using the TransModeler[™] software. The TransModeler[™] analysis demonstrated that queuing on northbound MD 201 under the Action Alternative with Mitigation would be adequately stored between the pertinent intersections.

5 REFERENCES

- ITE. 2020. Trip Generation Manual, Tenth Edition, Institute of Transportation Engineers, Washington, D.C., September 2020.
- M-NCPPC. 2012. Transportation Review Guidelines. Accessed September 2019. Available at: <u>http://www.pgparks.com/1743/Transportation-Review-Guidelines</u>.
- TRB. 2011. National Cooperative Highway Research Program Report 684, Enhancing Internal Trip Capture Estimation for Mixed-Use Developments, Transportation Research Board for the National Academies of Science, Washington. D.C.

6 ATTACHMENT A (CRITICAL LANE VOLUME (CLV) REPORTS)

861						CLV TOT	AL=
465	WB	602	0.55	331	0	0.00	
		656	0.60	394			
	SB	1546	0.37	572	0	0.00	
000							

0.55

465

0

0.00

CLV TOTAL=

0

WB

846

394

966

CLV TOTAL= 800

CLV TOTAL=

CLV TOTAL= 1,226

CLV TOTAL=

1,079

		CRI	FICAL	. LAN fo	IE VC or Prir	DLUI nce G	ME (C George	LV) s Co	M	ETH nty	ODO	LOG`	ſ			
	(E/W R N/S R Conditio	oad: Pov oad: Soi ons: No	wder Mill il Conser Action	Road vation Ro	bad		Dat Da	te o ay o	of Cou of Cou Analy	int: 9/1 int: Tue vst: WA	7/2019 esday				
	Peak: 6 Peak: 3	:00 - 7:00 :00 - 4:00)													
	PC	WDER N	/ILL ROA	١D											204	245
											_	ı L			304 53	315
															AM	PM
	347 400	170 286	T R		T — R —		AM PM		L 334 619	 L 5 9	 R R 17 38		PO	NDER MI	ILL RO	AD
Сар	oacity	y Analy	ysis			SO	IL CONS	ERVAT	ION	I ROAD						
			Morning	J Peak Hoι	ır			[Evening	Peak Ho	our		
				+ C	pposing L	efts	AM			T	hru Volum	es	+ (efts	PM
NR	0	x LUF	- i otal 0	0		- i otai 0	GLV	DI N	ir B	3 VOL	1.00	- 10(a) 3	VOL 0		- 10tal 0	ULV
	335	1.00	335		0.00	J	335			619	1.00	619	0	0.00	0	619
EB	170	1.00	170	53	1.00	53	304	E	В	347	1.00	347	35	1.00	35	382
WB	304	1.00	304	0	0.00	0	004	w	/B	315	1.00	315	0	0.00	0	
L				1	CLV TOT/	AL=	639	╡┕					1	CLV TOT	AL=	1,001

CLV TOTAL= 1,001

578

974

WB

0.55

578

0

0.00

CLV TOTAL=

0

WB

CLV TOTAL= 919

CLV TOTAL=

CLV TOTAL= 1,609

CLV TOTAL=

1,116

		CRIT	FICAL	LAN	NE VO	DLUI nce G	ME (C	LV) N s Coul	IETH ntv	IODO	LOG	Y			
	C	E/W Ro N/S Ro Conditio	oad: Po oad: So ons: Ac	wder Mil il Consei tion	I Road	bad	ee ge	Date Day	of Cou of Cou Analy	unt: 9/1 unt: Tuo yst: WA	17/2019 esday A				
	Peak: 6 Peak: 3	:00 - 7:00 :00 - 4:00)												
	РО	WDER N	IILL ROA	۸D							T		т	346	315
										_	L		L	53 AM	35 PM
	390 400	170 286	T R		T — R —				 	 R 		PO	WDER MI	ILL ROA	<u>AD</u>
							AM PM	33 61	35 19	17 38					
Cai	pacitv		/sis			SO	IL CONSE	ERVATIO	n Roai)					
			Morning	g Peak Ho	ur						Evening	g Peak Ho	our		
Dir		hru Volum	nes	+ (Dpposing L	_efts	AM	Dir	T	hru Volum	ies - Totol	+ (Dpposing L	_efts	PM
NB	0	0.00	- rotai 0	0	0.00	- 10tai 0	335	NB	3	1.00	- 10(a) 3	0	0.00	- 10tai 0	619
	335	1.00	335						619	1.00	619	0	0.00	0	
EB	170	1.00	170	53	1.00	53		EB	390	1.00	390	35	1.00	35	
٦/٧/	246	1.00	246	0	0.00	0	346		215	1 00	215	0	0.00	0	425

CLV TOTAL= 1,044

CLV TOTAL= 1,250

CLV TOTAL=

7 ATTACHMENT B (SYNCHRO[™] REPORTS)
	≯	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	^	
Traffic Volume (veh/h)	120	884	0	1227	970	0
Future Volume (veh/h)	120	884	0	1227	970	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1767	0	1767	1752	0
Adj Flow Rate, veh/h	138	0	0	1410	1115	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	9	9	0	9	10	0
Cap, veh/h	204		0	3942	2721	0
Arrive On Green	0.06	0.00	0.00	0.82	0.82	0.00
Sat Flow, veh/h	3264	1497	0	5141	3504	0
Grp Volume(v), veh/h	138	0	0	1410	1115	0
Grp Sat Flow(s).veh/h/ln	1632	1497	0	1608	1664	0
Q Serve(g s), s	4.1	0.0	0.0	7.5	9.2	0.0
Cycle Q Clear(a c), s	4.1	0.0	0.0	7.5	9.2	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	204		0	3942	2721	0
V/C Ratio(X)	0.68		0.00	0.36	0.41	0.00
Avail Cap(c a), veh/h	522		0	3942	2721	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.9	0.0	0.0	2.4	2.5	0.0
Incr Delay (d2), s/veh	3.9	0.0	0.0	0.3	0.5	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	1.7	0.0	0.0	1.3	1.6	0.0
Unsig. Movement Delay, s/ve	h					
LnGrp Delav(d).s/veh	49.7	0.0	0.0	2.6	3.0	0.0
LnGrp LOS	D	0.0	A	A	A	A
Approach Vol. veh/h	138	Α		1410	1115	
Approach Delay s/yeh	49.7	7.		2.6	3.0	
Approach LOS	D			Δ.0	0.0 A	
		•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.7		12.3		87.7
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	;	72.0		16.0		72.0
Max Q Clear Time (g_c+I1), s	6	11.2		6.1		9.5
Green Ext Time (p_c), s		22.4		0.3		30.6
Intersection Summary						
HCM 6th Ctrl Delav			5.2			
HCM 6th LOS			A			
			Л			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

4	•	4	1	1	1	Ŧ
Movement WB	L WBR	WBL	NBT	NBR	SBL	SBT
Lane Configurations	5 77	55	441			***
Traffic Volume (veh/h) 54	5 846	545	565	0	0	1070
Future Volume (veh/h) 54	5 846	545	565	0	0	1070
Initial $O(Oh)$ veh	0 0	0,0,0	000	0	0	0
Ped-Bike Adi(A nhT) 10	0 1 00	1 00	0	1 00	1 00	Ū
Parking Rus Adi 10	1.00	1.00	1.00	1.00	1.00	1 00
Work Zone On Annroach N	טט. ר	ach No	No	1.00	1.00	No
Adi Sat Flow yeh/h/ln 18/	J 1 18/11	18/11	1781	0	0	1603
Adi Flow Rate veh/h	7 1010	657	681	0	0	1280
Peak Hour Easter 0.9	2 0 83	0.07	0.83	0 83	0 83	0 83
	J U.03	0.03	0.03	0.05	0.03	0.00
Con yoh/h	+ 4	1/10	ð 2000	0	0	14
Cap, ven/n 141		1419	2202	0	0 00	2092
Arrive On Green 0.4	2 0.42	0.42	0.45	0.00	0.00	0.45
Sat Flow, veh/h 340	1 2745	3401	5184	0	0	4925
Grp Volume(v), veh/h 65	7 1019	657	681	0	0	1289
Grp Sat Flow(s),veh/h/In170	0 1373	/In1700	1621	0	0	1540
Q Serve(g_s), s 14.	34.4	14.0	8.9	0.0	0.0	21.2
Cycle Q Clear(g_c), s 14.	34.4	14.0	8.9	0.0	0.0	21.2
Prop In Lane 1.0	0 1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h 141	9 1146	h 1419	2202	0	0	2092
V/C Ratio(X) 0.4	6 0.89	0.46	0.31	0.00	0.00	0.62
Avail Cap(c, a) veh/h 156	1 1263	1564	2202	0.00	0.00	2092
HCM Platoon Ratio 1.0	1 1 00	1 004	1 00	1 00	1 00	1 00
Linetream Filter/I) 1.0	1 1 00	1.00	1.00	0.00	0.00	1.00
Uniform Doloy (d) olyob 21		n.00	17 /	0.00	0.00	20 0
Uniform Delay (d), s/ven 21.	J ZI.U		17.4	0.0	0.0	2U.Ö
incr Delay (d2), s/veh 0.	2 7.6	0.2	0.4	0.0	0.0	1.4
Initial Q Delay(d3),s/veh 0.	J 0.0	en 0.0	0.0	0.0	0.0	0.0
%ile BackOtQ(50%),veh/lr5.	3 11.6	eh/In5.3	3.2	0.0	0.0	7.3
Unsig. Movement Delay, s/v	eh	ay, s/vel				
LnGrp Delay(d),s/veh 21.	3 34.6	21.3	17.8	0.0	0.0	22.1
LnGrp LOS	C C	С	В	А	А	С
Approach Vol. veh/h 167	6	1676	681			1289
Approach Delay, s/veh 29.	4	29.4	17.8			22.1
Approach LOS		С.	B			C
		0				U
Timer - Assigned Phs	2			4		6
Phs Duration (G+Y+Rc), s	51.3	c), s		48.7		51.3
Change Period (Y+Rc), s	6.0), s		7.0		6.0
Max Green Setting (Gmax),	s 41.0	max), s		46.0		41.0
Max Q Clear Time (g c+l1).	s 23.2	c+l1), s		36.4		10.9
Green Ext Time (p_c), s	16.2	S		5.3		16.4
Intersection Summary						
			047			
			24.7			
HCM 6th LOS			С			

メッシュナ ベナ イントナイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्रभ	1	<u>۲</u>	*††	1	<u>۲</u>	ተተ ጮ		
Traffic Volume (veh/h)	1	0	3	127	1	83	38	1331	42	31	1200	5	
Future Volume (veh/h)	1	0	3	127	1	83	38	1331	42	31	1200	5	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1159	1159	1159	1856	1856	1856	1826	1826	1826	1633	1633	1633	
Adj Flow Rate, veh/h	1	0	4	155	1	101	46	1623	0	38	1463	6	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Percent Heavy Veh, %	50	50	50	3	3	3	5	5	5	18	18	18	
Cap, veh/h	43	14	57	183	1	376	63	2778		51	2539	10	
Arrive On Green	0.26	0.00	0.24	0.26	0.24	0.24	0.04	0.56	0.00	0.01	0.18	0.18	
Sat Flow, veh/h	0	59	236	463	3	1569	1739	4985	1547	1555	4584	19	
Grp Volume(v), veh/h	5	0	0	156	0	101	46	1623	0	38	949	520	
Grp Sat Flow(s), veh/h/In	n 295	0	0	466	0	1569	1739	1662	1547	1555	1486	1630	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.2	2.6	21.4	0.0	2.4	29.2	29.2	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.2	2.6	21.4	0.0	2.4	29.2	29.2	
Prop In Lane	0.20		0.80	0.99		1.00	1.00		1.00	1.00		0.01	
Lane Grp Cap(c), veh/h	120	0	0	193	0	376	63	2778		51	1647	903	
V/C Ratio(X)	0.04	0.00	0.00	0.81	0.00	0.27	0.73	0.58		0.75	0.58	0.58	
Avail Cap(c_a), veh/h	120	0	0	193	0	376	122	2778		124	1647	903	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.88	0.88	0.88	
Uniform Delay (d), s/veh	n 30.5	0.0	0.0	40.7	0.0	30.9	47.7	14.5	0.0	49.1	30.1	30.1	
Incr Delay (d2), s/veh	0.1	0.0	0.0	22.0	0.0	0.4	15.1	0.9	0.0	17.5	1.3	2.4	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In0.1	0.0	0.0	5.0	0.0	2.0	1.4	7.4	0.0	1.2	11.8	13.2	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	30.6	0.0	0.0	62.7	0.0	31.2	62.9	15.4	0.0	66.5	31.4	32.5	
LnGrp LOS	С	Α	Α	E	Α	С	E	В		E	С	С	
Approach Vol, veh/h		5			257			1669	А		1507		
Approach Delay, s/veh		30.6			50.3			16.7			32.7		
Approach LOS		С			D			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)	, s8.6	61.4		30.0	8.3	61.7		30.0					
Change Period (Y+Rc),	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gm	ax) ,G	52.0		24.0	8.0	51.0		24.0					
Max Q Clear Time (g_c+	+114),6s	31.2		28.0	4.4	23.4		28.0					
Green Ext Time (p_c), s	0.0	19.5		0.0	0.0	26.2		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			26.3										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	٩.	Ť	Ŧ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	350	65	219	1072	996	350
Future Volume (veh/h)	350	65	219	1072	996	350
Initial Q (Qb) veh	0	0	0	0	0	0
Ped-Bike Adi(A nhT)	1.00	1.00	1.00			1.00
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Annroac	ch No	1.00	1.00	No	No	1.00
Adi Sat Flow veh/h/ln	1737	1737	1811	1811	1678	1678
Adi Flow Rate veh/h	438	81	274	1340	1245	438
Peak Hour Factor	-30 0.80	0.80	0.80	0.80	0.80	-30 0.80
Percent Heavy Vah %	0.00	0.00	0.00 A	00.0 A	15	15
Con yoh/h	F10	11	210	2446	1000	010
Cap, ven/n	0.40	234	310	2440	0.57	012
Arrive On Green	0.16	0.16	0.09	0.71	0.57	0.57
Sat Flow, veh/h	3209	1472	1725	3532	3272	1421
Grp Volume(v), veh/h	438	81	274	1340	1245	438
Grp Sat Flow(s),veh/h/l	n1605	1472	1725	1721	1594	1421
Q Serve(g_s), s	13.3	4.9	6.4	18.4	27.5	19.1
Cycle Q Clear(g_c), s	13.3	4.9	6.4	18.4	27.5	19.1
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	n 510	234	310	2446	1822	812
V/C Ratio(X)	0.86	0.35	0.88	0.55	0.68	0.54
Avail Can(c. a) voh/h	578	265	/122	2446	1822	812
HCM Platoon Patio	1 00	1 00	1 00	1 00	1 00	1.00
Lingtroom Filter(I)	1.00	1.00	0.00	0.00	1.00	1.00
Upstream Palace (1)	1.00	1.00	0.09	0.09	1.00	1.00
Uniform Delay (d), s/vel	n 40.9	31.4	19.8	0.ð	15.1	13.3
incr Delay (d2), s/veh	11.3	0.9	13.2	0.8	2.1	2.6
Initial Q Delay(d3),s/vel	h 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve	h/lr5.9	1.8	4.7	5.4	9.3	6.0
Unsig. Movement Delay	y, s/veh					
LnGrp Delay(d),s/veh	52.2	38.3	33.0	7.6	17.2	15.8
LnGrp LOS	D	D	С	А	В	В
Approach Vol. veh/h	519			1614	1683	
Annroach Delay s/veh	50.0			11 0	16.8	
Approach I OS	о П			11.0 R	10.0 R	
	U			D	D	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc)), \$3.9	64.2		21.9		78.1
Change Period (Y+Rc)	s 5 0	7 0		6.0		7 0
Max Green Setting (Gr	na1k6 @	48.0		18.0		69.0
Max O Clear Time (g. c	+119./r	20.5		15.3		20.4
Groop Ext Time (9_0	0.5	23.0		10.0		20.4 11 7
Green Ext Time (p_C), s	5 0.0	U.3		0.0		41.7
Intersection Summary						
HCM 6th Ctrl Delay			19.3			
HCM 6th LOS			В			

Intersection

Int Delay, s/veh	22.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4			्
Traffic Vol, veh/h	15	14	973	8	23	1258
Future Vol, veh/h	15	14	973	8	23	1258
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	19	18	1247	10	29	1613

Major/Minor	Minor1	Ν	/lajor1	ſ	Major2	
Conflicting Flow All	2923	1252	0	0	1257	0
Stage 1	1252	-	-	-	-	-
Stage 2	1671	-	-	-	-	-
Critical Hdwy	6.6	6.4	-	-	4.27	-
Critical Hdwy Stg 1	5.6	-	-	-	-	-
Critical Hdwy Stg 2	5.6	-	-	-	-	-
Follow-up Hdwy	3.68	3.48	-	-	2.353	-
Pot Cap-1 Maneuver	~ 14	193	-	-	505	-
Stage 1	247	-	-	-	-	-
Stage 2	152	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r~6	193	-	-	505	-
Mov Cap-2 Maneuve	r~6	-	-	-	-	-
Stage 1	247	-	-	-	-	-
Stage 2	68	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay.	\$ 1753.5		0		0.2	
HCM LOS	F		-		•	
NA'		NDT		. 4		ODT
Minor Lane/Major MV	mt	NRI	NRKMR	.n1	SBL	SBT
Capacity (veh/h)		-	-	11	505	-
HCM Lane V/C Ratio		-	- 3	.38	0.058	-
HCM Control Delay (s)	-	\$ 175	3.5	12.6	0
HCM Lane LOS		-	-	F	B	A
HCM 95th %tile Q(ve	h)	-	-	5.7	0.2	-

Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	-	$\mathbf{\hat{z}}$	4	+	•	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	<u> </u>	•	1	۲	•	1	۲	A12	
Traffic Volume (veh/h)	57	110	550	187	149	41	409	517	61	26	544	78
Future Volume (veh/h)	57	110	550	187	149	41	409	517	61	26	544	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	138	0	234	186	0	511	646	0	32	680	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	242	442		322	586		557	1098		246	787	113
Arrive On Green	0.25	0.25	0.00	0.04	0.32	0.00	0.28	0.61	0.00	0.31	0.31	0.31
Sat Flow, veh/h	1147	1796	1522	1767	1856	1572	1711	1796	1522	648	2574	371
Grp Volume(v), veh/h	71	138	0	234	186	0	511	646	0	32	387	391
Grp Sat Flow(s),veh/h/ln	1147	1796	1522	1767	1856	1572	1711	1796	1522	648	1467	1478
Q Serve(g_s), s	8.2	9.4	0.0	0.0	11.5	0.0	35.7	32.9	0.0	5.4	37.5	37.6
Cycle Q Clear(g_c), s	19.7	9.4	0.0	0.0	11.5	0.0	35.7	32.9	0.0	5.4	37.5	37.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	242	442		322	586		557	1098		246	448	452
V/C Ratio(X)	0.29	0.31		0.73	0.32		0.92	0.59		0.13	0.86	0.87
Avail Cap(c_a), veh/h	242	442		322	586		557	1098		246	448	452
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	55.3	46.4	0.0	58.4	39.2	0.0	39.0	17.8	0.0	38.2	49.3	49.3
Incr Delay (d2), s/veh	3.0	1.8	0.0	13.4	1.4	0.0	22.4	2.3	0.0	1.1	19.3	19.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.6	4.5	0.0	9.9	5.5	0.0	15.2	13.7	0.0	0.9	16.0	16.2
Unsig. Movement Delay, s/veh	50.4	10.0		74.0	10.0	• •		00.4				~~ ~
LnGrp Delay(d),s/veh	58.4	48.2	0.0	71.8	40.6	0.0	61.4	20.1	0.0	39.3	68.6	68.7
LnGrp LOS	E	D		E	D		E	C		D	E	<u> </u>
Approach Vol, veh/h		209	A		420	A		1157	A		810	
Approach Delay, s/veh		51.7			58.0			38.3			67.5	
Approach LOS		D			E			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	46.0	52.0	10.5	42.0		98.0		52.5				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	41.5	46.0	5.5	* 37		92.0		47.0				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			51.7									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्स	1		र्भ	1		4	
Traffic Vol, veh/h	21	0	1	2	5	1	51	551	3	0	625	44
Future Vol, veh/h	21	0	1	2	5	1	51	551	3	0	625	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage, #	4 -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	70	70	70	67	67	67	9	9	9	21	21	21
Mvmt Flow	22	0	1	2	5	1	54	580	3	0	658	46

Major/Minor	Minor2			Vinor1			Major1		Ν	lajor2			
Conflicting Flow All	1374	1372	681	1370	1392	580	704	0	0	583	0	0	
Stage 1	681	681	-	688	688	-	-	-	-	-	-	-	
Stage 2	693	691	-	682	704	-	-	-	-	-	-	-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-	-	4.31	-	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-	-	2.389	-	-	
Pot Cap-1 Maneuver	88	106	352	90	105	411	862	-	-	904	-	-	
Stage 1	347	361	-	347	362	-	-	-	-	-	-	-	
Stage 2	341	357	-	350	355	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	· 78	96	352	83	95	411	862	-	-	904	-	-	
Mov Cap-2 Maneuver	· 78	96	-	83	95	-	-	-	-	-	-	-	
Stage 1	315	361	-	315	328	-	-	-	-	-	-	-	
Stage 2	304	324	-	349	355	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	66.3	43.7	0.8	0	
HCM LOS	F	E			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	WBLn2	SBL	SBT	SBR
Capacity (veh/h)	862	-	-	81	91	411	904	-	-
HCM Lane V/C Ratio	0.062	-	-	0.286	0.081	0.003	-	-	-
HCM Control Delay (s)	9.5	0	-	66.3	48	13.8	0	-	-
HCM Lane LOS	А	А	-	F	Е	В	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	1	0.3	0	0	-	-

10.6
В

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्स	eî 🗧		Y		
Traffic Vol, veh/h	2	170	381	0	0	0	
Future Vol, veh/h	2	170	381	0	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	6	6	2	2	2	2	
Mvmt Flow	2	200	448	0	0	0	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	8.9		11.3		0		
HCM LOS	А		В		-		

Lane	EBLn1	WBLn1	SBLn1	1
Vol Left, %	1%	0%	0%	ó
Vol Thru, %	99%	100%	100%	, 0
Vol Right, %	0%	0%	0%	ó
Sign Control	Stop	Stop	Stop)
Traffic Vol by Lane	172	381	0)
LT Vol	2	0	0)
Through Vol	170	381	0)
RT Vol	0	0	0)
Lane Flow Rate	202	448	0)
Geometry Grp	1	1	1	1
Degree of Util (X)	0.244	0.508	0)
Departure Headway (Hd)	4.336	4.084	5.318	3
Convergence, Y/N	Yes	Yes	Yes	S
Сар	815	879	0)
Service Time	2.428	2.137	3.318	3
HCM Lane V/C Ratio	0.248	0.51	0)
HCM Control Delay	8.9	11.3	8.3	3
HCM Lane LOS	А	В	Ν	١
HCM 95th-tile Q	1	2.9	0)

0.4					
NBL	NBR	SET	SER	NWL	NWT
- ሽ		- î>			↑
16	0	161	9	0	366
16	0	161	9	0	366
0	0	0	0	0	0
Stop	Stop	Free	Free	Free	Free
-	None	-	None	-	None
0	-	-	-	-	-
,#0	-	0	-	-	0
0	-	0	-	-	0
74	74	74	74	74	74
2	2	4	4	2	2
22	0	218	12	0	495
	0.4 NBL 16 16 0 Stop - 0 ,# 0 0 74 2 22	0.4 NBL NBR 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 17 None 0 - 17 74 17 2 17 0	0.4 NBL NBR SET 16 0 161 16 0 161 16 0 161 16 0 0 Stop Stop Free None - 0 - ,# 0 - 0 - ,# 0 - 0 - 0 - ,# 0 - 0 - 0 - 0 - 0 - 0 - 10 - 0 - 0 - 10 - 0 - 0 - 10 - 0 - 10 -	0.4 NBL NBR SET SER 16 0 161 9 16 0 161 9 16 0 161 9 16 0 161 9 0 0 0 0 Stop Stop Free Free None - None - 0 - 0 - # 0 - 0 - 74 74 74 74 4 2 2 4 4 22 0 218 12	0.4 NBL NBR SET SER NWL 16 0 161 9 0 16 0 161 9 0 16 0 161 9 0 0 0 0 0 0 0 0 Free Free Free None - None - 0 - 0 - - # 0 - 0 - - 74 74 74 74 74 2 2 4 4 2 22 0 218 12 0

Major/Minor	Minor1	Maj	jor1	Maj	jor2	
Conflicting Flow All	719	-	0	0	-	-
Stage 1	224	-	-	-	-	-
Stage 2	495	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	395	0	-	-	0	-
Stage 1	813	0	-	-	0	-
Stage 2	613	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 395	-	-	-	-	-
Mov Cap-2 Maneuver	r 395	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	613	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	14.6	0	0
HCM LOS	В		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	395	-	-	-
HCM Lane V/C Ratio	0.055	-	-	-
HCM Control Delay (s)	14.6	-	-	-
HCM Lane LOS	В	-	-	-
HCM 95th %tile Q(veh)	0.2	-	-	-

Intersection						
Int Delay, s/veh	5.6					
Movement	EBI	EBT	WBT	WBR	SBI	SBR
Lane Configurations	3	•	1		V	0011
Traffic Vol. veh/h	5	178	377	157	136	19
Future Vol. veh/h	5	178	377	157	136	10
Conflicting Peds #/hr	0	0	011	107	100	0
Sign Control	Eroo	Eroo	Eroo	Eroo	Stop	Stop
DT Channelized	TIEE	Nono	TICC	Nono	Stop	Nono
Storogo Longth	-	NULLE	-	NULLE	-	NULLE
Storage Length	50	-	-	-	0	-
Ven in Median Storage	9,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	/5	/5	/5	/5	/5	/5
Heavy Vehicles, %	6	6	3	3	2	2
Mvmt Flow	7	237	503	209	181	25
Maior/Minor	Maior1	Ν	Aaior2		Minor2	
Occafications Elever All						
CONTRICTING FLOW All	712	0	-	0	859	608
Stage 1	712	0	-	0	859 608	608
Stage 2	712	0	-	0	859 608 251	608
Stage 1 Stage 2	712	0 - -	-	0 - -	859 608 251	608 - - 6 22
Connicting Flow All Stage 1 Stage 2 Critical Hdwy	712 - - 4.16	0 - -	-	0 - - -	859 608 251 6.42	608 - - 6.22
Connicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2	712 - 4.16 -	0 - - -	-	0 - - -	859 608 251 6.42 5.42	608 - - 6.22 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2	712	0	-	0 - - - -	859 608 251 6.42 5.42 5.42	608 - - 6.22 - - 2.219
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy	712 - 4.16 - 2.254	0	-	0 - - - - -	859 608 251 6.42 5.42 5.42 3.518	608 - - 6.22 - 3.318
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver	712 - 4.16 - 2.254 869	0 - - - - - - -		0 - - - - - - -	859 608 251 6.42 5.42 5.42 3.518 327	608 - 6.22 - 3.318 496
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1	712 - 4.16 - 2.254 869	0		0	859 608 251 6.42 5.42 5.42 3.518 327 543	608 - - 6.22 - 3.318 496
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2	712 - 4.16 - 2.254 869 -	0	- - - - - - - - - - - - - - - - - - -	0	859 608 251 6.42 5.42 3.518 327 543 791	608 - 6.22 - 3.318 496 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, %	712 - 4.16 - 2.254 869 -	0	- - - - - - - - - - - - - - - - - - -	0	859 608 251 6.42 5.42 5.42 3.518 327 543 791	608 - - 6.22 - - 3.318 496 -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver	712 - 4.16 - 2.254 869 - - 869	0	- - - - - - - - - - - - - - - - - - -	0	859 608 251 6.42 5.42 5.42 3.518 327 543 791 324	608 - - 6.22 - - 3.318 496 - - -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver	712 - 4.16 - 2.254 869 - - 869	0		0	859 608 251 6.42 5.42 5.42 3.518 327 543 791 324 324 324	608 - - 6.22 - - 3.318 496 - - - 496
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1	712 - 4.16 - 2.254 869 - - 869 - -	0		0	859 608 251 6.42 5.42 5.42 3.518 327 543 791 324 324 324 539	608 - - 6.22 - - 3.318 496 - - - 496 - -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	712 - 4.16 - 2.254 869 - - - 869 - -	0		0	859 608 251 6.42 5.42 3.518 327 543 791 324 324 324 539 791	608 - - 6.22 - 3.318 496 - - - 496 - -
Conflicting Flow All Stage 1 Stage 2 Critical Hdwy Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy Pot Cap-1 Maneuver Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver Mov Cap-2 Maneuver Stage 1 Stage 2	712 - 4.16 - 2.254 869 - - - 869 - - -	0		0	859 608 251 6.42 5.42 3.518 327 543 791 324 324 539 791	608 - 6.22 - 3.318 496 - - - - - - -

Approach	EB	WB	SB	
HCM Control Delay, s	0.3	0	31.1	
HCM LOS			D	

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	869	-	-	- 338
HCM Lane V/C Ratio	0.008	-	-	- 0.611
HCM Control Delay (s)	9.2	-	-	- 31.1
HCM Lane LOS	А	-	-	- D
HCM 95th %tile Q(veh)	0	-	-	- 3.8

Intersection													
Int Delay, s/veh	50.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4		- ሽ	•					- ኘ	4		
Traffic Vol, veh/h	0	211	103	85	329	0	0	0	0	251	1	204	
Future Vol, veh/h	0	211	103	85	329	0	0	0	0	251	1	204	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-	
Veh in Median Storage	, # -	0	-	-	0	-	-	16974	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76	
Heavy Vehicles, %	4	4	4	2	2	2	2	2	2	1	1	1	
Mvmt Flow	0	278	136	112	433	0	0	0	0	330	1	268	

Major/Minor N	Major1		N	Major2				Minor2				
Conflicting Flow All	-	0	0	414	0	0		1003	1071	433		
Stage 1	-	-	-	-	-	-		657	657	-		
Stage 2	-	-	-	-	-	-		346	414	-		
Critical Hdwy	-	-	-	4.12	-	-		6.41	6.51	6.21		
Critical Hdwy Stg 1	-	-	-	-	-	-		5.41	5.51	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		5.41	5.51	-		
Follow-up Hdwy	-	-	-	2.218	-	-		3.509	4.009	3.309		
Pot Cap-1 Maneuver	0	-	-	1145	-	0		~ 270	222	625		
Stage 1	0	-	-	-	-	0		518	463	-		
Stage 2	0	-	-	-	-	0		719	595	-		
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	1145	-	-		~ 244	0	625		
Mov Cap-2 Maneuver	-	-	-	-	-	-		~ 244	0	-		
Stage 1	-	-	-	-	-	-		518	0	-		
Stage 2	-	-	-	-	-	-		649	0	-		
Approach	EB			WB				SB				
HCM Control Delay, s	0			1.7				129.6				
HCM LOS	-							F				
Minor Long/Major Mum	.4	ГОТ										
	IL	EDI	EDK	VVDL	VDI		SBLIIZ					
Capacity (veh/h)		-	-	1145	-	244	625					
HCM Lane V/C Ratio		-	-	0.098	-	1.354	0.432					
HCM Control Delay (s)		-	-	8.5	-	223.1	15.1					
HCM Lane LOS		-	-	A	-		C					
HCIM 95th %tile Q(veh)		-	-	0.3	-	17.8	2.2					
Notes												
~: Volume exceeds cap	pacity	\$: De	lay exc	eeds 3	00s	+: Com	putation Not Defin	ned *: All	major	volume i	in platoon	

Intersection												
Int Delay, s/veh	5.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	1			el el		ľ	el el				
Traffic Vol, veh/h	98	364	0	0	337	302	77	3	92	0	0	0
Future Vol, veh/h	98	364	0	0	337	302	77	3	92	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	0	0	0	2	2	2
Mvmt Flow	124	461	0	0	427	382	97	4	116	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	809	0	-	-	-	0	1327	1518	461	
Stage 1	-	· -	-	-	-	-	709	709	-	
Stage 2	-	· -	-	-	-	-	618	809	-	
Critical Hdwy	4.12	-	-	-	-	-	6.4	6.5	6.2	
Critical Hdwy Stg 1	-		-	-	-	-	5.4	5.5	-	
Critical Hdwy Stg 2	-	· -	-	-	-	-	5.4	5.5	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.5	4	3.3	
Pot Cap-1 Maneuver	817	-	0	0	-	-	173	120	605	
Stage 1	-		0	0	-	-	491	440	-	
Stage 2	-	· -	0	0	-	-	542	396	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	817	-	-	-	-	-	147	0	605	
Mov Cap-2 Maneuver	-		-	-	-	-	147	0	-	
Stage 1	-	· -	-	-	-	-	416	0	-	
Stage 2	-	· -	-	-	-	-	542	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	2.2			0			37.2			
HCM LOS							E			
Minor Lane/Major Mvn	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		147	605	817	-	-	-			
HCM Lane V/C Ratio		0.663	0.199	0.152	-	-	-			
HCM Control Delay (s)	67.9	12.4	10.2	-	-	-			
HCM Lane LOS		F	В	В	-	-	-			
HCM 95th %tile Q(veh	ı)	3.7	0.7	0.5	-	-	-			

	-	\mathbf{F}	4	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	ሻ	1
Traffic Volume (veh/h)	170	286	53	304	335	17
Future Volume (veh/h)	170	286	53	304	335	17
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	230	0	72	411	453	0
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, %	1	1	2	2	1	1
Cap, veh/h	503		198	810	778	
Arrive On Green	0.27	0.00	0.11	0.43	0.43	0.00
Sat Flow, veh/h	1885	1598	1781	1870	1795	1598
Grp Volume(v). veh/h	230	0	72	411	453	0
Grp Sat Flow(s).veh/h/ln	1885	1598	1781	1870	1795	1598
Q Serve(g s), s	9.2	0.0	3.4	14.4	17.2	0.0
Cycle Q Clear(a c). s	9.2	0.0	3.4	14.4	17.2	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Grp Cap(c), veh/h	503		198	810	778	
V/C Ratio(X)	0.46		0.36	0.51	0.58	
Avail Cap(c a), veh/h	503		198	810	778	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	27.6	0.0	37.1	18.5	19.3	0.0
Incr Delay (d2), s/veh	3.0	0.0	5.1	2.3	3.2	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%).veh/ln	4.4	0.0	1.7	6.3	7.2	0.0
Unsig. Movement Delay, s/veh	1					
LnGrp Delay(d).s/veh	30.5	0.0	42.2	20.8	22.5	0.0
LnGrp LOS	С		D	С	С	
Approach Vol. veh/h	230	А	_	483	453	А
Approach Delay s/veh	30.5	<i>,</i> , , , , , , , , , , , , , , , , , ,		24.0	22.5	
Approach LOS	C			C	C	
	Ŭ				-	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		45.0		45.0	15.0	30.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		39.0		39.0	10.0	24.0
Max Q Clear Time (g_c+l1), s		16.4		19.2	5.4	11.2
Green Ext Time (p_c), s		5.9		1.8	0.0	2.1
Intersection Summary						
HCM 6th Ctrl Delay			24.7			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{r}	1	1	Ŧ	<			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ሻሻ	**	**	1			
Traffic Volume (vph)	0	183	124	1292	1053	8			
Future Volume (vph)	0	183	124	1292	1053	8			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1536	3303	3406	3085	1380			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)		1536	3303	3406	3085	1380			
Peak-hour factor, PHF	0.92	0.84	0.84	0.84	0.84	0.84			
Adj. Flow (vph)	0	218	148	1538	1254	10			
RTOR Reduction (vph)	0	0	0	0	0	2			
Lane Group Flow (vph)	0	218	148	1538	1254	8			
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%			
Turn Type		Free	Prot	NA	NA	Perm			
Protected Phases			1	Free	2				
Permitted Phases		Free				2			
Actuated Green, G (s)		100.0	10.0	100.0	77.0	77.0			
Effective Green, g (s)		100.0	10.0	100.0	77.0	77.0			
Actuated g/C Ratio		1.00	0.10	1.00	0.77	0.77			
Clearance Time (s)			6.0		7.0	7.0			
Vehicle Extension (s)			3.0		5.0	5.0			
Lane Grp Cap (vph)		1536	330	3406	2375	1062			
v/s Ratio Prot			0.04	0.45	c0.41				
v/s Ratio Perm		0.14				0.01			
v/c Ratio		0.14	0.45	0.45	0.53	0.01			
Uniform Delay, d1		0.0	42.4	0.0	4.5	2.7			
Progression Factor		1.00	0.61	1.00	0.06	0.01			
Incremental Delay, d2		0.2	0.9	0.4	0.6	0.0			
Delay (s)		0.2	26.8	0.4	0.8	0.0			
Level of Service		Α	С	Α	Α	А			
Approach Delay (s)	0.2			2.7	0.8				
Approach LOS	А			А	А				
Intersection Summary									
HCM 2000 Control Delay			1.8	H	CM 2000	Level of Servi	се	A	
HCM 2000 Volume to Capacity	y ratio		0.55						
Actuated Cycle Length (s)			100.0	S	um of los	t time (s)		13.0	
Intersection Capacity Utilizatio	n		46.6%	IC	U Level	of Service		А	
Analysis Period (min)			15						
c Critical Lane Group									

	٦	-	$\mathbf{\hat{z}}$	4	+	*	1	1	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1				5	ĥ			•	1
Traffic Volume (vph)	109	0	286	0	0	0	544	872	0	0	1065	207
Future Volume (vph)	109	0	286	0	0	0	544	872	0	0	1065	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	1776			1529	1392
Flt Permitted	0.95		1.00				0.03	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				54	1776			1529	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	128	0	336	0	0	0	640	1026	0	0	1253	244
RTOR Reduction (vph)	0	0	44	0	0	0	0	0	0	0	0	15
Lane Group Flow (vph)	128	0	292	0	0	0	640	1026	0	0	1253	229
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	12.5		70.5				184.0	184.0			126.0	138.5
Effective Green, g (s)	12.5		70.5				184.0	184.0			126.0	138.5
Actuated g/C Ratio	0.06		0.34				0.88	0.88			0.60	0.66
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	97		456				448	1559			919	963
v/s Ratio Prot	c0.08		0.21				c0.35	0.58			0.82	0.01
v/s Ratio Perm							c0.91					0.15
v/c Ratio	1.32		0.64				1.43	0.66			1.36	0.24
Uniform Delay, d1	98.5		58.8				74.6	3.7			41.8	14.3
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	199.1		2.9				205.4	1.0			170.6	0.2
Delay (s)	297.6		61.7				280.0	4.7			212.3	14.4
Level of Service	F		E				F	А			F	В
Approach Delay (s)		126.8			0.0			110.5			180.1	
Approach LOS		F			А			F			F	
Intersection Summary												
HCM 2000 Control Delay			141.3	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.45									
Actuated Cycle Length (s)			209.5	S	um of lost	time (s)			19.5			
Intersection Capacity Utilization	ation		106.4%	IC	CU Level o	of Service	9		G			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	-
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	**	
Traffic Volume (veh/h)	137	1108	0	1785	1457	0
Future Volume (veh/h)	137	1108	0	1785	1457	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	151	0	0	1962	1601	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	7	7	0	8	5	0
Cap, veh/h	217		0	3961	2826	0
Arrive On Green	0.07	0.00	0.00	0.81	0.81	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grp Volume(v), veh/h	151	0	0	1962	1601	0
Grp Sat Flow(s).veh/h/ln	1659	1522	0	1621	1735	0
Q Serve(q s), s	4.5	0.0	0.0	12.5	15.9	0.0
Cycle Q Clear(a c), s	4.5	0.0	0.0	12.5	15.9	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	217		0	3961	2826	0
V/C Ratio(X)	0.69		0.00	0.50	0.57	0.00
Avail Cap(c, a), veh/h	398		0	3961	2826	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.7	0.0	0.0	2.9	3.2	0.0
Incr Delay (d2) s/veh	4 0	0.0	0.0	0.4	0.8	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh/ln	1.9	0.0	0.0	22	3.0	0.0
Unsig Movement Delay s/ve	h	0.0	0.0		0.0	0.0
InGrn Delay(d) s/veh	49 7	0.0	0.0	33	40	0.0
	D	0.0	0.0 A	0.0 A	Α	0.0 A
Approach Vol. veh/h	151	Δ		1962	1601	
Approach Delay, s/yeb	/0.7	Л		3.3	4.0	
Approach LOS	49.7 D			Δ	4.0 Δ	
	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s		76.0		12.0		76.0
Max Q Clear Time (g_c+I1), s	;	17.9		6.5		14.5
Green Ext Time (p_c), s		37.5		0.2		46.5
Intersection Summary						
HCM 6th Ctrl Delay			5.5			
HCM 6th LOS			Δ			
			~			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	≮	*	Ť	1	1	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ካካ	11	441			***
Traffic Volume (veh/h)	656	602	935	0	0	1546
Future Volume (veh/h)	656	602	935	0	0	1546
Initial Q (Qb), veh	0	0	0	Ō	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	•	1.00	1.00	v
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Annroac	ch No		No			No
Adi Sat Flow, veh/h/ln	1722	1722	1767	0	0	1841
Adi Flow Rate veh/h	713	654	1016	0	0	1680
Peak Hour Factor	0 92	0.92	0 92	0 92	0 92	0 92
Percent Heavy Veh %	12	12	0.52	0.52	0.52	0.5Z
Cap yoh/h	071	70/	9 2724	0	0	4 ၁၀၁၀
Cap, ven/n	9/1	104	2124	0.00	0 00	2030
Arrive On Green	0.31	0.31	0.50	0.00	0.00	0.56
Sat Flow, veh/h	3182	2569	5141	0	0	5356
Grp Volume(v), veh/h	713	654	1016	0	0	1680
Grp Sat Flow(s),veh/h/li	n1591	1284	1608	0	0	1675
Q Serve(g_s), s	20.1	23.7	11.6	0.0	0.0	21.9
Cycle Q Clear(g_c), s	20.1	23.7	11.6	0.0	0.0	21.9
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h	971	784	2724	0	0	2838
V/C Ratio(X)	0.73	0.83	0.37	0.00	0.00	0.59
Avail Cap(c, a) veh/h	1177	950	2724	0	0	2838
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Linstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) shud	h 31 1	32 /	12.0	0.00	0.00	1/1 2
Inor Doloy (d2) aluch	10	52.4	0.4	0.0	0.0	0.0
Incl Delay (uz), s/ven	1.9	0.0	0.4	0.0	0.0	0.9
Initial Q Delay(d3),s/ver		0.0	0.0	0.0	0.0	0.0
%IIe BackOfQ(50%),vel	n/In/.6	1.6	3.9	0.0	0.0	1.6
Unsig. Movement Delay	y, s/veh	1				
LnGrp Delay(d),s/veh	33.0	37.9	12.4	0.0	0.0	15.1
LnGrp LOS	С	D	B	A	A	B
Approach Vol, veh/h	1367		1016			1680
Approach Delay, s/veh	35.4		12.4			15.1
Approach LOS	D		В			В
	_					-
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)), s	62.5		37.5		62.5
Change Period (Y+Rc),	S	6.0		7.0		6.0
Max Green Setting (Gm	nax), s	50.0		37.0		50.0
Max Q Clear Time (q c	+l1), s	23.9		25.7		13.6
Green Ext Time (p c), s	S	25.1		4.8		26.5
Intersection Summary						
HCM 6th Ctrl Dolov			21.2			
			21.3			
HUM 6th LUS			C			

メッシュー イイ イントレイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्रभ	1	ሻ	*††	1	- ሽ	朴朴。		
Traffic Volume (veh/h)	6	1	18	161	0	88	21	1325	199	116	1597	2	
Future Volume (veh/h)	6	1	18	161	0	88	21	1325	199	116	1597	2	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approac	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1900	1900	1900	1796	1796	1796	1707	1707	1707	1826	1826	1826	
Adj Flow Rate, veh/h	6	1	19	173	0	95	23	1425	0	125	1717	2	
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	0	7	7	7	13	13	13	5	5	5	
Cap, veh/h	44	26	72	186	0	349	38	2378		156	2964	3	
Arrive On Green	0.25	0.23	0.23	0.25	0.00	0.23	0.02	0.51	0.00	0.03	0.19	0.19	
Sat Flow, veh/h	0	115	311	494	0	1518	1626	4661	1447	1739	5142	6	
Grp Volume(v), veh/h	26	0	0	173	0	95	23	1425	0	125	1110	609	
Grp Sat Flow(s),veh/h/lr	n 426	0	0	494	0	1518	1626	1554	1447	1739	1662	1825	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.1	1.4	21.6	0.0	7.1	30.4	30.4	
Cycle Q Clear(g_c), s	25.0	0.0	0.0	25.0	0.0	5.1	1.4	21.6	0.0	7.1	30.4	30.4	
Prop In Lane	0.23		0.73	1.00		1.00	1.00		1.00	1.00		0.00	
Lane Grp Cap(c), veh/h	151	0	0	195	0	349	38	2378		156	1915	1052	
V/C Ratio(X)	0.17	0.00	0.00	0.89	0.00	0.27	0.60	0.60		0.80	0.58	0.58	
Avail Cap(c_a), veh/h	151	0	0	195	0	349	98	2378		243	1915	1052	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.83	0.83	0.83	
Uniform Delay (d), s/veh	n 31.6	0.0	0.0	41.8	0.0	31.6	48.4	17.3	0.0	47.6	29.5	29.5	
Incr Delay (d2), s/veh	0.5	0.0	0.0	34.8	0.0	0.4	14.1	1.1	0.0	8.3	1.1	1.9	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	n/In0.5	0.0	0.0	6.1	0.0	1.9	0.7	7.3	0.0	3.5	13.6	15.2	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	32.1	0.0	0.0	76.6	0.0	32.0	62.4	18.4	0.0	56.0	30.5	31.4	
LnGrp LOS	С	Α	Α	E	A	С	E	В		E	С	С	
Approach Vol, veh/h		26			268			1448	А		1844		
Approach Delay, s/veh		32.1			60.8			19.1			32.5		
Approach LOS		С			E			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc)	, s7.4	63.6		29.0	14.0	57.0		29.0					
Change Period (Y+Rc),	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gm	ax\$,.\$	54.0		23.0	14.0	46.0		23.0					
Max Q Clear Time (g_c-	+113),45	32.4		27.0	9.1	23.6		27.0					
Green Ext Time (p_c), s	0.0	20.9		0.0	0.1	20.8		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			29.2										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	٩.	Ť	Ŧ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1	5	**	**	1
Traffic Volume (veh/h)	387	236	186	1042	1247	382
Future Volume (veh/h)	387	236	186	1042	1247	382
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00	•	•	1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	ch No			No	No	
Adi Sat Flow, veh/h/ln	1781	1781	1678	1678	1826	1826
Adi Flow Rate veh/h	421	257	202	1133	1355	415
Peak Hour Factor	0 92	0.92	0 92	0.92	0.92	0 92
Percent Heavy Veb %	0.5Z	0.5Z Q	15	15	5	5
Can yeh/h	502	272	259	2100	1070	979
Arrivo On Groon	0.10	0 10	200	7122	0.57	0/0
Anive On Green	U. 10	U. 10	1500	0.09	0.57	U.J/
Sat Flow, ven/n	3291	1510	1598	3212	3561	1547
Grp Volume(v), veh/h	421	257	202	1133	1355	415
Grp Sat Flow(s),veh/h/l	n1646	1510	1598	1594	1735	1547
Q Serve(g_s), s	12.0	16.8	4.9	17.1	27.7	15.8
Cycle Q Clear(g_c), s	12.0	16.8	4.9	17.1	27.7	15.8
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	1 592	272	258	2199	1970	878
V/C Ratio(X)	0.71	0.95	0.78	0.52	0.69	0.47
Avail Cap(c, a) veh/h	592	272	366	2199	1970	878
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
I Instream Filter/I)	1.00	1.00	0.02	0.02	1.00	1.00
Uniform Delay (d) alua	1.00 h 38 G	1.00	18.9	7 5	15.2	12.00
Inor Doloy (d2) of the	0.0011	40.0	10.0 6 E	C.1	10.0	12.0
Incr Delay (d2), s/veh	4.0	40.0	0.5	0.8	2.0	1.8
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve	n/In5.1	9.1	3.1	4.9	10.2	5.4
Unsig. Movement Delay	y, s/veh	1				
LnGrp Delay(d),s/veh	42.5	80.5	25.3	8.3	17.3	14.6
LnGrp LOS	D	F	С	Α	В	В
Approach Vol, veh/h	678			1335	1770	
Approach Delay. s/veh	56.9			10.8	16.7	
Approach LOS	F			B	В	
	-					
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), \$ 2.2	63.8		24.0		76.0
Change Period (Y+Rc),	s 5.0	7.0		6.0		7.0
Max Green Setting (Gr	na 1:4. 6	50.0		18.0		69.0
Max Q Clear Time (g. c	+16.9	29.7		18.8		19.1
Green Ext Time (n_c)	s 0.3	19.4		0.0		38.0
	0.0			0.0		00.0
Intersection Summary						
HCM 6th Ctrl Delay			21.8			
HCM 6th LOS			С			

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					4			ef 👘			र्च	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1085	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1085	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	36	1219	0

Major/Minor		Minor1		Ν	/lajor1		Ν	Major2			
Conflicting Flow All		2815	2815	1524	-	0	0	1560	0	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		1291	1291	-	-	-	-	-	-	-	
Critical Hdwy		6.44	6.54	6.24	-	-	-	4.16	-	-	
Critical Hdwy Stg 1		5.44	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.44	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy		3.536	4.036	3.336	-	-	-	2.254	-	-	
Pot Cap-1 Maneuver		~ 20	18	144	0	-	-	413	-	0	
Stage 1		196	178	-	0	-	-	-	-	0	
Stage 2		255	232	-	0	-	-	-	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		~ 15	0	144	-	-	-	413	-	-	
Mov Cap-2 Maneuver		~ 15	0	-	-	-	-	-	-	-	
Stage 1		196	0	-	-	-	-	-	-	-	
Stage 2		186	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		\$ 689.9			0			0.4			
HCM LOS		F									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT							
Capacity (veh/h)	-	- 21	413	-							
HCM Lane V/C Ratio	-	- 1.605	0.087	-							
HCM Control Delay (s)	-	-\$ 689.9	14.5	0							
HCM Lane LOS	-	- F	В	А							
HCM 95th %tile Q(veh)	-	- 4.4	0.3	-							
Notes											
~: Volume exceeds capacity	\$: De	lay exceeds 3	00s	+: Comp	outation	Not Defin	ed	*: All r	najor vol	ume in	platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	-	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.	•	1	7	•	1	٦	•	1	٦	∱1 }	
Traffic Volume (veh/h)	244	373	412	92	171	44	414	591	231	97	517	113
Future Volume (veh/h)	244	373	412	92	171	44	414	591	231	97	517	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	419	0	103	192	0	465	664	0	109	581	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	371	524		187	689		527	939		236	713	155
Arrive On Green	0.31	0.31	0.00	0.04	0.37	0.00	0.27	0.55	0.00	0.25	0.25	0.25
Sat Flow, veh/h	1078	1693	1434	1753	1841	1560	1612	1693	1434	753	2832	617
Grp Volume(v), veh/h	274	419	0	103	192	0	465	664	0	109	355	353
Grp Sat Flow(s),veh/h/ln	1078	1693	1434	1753	1841	1560	1612	1693	1434	753	1735	1715
Q Serve(g_s), s	36.9	35.2	0.0	5.5	11.3	0.0	34.1	44.5	0.0	19.6	29.9	30.0
Cycle Q Clear(g_c), s	38.2	35.2	0.0	5.5	11.3	0.0	34.1	44.5	0.0	19.6	29.9	30.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.36
Lane Grp Cap(c), veh/h	371	524		187	689		527	939		236	436	431
V/C Ratio(X)	0.74	0.80		0.55	0.28		0.88	0.71		0.46	0.81	0.82
Avail Cap(c_a), veh/h	371	524		187	689		527	939		236	436	431
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	50.7	49.1	0.0	42.0	33.9	0.0	36.6	25.3	0.0	50.8	54.6	54.6
Incr Delay (d2), s/veh	12.4	12.1	0.0	11.1	1.0	0.0	18.8	4.5	0.0	6.4	15.3	15.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	11.2	16.6	0.0	1.8	5.4	0.0	13.5	18.4	0.0	4.1	14.8	14.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	63.1	61.2	0.0	53.2	34.9	0.0	55.5	29.7	0.0	57.1	69.8	70.3
LnGrp LOS	E	E		D	С		E	С		E	E	<u> </u>
Approach Vol, veh/h		693	А		295	А		1129	А		817	
Approach Delay, s/veh		61.9			41.3			40.3			68.4	
Approach LOS		Е			D			D			Е	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	47.0	45.0	10.0	53.0		92.0		63.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0		5.0				
Max Green Setting (Gmax), s	42.5	39.0	5.5	48.0		86.0		58.0				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			53.3									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Int Delay, s/veh

	EDI	EDT			MOT		NIDI	NDT	NDD	0.01	ODT	000
Movement	EBL	FRI	EBK	WBL	WBI	WBR	NBL	NBT	NBK	SBL	SBI	SBR
Lane Configurations		- 44			्रस्	1		- सी	1		- 44	
Traffic Vol, veh/h	23	2	6	2	1	2	29	680	3	1	733	30
Future Vol, veh/h	23	2	6	2	1	2	29	680	3	1	733	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	708	3	1	764	31

Major/Minor	Minor2		Ν	Minor1			Major1		Ν	lajor2			
Conflicting Flow All	1553	1553	780	1554	1565	708	795	0	0	711	0	0	
Stage 1	782	782	-	768	768	-	-	-	-	-	-	-	
Stage 2	771	771	-	786	797	-	-	-	-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-	-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-	-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-	-	2.281	-	-	
Pot Cap-1 Maneuver	83	102	365	93	113	438	764	-	-	857	-	-	
Stage 1	359	377	-	397	414	-	-	-	-	-	-	-	
Stage 2	364	382	-	388	401	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	78	95	365	85	105	438	764	-	-	857	-	-	
Mov Cap-2 Maneuver	78	95	-	85	105	-	-	-	-	-	-	-	
Stage 1	336	376	-	371	387	-	-	-	-	-	-	-	
Stage 2	338	357	-	378	400	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	63	32.9	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR I	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	764	-	-	93	91	438	857	-	-
HCM Lane V/C Ratio	0.04	-	-	0.347	0.034	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	63	46	13.3	9.2	0	-
HCM Lane LOS	Α	А	-	F	Е	В	Α	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-

45.6
Е

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		र्च	el el		¥		
Traffic Vol, veh/h	6	737	284	6	9	2	
Future Vol, veh/h	6	737	284	6	9	2	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	2	2	3	3	0	0	
Mvmt Flow	7	847	326	7	10	2	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	59.3		11.7		9.7		
HCM LOS	F		В		А		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	82%
Vol Thru, %	99%	98%	0%
Vol Right, %	0%	2%	18%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	743	290	11
LT Vol	6	0	9
Through Vol	737	284	0
RT Vol	0	6	2
Lane Flow Rate	854	333	13
Geometry Grp	1	1	1
Degree of Util (X)	1.029	0.446	0.023
Departure Headway (Hd)	4.336	4.82	6.446
Convergence, Y/N	Yes	Yes	Yes
Сар	837	747	552
Service Time	2.357	2.851	4.523
HCM Lane V/C Ratio	1.02	0.446	0.024
HCM Control Delay	59.3	11.7	9.7
HCM Lane LOS	F	В	А
HCM 95th-tile Q	19.4	2.3	0.1

Intersection						
Int Delay, s/veh	0.7					
-						
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			↑	- ሽ	
Traffic Vol, veh/h	689	50	0	255	30	0
Future Vol, veh/h	689	50	0	255	30	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	. 0	-	-	0	0	-
Peak Hour Factor	84	84	84	84	84	84
Heavy Vehicles. %	2	2	3	3	2	2
Mymt Flow	820	60	0	304	36	0
	020	00	v	001	00	v

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0 -	- 1154	-	
Stage 1	-		- 850	-	
Stage 2	-		- 304	-	
Critical Hdwy	-		- 6.42	-	
Critical Hdwy Stg 1	-		- 5.42	-	
Critical Hdwy Stg 2	-		- 5.42	-	
Follow-up Hdwy	-		- 3.518	-	
Pot Cap-1 Maneuver	-	- 0	- 218	0	
Stage 1	-	- 0	- 419	0	
Stage 2	-	- 0	- 748	0	
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuver	r -		- 218	-	
Mov Cap-2 Maneuver	r -		- 218	-	
Stage 1	-		- 419	-	
Stage 2	-		- 748	-	
Approach	EB	WB	NB		
			04.7		

HCM LOS C	HCM Control Delay, s	0	0	24.7	
	HCM LOS			С	

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	218	-	-	-
HCM Lane V/C Ratio	0.164	-	-	-
HCM Control Delay (s)	24.7	-	-	-
HCM Lane LOS	С	-	-	-
HCM 95th %tile Q(veh)	0.6	-	-	-

Intersection							
Int Delay, s/veh	52.9						
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ľ	•	el 👘		Y		
Traffic Vol, veh/h	20	595	271	152	300	9	
Future Vol, veh/h	20	595	271	152	300	9	
Conflicting Peds, #/hr	0	0	0	0	0	0	
Sign Control	Free	Free	Free	Free	Stop	Stop	
RT Channelized	-	None	-	None	-	None	1
Storage Length	50	-	-	-	0	-	
Veh in Median Storage,	# -	0	0	-	0	-	
Grade, %	-	0	0	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	
Heavy Vehicles, %	2	2	4	4	2	2	
Mvmt Flow	22	647	295	165	326	10	

Major/Minor	Major1	Ν	lajor2	Mino	or2			
Conflicting Flow All	460	0	-	0 10	69 378			
Stage 1	-	-	-	- 3	- 578			
Stage 2	-	-	-	- 6	691 -			
Critical Hdwy	4.12	-	-	- 6.	.42 6.22			
Critical Hdwy Stg 1	-	-	-	- 5.	.42 -			
Critical Hdwy Stg 2	-	-	-	- 5.	.42 -			
Follow-up Hdwy	2.218	-	-	- 3.5	518 3.318			
Pot Cap-1 Maneuver	1101	-	-	- ~2	45 669			
Stage 1	-	-	-	- 6	- 693			
Stage 2	-	-	-	- 4	97 -			
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	1101	-	-	- ~2	40 669			
Mov Cap-2 Maneuver	-	-	-	- ~2	- 40			
Stage 1	-	-	-	- 6	579 -			
Stage 2	-	-	-	- 4	97 -			
Approach	EB		WB	;	SB			
HCM Control Delay, s	0.3		0	229	9.8			
HCM LOS					F			
Minor Lane/Maior Myr	nt	FBI	FBT	WBT W	BR SBI n1			
Canacity (veh/h)		1101			- 245			
HCM Lane V/C Ratio		0.02	_	-	- 1371			
HCM Control Delay (s	:)	8.3	_	_	- 229.8			
HCM Lane LOS	')	Δ	_	-	- F			
HCM 95th %tile Q(vel	ר)	0.1	-	-	- 18.3			
	.,	•••						
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exc	ceeds 300s	+: Com	putation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		et		ľ	•					1	et F	
Traffic Vol, veh/h	0	752	159	141	291	0	0	0	0	286	2	144
Future Vol, veh/h	0	752	159	141	291	0	0	0	0	286	2	144
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	3	3	3	0	0	0	2	2	2
Mvmt Flow	0	800	169	150	310	0	0	0	0	304	2	153

Major/Minor	Major1		1	Major2			Minor2				
Conflicting Flow All	-	0	0	969	0 0		1495	1579	310		
Stage 1	-	-	-	-			610	610	-		
Stage 2	-	-	-	-			885	969	-		
Critical Hdwy	-	-	-	4.13			6.42	6.52	6.22		
Critical Hdwy Stg 1	-	-	-	-			5.42	5.52	-		
Critical Hdwy Stg 2	-	-	-	-			5.42	5.52	-		
Follow-up Hdwy	-	-	-	2.227			3.518	4.018	3.318		
Pot Cap-1 Maneuver	0	-	-	707	- 0		~ 135	109	730		
Stage 1	0	-	-	-	- 0		542	485	-		
Stage 2	0	-	-	-	- 0		403	332	-		
Platoon blocked, %		-	-		-						
Mov Cap-1 Maneuver	-	-	-	707			~ 106	0	730		
Mov Cap-2 Maneuver	-	-	-	-			~ 106	0	-		
Stage 1	-	-	-	-			542	0	-		
Stage 2	-	-	-	-			318	0	-		
Approach	EB			WB			SB				
HCM Control Delay, s	0			3.7			\$ 619.4				
HCM LOS							F				
Minor Lane/Major Mvr	nt	EBT	EBR	WBL	WBT SBLn1	SBLn2					
Capacity (veh/h)		-	-	707	- 106	730					
HCM Lane V/C Ratio		-	-	0.212	- 2.87	0.213					
HCM Control Delay (s)	-	-	11.5	-\$ 929.9	11.3					
HCM Lane LOS	,	-	-	В	- F	В					
HCM 95th %tile Q(veh	ı)	-	-	0.8	- 28.8	0.8					
Notes											
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 3	00s +: Com	putation Not Defined	a *: All	major	volume ii	n platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>٦</u>	1			12		٦.	4				
Traffic Vol, veh/h	294	709	0	0	348	545	73	3	46	0	0	0
Future Vol, veh/h	294	709	0	0	348	545	73	3	46	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	1	1	1	0	0	0
Mvmt Flow	323	779	0	0	382	599	80	3	51	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	981	0	-	-	-	0	2107	2406	779	
Stage 1	-	-	-	-	-	-	1425	1425	-	
Stage 2	-	-	-	-	-	-	682	981	-	
Critical Hdwy	4.12	-	-	-	-	-	6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.51	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.509	4.009	3.309	
Pot Cap-1 Maneuver	704	-	0	0	-	-	~ 57	33	397	
Stage 1	-	-	0	0	-	-	223	202	-	
Stage 2	-	-	0	0	-	-	504	329	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	704	-	-	-	-	-	~ 31	0	397	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 31	0	-	
Stage 1	-	-	-	-	-	-	121	0	-	
Stage 2	-	-	-	-	-	-	504	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	4.2			0		ţ	599.3			
HCM LOS							F			
Minor Lane/Major Mvn	nt	NBLn1	NBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		31	397	704	-	-	-			
HCM Lane V/C Ratio		2.588	0.136	0.459	-	-	-			
HCM Control Delay (s)	5 991.1	15.5	14.4	-	-	-			
HCM Lane LOS	,	F	С	В	-	-	-			
HCM 95th %tile Q(veh	ı)	9.4	0.5	2.4	-	-	-			
Notes										
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 30)0s	+: Com	putation	n Not D	efined	*: All major volume in platoon

	→	\mathbf{F}	•	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	†	5	7
Traffic Volume (veh/h)	347	400	35	315	619	38
Future Volume (veh/h)	347	400	35	315	619	38
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1856	1856	1856	1856	1885	1885
Adj Flow Rate, veh/h	394	0	40	358	703	0
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88
Percent Heavy Veh, %	3	3	3	3	1	1
Cap, veh/h	536		98	742	838	
Arrive On Green	0.29	0.00	0.06	0.40	0.47	0.00
Sat Flow, veh/h	1856	1572	1767	1856	1795	1598
Grp Volume(v), veh/h	394	0	40	358	703	0
Grp Sat Flow(s).veh/h/ln	1856	1572	1767	1856	1795	1598
Q Serve(a s), s	17.3	0.0	2.0	12.9	30.9	0.0
Cycle Q Clear(q_c), s	17.3	0.0	2.0	12.9	30.9	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Gro Cap(c), veh/h	536		98	742	838	
V/C Ratio(X)	0.74		0.41	0.48	0.84	
Avail Cap(c, a), veh/h	536		98	742	838	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d) s/yeh	28.9	0.0	41.1	20.1	21.0	0.0
Incr Delay (d2) s/veh	87	0.0	12.1	22	9.9	0.0
Initial O Delay(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln	8.6	0.0	12	5.7	13.8	0.0
Unsig Movement Delay s/veh	0.0	0.0	1.2	0.7	10.0	0.0
InGrn Delay(d) s/veh	37.6	0.0	53 1	22.3	30.9	0.0
InGrp LOS	07.0 D	0.0	D	C	С.00	0.0
Approach Vol. veh/h	30/	٨		308	703	٨
Approach Delay, s/yeb	37.6	~		25 /	30.0	~
Approach LOS	ס. <i>ז</i> ר			23.4	50.9	
	U			U	U	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		42.0		48.0	10.0	32.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		36.0		42.0	5.0	26.0
Max Q Clear Time (g_c+I1), s		14.9		32.9	4.0	19.3
Green Ext Time (p_c), s		4.8		2.3	0.0	2.5
Intersection Summary						
HCM 6th Ctrl Delay			31.2			
HCM 6th LOS			C			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{r}	•	1	۰.	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	274	198	1210	1438	10			
Future Volume (vph)	0	274	198	1210	1438	10			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util, Factor		1.00	0.97	0.95	0.95	1.00			
Frpb. ped/bikes		0.99	1.00	1.00	1.00	1.00			
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00			
Frt		0.86	1 00	1 00	1 00	0.85			
Elt Protected		1 00	0.95	1.00	1.00	1.00			
Satd Flow (prot)		1591	3099	3195	3406	1524			
Flt Permitted		1 00	0.95	1 00	1 00	1.00			
Satd Flow (perm)		1591	3099	3195	3406	1524			
Peak-hour factor PHF	0 9/	0.01	0.01	0.01	0.01	0.94			
Adi Flow (vph)	0.34	201	211	1287	1530	11			
PTOP Reduction (uph)	0	231	211	1207	1550	3			
Lane Group Flow (vph)	0	201	211	1287	1530	8			
Confl Bods (#/br)	0	201	211	1207	1550	0			
Honyy Vohiolog (%)	20/	ا 20/	130/	130/	6%	6%			
	Ζ/0	Z /0	Drot	1370 NIA	0 /0	0 /0			
Turn Type		Free	Prot	INA Free	INA 2	Perm			
Protected Phases		Free	I	Fiee	Z	0			
Actuated Crean C (a)		100.0	12.0	100.0	75.0	Z 75.0			
Effective Green, G (S)		100.0	12.0	100.0	75.0	75.0			
Effective Green, g (s)		100.0	12.0	100.0	75.0	75.0			
		1.00	0.12	1.00	0.75	0.75			
Vehicle Extension (c)			0.0		7.0	7.0			
Venicle Extension (s)		4504	3.0	0.405	5.0	5.0			
Lane Grp Cap (vph)		1591	3/1	3195	2554	1143			
v/s Ratio Prot		0.40	0.07	0.40	c0.45	0.04			
v/s Ratio Perm		0.18	<u> </u>			0.01			
v/c Ratio		0.18	0.57	0.40	0.60	0.01			
Uniform Delay, d1		0.0	41.6	0.0	5.7	3.1			
Progression Factor		1.00	0.54	1.00	0.19	0.10			
Incremental Delay, d2		0.3	1.7	0.3	0.7	0.0			
Delay (s)		0.3	24.0	0.3	1.8	0.3			
Level of Service		A	С	A	A	A			
Approach Delay (s)	0.3			3.7	1.8				
Approach LOS	A			A	A				
Intersection Summary									
HCM 2000 Control Delay			2.5	Н	CM 2000	Level of Service)	A	
HCM 2000 Volume to Capacity	y ratio		0.60						
Actuated Cycle Length (s)	-		100.0	S	um of los	t time (s)	13.	0	
Intersection Capacity Utilizatio	n		64.2%	IC	U Level	of Service	(2	
Analysis Period (min)			15						

c Critical Lane Group

	≯	→	$\mathbf{\hat{z}}$	4	+	*	•	Ť	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲		1				5	ţ,			•	7
Traffic Volume (vph)	276	0	612	0	0	0	427	1113	0	0	996	172
Future Volume (vph)	276	0	612	0	0	0	427	1113	0	0	996	172
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	1667			1673	1497
Flt Permitted	0.95		1.00				0.04	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				69	1667			1673	1497
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	297	0	658	0	0	0	459	1197	0	0	1071	185
RTOR Reduction (vph)	0	0	50	0	0	0	0	0	0	0	0	27
Lane Group Flow (vph)	297	0	608	0	0	0	459	1197	0	0	1071	158
Confl. Peds. (#/hr)							1					1
Confl. Bikes (#/hr)												1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	20.5		61.5				131.0	131.0			90.0	110.5
Effective Green, g (s)	20.5		61.5				131.0	131.0			90.0	110.5
Actuated g/C Ratio	0.12		0.37				0.80	0.80			0.55	0.67
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	218		546				372	1327			915	1064
v/s Ratio Prot	c0.17		c0.42				0.26	0.72			0.64	0.02
v/s Ratio Perm							c0.72					0.09
v/c Ratio	1.36		1.11				1.23	0.90			1.17	0.15
Uniform Delay, d1	72.0		51.5				60.5	12.1			37.2	9.8
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	189.8		73.5				126.5	8.8			88.4	0.1
Delay (s)	261.8		125.0				187.0	20.9			125.7	9.9
Level of Service	F		F				F	С			F	А
Approach Delay (s)		167.5			0.0			66.9			108.6	
Approach LOS		F			А			E			F	
												_
Intersection Summary												
HCM 2000 Control Delay			105.3	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.29	_								
Actuated Cycle Length (s)			164.5	S	um of lost	t time (s)			19.5			
Intersection Capacity Utilizat	ion		105.5%	IC	U Level o	of Service	9		G			
Analysis Period (min)			15									

c Critical Lane Group

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	€	*	1	1	1	Ŧ
Movement N	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	11	441			***
Traffic Volume (veh/h)	545	1050	684	0	0	1070
Future Volume (veh/h)	545	1050	684	0	0	1070
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00		1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adj Sat Flow, veh/h/ln 1	1841	1841	1781	0	0	1693
Adj Flow Rate, veh/h	657	1265	824	0	0	1289
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83
Percent Heavy Veh. %	4	4	8	0	0	14
Cap. veh/h 1	1564	1263	1994	0	0	1894
Arrive On Green	0.46	0.46	0.41	0.00	0.00	0.41
Sat Flow, veh/h	3401	2745	5184	0	0	4925
Grn Volume(v) veh/h	657	1265	824	0	0	1289
Grn Sat Flow(s) yeh/h/ln1	1700	1373	1621	0	0	15/0
O Serve(a, s) s	12 0	1913	12.0	0.0	0.0	22 R
$(y \circ (y \circ (y \circ)), s)$	12.9	40.0	12.0	0.0	0.0	22.0 22.8
Dron In Lanc	12.9	1 00	12.0	0.0	0.0	22.0
FIUP III Lalle	1564	100	100/	0.00	0.00	100/
Lane Gip Gap(c), ven/n I	0.40	1203	0 44	0 00	0.00	0.60
v/C Kall $O(\Lambda)$	0.42	1000	U.4 I	0.00	0.00	U.00
Avail Cap(c_a), ven/n 1	1 004	1203	1994	1 00	1.00	1094
	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	18.1	27.0	21.0	0.0	0.0	24.1
Incr Delay (d2), s/veh	0.2	25.7	0.6	0.0	0.0	2.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	/In4.8	18.1	4.4	0.0	0.0	8.1
Unsig. Movement Delay,	s/veh	1				
LnGrp Delay(d),s/veh	18.3	52.7	21.6	0.0	0.0	26.1
LnGrp LOS	В	F	С	Α	Α	С
Approach Vol, veh/h 1	1922		824			1289
Approach Delay, s/veh	40.9		21.6			26.1
Approach LOS	D		С			С
Timer - Assigned Pho		2		1		6
The Duration (C+V+Da)	0	47.0		52.0		47.0
Change Derived (V) Do	8	47.0		53.0		47.0
Unange Period (Y+Rc), s	5	6.0		1.0		6.0
Max Green Setting (Gma	ax), s	41.0		46.0		41.0
Max Q Clear Time (g_c+	11), s	24.8		48.0		14.0
Green Ext Time (p_c), s		14.8		0.0		17.9
Intersection Summary						
HCM 6th Ctrl Delay			32.3			
HCM 6th LOS			С			

ノー・ディートト・トーイ

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			्रभ	1	٦	*††	1	- ኘ	朴朴序		
Traffic Volume (veh/h)	1	0	3	127	1	83	38	1654	42	31	1200	5	
Future Volume (veh/h)	1	0	3	127	1	83	38	1654	42	31	1200	5	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach	h	No			No			No			No		
Adj Sat Flow, veh/h/ln	1159	1159	1159	1856	1856	1856	1826	1826	1826	1633	1633	1633	
Adj Flow Rate, veh/h	1	0	4	155	1	101	46	2017	0	38	1463	6	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	
Percent Heavy Veh, %	50	50	50	3	3	3	5	5	5	18	18	18	
Cap, veh/h	43	14	57	183	1	376	63	2778		51	2539	10	
Arrive On Green	0.26	0.00	0.24	0.26	0.24	0.24	0.04	0.56	0.00	0.01	0.18	0.18	
Sat Flow, veh/h	0	59	236	463	3	1569	1739	4985	1547	1555	4584	19	
Grp Volume(v), veh/h	5	0	0	156	0	101	46	2017	0	38	949	520	
Grp Sat Flow(s),veh/h/ln	295	0	0	466	0	1569	1739	1662	1547	1555	1486	1630	
Q Serve(g s), s	0.0	0.0	0.0	0.0	0.0	5.2	2.6	30.1	0.0	2.4	29.2	29.2	
Cycle Q Clear(g_c), s	26.0	0.0	0.0	26.0	0.0	5.2	2.6	30.1	0.0	2.4	29.2	29.2	
Prop In Lane	0.20		0.80	0.99		1.00	1.00		1.00	1.00		0.01	
Lane Grp Cap(c), veh/h	120	0	0	193	0	376	63	2778		51	1647	903	
V/C Ratio(X)	0.04	0.00	0.00	0.81	0.00	0.27	0.73	0.73		0.75	0.58	0.58	
Avail Cap(c_a), veh/h	120	0	0	193	0	376	122	2778		124	1647	903	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I)	1.00	0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.88	0.88	0.88	
Uniform Delay (d), s/veh	30.5	0.0	0.0	40.7	0.0	30.9	47.7	16.5	0.0	49.1	30.1	30.1	
Incr Delay (d2), s/veh	0.1	0.0	0.0	22.0	0.0	0.4	15.1	1.7	0.0	17.5	1.3	2.4	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh	/Ir0.1	0.0	0.0	5.0	0.0	2.0	1.4	10.6	0.0	1.2	11.8	13.2	
Unsig. Movement Delay	, s/veh												
LnGrp Delay(d),s/veh	30.6	0.0	0.0	62.7	0.0	31.2	62.9	18.1	0.0	66.5	31.4	32.5	
LnGrp LOS	С	А	А	Е	А	С	Е	В		Е	С	С	
Approach Vol, veh/h		5			257			2063	А		1507		
Approach Delay, s/veh		30.6			50.3			19.1			32.7		
Approach LOS		С			D			В			С		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc).	. s8.6	61.4		30.0	8.3	61.7		30.0					
Change Period (Y+Rc).	s 5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gma	ax7.G	52.0		24.0	8.0	51.0		24.0					
Max Q Clear Time (g. c+	14.6	31.2		28.0	4.4	32.1		28.0					
Green Ext Time (p_c), s	0.0	19.5		0.0	0.0	18.7		0.0					
Intersection Summarv													
HCM 6th Ctrl Delay			26.6										
HCM 6th LOS			<u>с.</u>										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{F}	٩.	1	Ŧ	<
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1	5	**	**	1
Traffic Volume (veh/h)	350	65	219	1395	996	350
Future Volume (veh/h)	350	65	219	1395	996	350
Initial O (Ob) veh	000	0	0	0	0.00	000
Ped-Bike Adi(A nhT)	1 00	1 00	1 00	Ū		1 00
Parking Bus Adi	1.00	1.00	1.00	1 00	1 00	1.00
Work Zone On Annroach		1.00	1.00	No	No	1.00
Adi Sat Flow, yeh/h/lp	1737	1737	1811	1811	1678	1678
Adi Flow Rate veh/h	131	R1	27/	17//	12/15	1070
Peak Hour Factor	1 20	0 9 0	214 0.90	0.80	0.90	430 0.90
Porcont Hoovy Vah %	11	0.00	0.00 G	0.00 G	0.00	0.00
Con yoh/h	[] 510	11	240	0	1000	CI 040
Cap, ven/n	510	234	310	2440	1022	012
Arrive On Green	0.16	0.16	0.09	0./1	0.57	0.57
Sat Flow, veh/h	3209	1472	1725	3532	3272	1421
Grp Volume(v), veh/h	438	81	274	1744	1245	438
Grp Sat Flow(s), veh/h/ln	1605	1472	1725	1721	1594	1421
Q Serve(g_s), s	13.3	4.9	6.4	29.7	27.5	19.1
Cycle Q Clear(g_c), s	13.3	4.9	6.4	29.7	27.5	19.1
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	510	234	310	2446	1822	812
V/C Ratio(X)	0.86	0.35	0.88	0.71	0.68	0.54
Avail Can(c, a) veh/h	578	265	432	2446	1822	812
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Linstream Filter/I)	1.00	1.00	0.80	0.80	1.00	1.00
Uniform Doloy (d) alugh	1.00	27 /	10.00	0.00 Q E	1.00	12.00
Unitoriti Delay (d), s/ven	40.9	J/.4	19.0	0.0 4 4	10.1	13.3
incr Delay (d2), s/veh	11.3	0.9	12.1	1.4	2.1	2.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%Ile BackOfQ(50%),veh/	/115.9	1.8	4.6	8.8	9.3	6.0
Unsig. Movement Delay,	s/veh					
LnGrp Delay(d),s/veh	52.2	38.3	31.9	9.9	17.2	15.8
LnGrp LOS	D	D	С	А	В	В
Approach Vol. veh/h	519			2018	1683	
Approach Delay, s/veh	50.0			12.9	16.8	
Approach LOS	D			B	B	
	0					
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc),	\$ 3.9	64.2		21.9		78.1
Change Period (Y+Rc), s	s 5.0	7.0		6.0		7.0
Max Green Setting (Gma	a 1(6 , G	48.0		18.0		69.0
Max Q Clear Time (g c+	18.45	29.5		15.3		31.7
Green Ext Time (n_c) s	0.5	17.5		0.6		36.1
	0.0			0.0		
Intersection Summary						
HCM 6th Ctrl Delay			19.0			
HCM 6th LOS			В			

Intersection

Int Delay, s/veh	122.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef 👘			र्भ
Traffic Vol, veh/h	15	14	1356	8	23	1258
Future Vol, veh/h	15	14	1356	8	23	1258
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	19	18	1738	10	29	1613

Major/Minor	Minor1	Minor1 Ma		ajor1 N		
Conflicting Flow All	3414	1743	0	0	1748	0
Stage 1	1743	-	-	-	-	-
Stage 2	1671	-	-	-	-	-
Critical Hdwy	6.6	6.4	-	-	4.27	-
Critical Hdwy Stg 1	5.6	-	-	-	-	-
Critical Hdwy Stg 2	5.6	-	-	-	-	-
Follow-up Hdwy	3.68	3.48	-	-	2.353	-
Pot Cap-1 Maneuver	~ 7	97	-	-	323	-
Stage 1	139	-	-	-	-	-
Stage 2	152	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	~ 1	97	-	-	323	-
Mov Cap-2 Maneuver	· ~1	-	-	-	-	-
Stage 1	139	-	-	-	-	-
Stage 2	21	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delav\$s	1305.3		0		0.3	
HCM LOS	F					
Minor Lane/Major My	mt	NRT		RI n 1	SBI	SBT
	m	IND (NDRW		3DL 202	SDI
Capacity (veh/h)		-	-	2	323	-
HCM Lane V/C Ratio		-	·	10.59	17.0	-
HCM Control Delay (s)		-	\$ 1 1.	505.3	17.3	0
HOW Lane LUS	L)	-	-	F C F		A
HCIVI 95th %tile Q(ven)		-	-	0.5	0.3	-

Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	≯	-	\mathbf{F}	¥	←	•	٠	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	•	1	۲	•	1	ሻ	•	1	۲	4 12	
Traffic Volume (veh/h)	57	178	550	187	149	41	409	517	444	60	544	78
Future Volume (veh/h)	57	178	550	187	149	41	409	517	444	60	544	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	222	0	234	186	0	511	646	0	75	680	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	242	442		257	586		557	1098		246	787	113
Arrive On Green	0.25	0.25	0.00	0.04	0.32	0.00	0.28	0.61	0.00	0.31	0.31	0.31
Sat Flow, veh/h	1147	1796	1522	1767	1856	1572	1711	1796	1522	648	2574	371
Grp Volume(v), veh/h	71	222	0	234	186	0	511	646	0	75	387	391
Grp Sat Flow(s),veh/h/ln	1147	1796	1522	1767	1856	1572	1711	1796	1522	648	1467	1478
Q Serve(g_s), s	8.2	16.0	0.0	3.2	11.5	0.0	35.7	32.9	0.0	13.7	37.5	37.6
Cycle Q Clear(g_c), s	19.7	16.0	0.0	3.2	11.5	0.0	35.7	32.9	0.0	13.7	37.5	37.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.25
Lane Grp Cap(c), veh/h	242	442		257	586		557	1098		246	448	452
V/C Ratio(X)	0.29	0.50		0.91	0.32		0.92	0.59		0.31	0.86	0.87
Avail Cap(c_a), veh/h	242	442		257	586		557	1098		246	448	452
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	55.3	48.8	0.0	64.2	39.2	0.0	39.0	17.8	0.0	41.0	49.3	49.3
Incr Delay (d2), s/veh	3.0	4.0	0.0	37.1	1.4	0.0	22.4	2.3	0.0	3.2	19.3	19.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	2.6	7.7	0.0	11.4	5.5	0.0	15.2	13.7	0.0	2.4	16.0	16.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	58.4	52.9	0.0	101.3	40.6	0.0	61.4	20.1	0.0	44.2	68.6	68.7
LnGrp LOS	E	D		F	D		E	С		D	E	<u> </u>
Approach Vol, veh/h		293	А		420	А		1157	А		853	
Approach Delay, s/veh		54.2			74.4			38.3			66.5	
Approach LOS		D			E			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	46.0	52.0	10.5	42.0		98.0		52.5				
Change Period (Y+Rc), s	4.5	6.0	5.0	* 5		6.0		5.0				
Max Green Setting (Gmax), s	41.5	46.0	5.5	* 37		92.0		47.0				
Max Q Clear Time (g c+l1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			54.4									
HCM 6th LOS			D									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier. Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.
Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्च	1		र्च	1		4	
Traffic Vol, veh/h	21	0	1	2	5	1	51	551	3	0	659	44
Future Vol, veh/h	21	0	1	2	5	1	51	551	3	0	659	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	70	70	70	67	67	67	9	9	9	21	21	21
Mvmt Flow	22	0	1	2	5	1	54	580	3	0	694	46

Major/Minor	Minor2			Minor1			Major1			Major	2		
Conflicting Flow All	1410	1408	717	1406	1428	580	740	0	0	58	30	0	
Stage 1	717	717	-	688	688	-	-	-	-			-	
Stage 2	693	691	-	718	740	-	-	-	-			-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-	-	4.3	1 -	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-	-			-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-	-			-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-	-	2.38	9 -	-	
Pot Cap-1 Maneuver	83	101	334	85	99	411	836	-	-	90	4 -	-	
Stage 1	330	346	-	347	362	-	-	-	-			-	
Stage 2	341	357	-	333	340	-	-	-	-			-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	73	91	334	79	89	411	836	-	-	90	4 -	-	
Mov Cap-2 Maneuver	73	91	-	79	89	-	-	-	-			-	
Stage 1	298	346	-	314	327	-	-	-	-			-	
Stage 2	303	323	-	332	340	-	-	-	-			-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	71.9	46.1	0.8	0	
HCM LOS	F	E			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR	
Capacity (veh/h)	836	-	-	76	86	411	904	-	-	
HCM Lane V/C Ratio	0.064	-	-	0.305	0.086	0.003	-	-	-	
HCM Control Delay (s)	9.6	0	-	71.9	50.7	13.8	0	-	-	
HCM Lane LOS	А	А	-	F	F	В	А	-	-	
HCM 95th %tile Q(veh)	0.2	-	-	1.1	0.3	0	0	-	-	

Intersection		
Intersection Delay, s/veh	74.6	
Intersection LOS	F	

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	eî 🗧		¥		
Traffic Vol, veh/h	487	170	381	365	0	0	
Future Vol, veh/h	487	170	381	365	0	0	
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	
Heavy Vehicles, %	6	6	2	2	2	2	
Mvmt Flow	573	200	448	429	0	0	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	72.8		76.1		0		
HCM LOS	F		F		-		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	74%	0%	0%
Vol Thru, %	26%	51%	100%
Vol Right, %	0%	49%	0%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	657	746	0
LT Vol	487	0	0
Through Vol	170	381	0
RT Vol	0	365	0
Lane Flow Rate	773	878	0
Geometry Grp	1	1	1
Degree of Util (X)	1.061	1.081	0
Departure Headway (Hd)	5.052	4.434	7.334
Convergence, Y/N	Yes	Yes	Yes
Сар	727	807	0
Service Time	3.052	2.521	5.334
HCM Lane V/C Ratio	1.063	1.088	0
HCM Control Delay	72.8	76.1	10.3
HCM Lane LOS	F	F	Ν
HCM 95th-tile Q	19.8	22.4	0

Intersection						
Int Delay, s/veh	0.4					
			~			
Movement	NBL	NBR	SET	SER	NWL	NWI
Lane Configurations	- ሽ		4			↑
Traffic Vol, veh/h	16	0	161	9	0	731
Future Vol, veh/h	16	0	161	9	0	731
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	74	74	74	74	74	74
Heavy Vehicles, %	2	2	4	4	2	2
Mvmt Flow	22	0	218	12	0	988

Major/Minor	Minor1	Maj	or1	Maj	or2	
Conflicting Flow All	1212	-	0	0	-	-
Stage 1	224	-	-	-	-	-
Stage 2	988	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	201	0	-	-	0	-
Stage 1	813	0	-	-	0	-
Stage 2	361	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 201	-	-	-	-	-
Mov Cap-2 Maneuver	r 201	-	-	-	-	-
Stage 1	813	-	-	-	-	-
Stage 2	361	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	25.1	0	0
HCM LOS	D		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	201	-	-	-
HCM Lane V/C Ratio	0.108	-	-	-
HCM Control Delay (s)	25.1	-	-	-
HCM Lane LOS	D	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

ntersection						
Int Delay, s/veh	23.1					
Movement	FBI	FRT	WRT	WRR	SBI	SBR
Lane Configurations	<u> </u>				M	
Traffic Vol. veh/h	5	178	742	157	136	19
Future Vol. veh/h	5	178	742	157	136	19
Conflicting Peds #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Ston	Stop
RT Channelized	-	None	-	None	0.00	None
Storage Length	50	-	_	-	0	-
Veh in Median Storage	<u> </u>	0	0	_	0	_
Crade %	5, # -	0	0	-	0	_
Brade, 70	- 75	75	75	- 75	75	-
	15	15	10	10	15	75
neavy venicies, %	0	0	000	000	2	2
IVIVITITE FIOW	1	237	969	209	101	25
Major/Minor	Major1	ſ	Major2	l	Minor2	
Conflicting Flow All	1198	0	-	0	1345	1094
Stage 1	-	-	-	-	1094	-
Stage 2	-	-	-	-	251	-
Critical Hdwy	4 16	_	-	-	6.42	6 22
Critical Hdwy Stg 1	4.10				5.42	0.22
Critical Hdwy Stg 7			-	-	5.42	-
	2 254	_	-	-	2 5 1 0	2 2 1 0
Pollow-up nuwy	2.204	-	-	-	3.310	3.310
Pot Cap-1 Maneuver	209	-	-	-	~ 107	260
Stage 1	-	-	-	-	321	-
Stage 2	-	-	-	-	791	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	569	-	-	-	~ 165	260
Mov Cap-2 Maneuver	-	-	-	-	~ 165	-
Stage 1	-	-	-	-	317	-
Stage 2	-	-	-	-	791	-
Approach	ED		\\/D		CD	
HCM Control Delay, s	0.3		0		184.1	
HCM LOS					F	
Minor Lane/Major Myn	nt	FBI	FBT	WRT	WBR	SBI n1
Capacity (yoh/h)		560		1101		173
		0.010	-	-	-	1 1 0 5
HCM Cantral Dalay (a)		0.012	-	-	-	1.195
HCM Control Delay (s))	11.4	-	-	-	104.1
HOM Lane LUS	、	В	-	-	-	F
HCIM 95th %tile Q(ven)	0	-	-	-	11.2
Notes						
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 3	00s	+: Com

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		٦	Ť					۲	4	
Traffic Vol, veh/h	0	211	103	85	626	0	0	0	0	251	1	272
Future Vol, veh/h	0	211	103	85	626	0	0	0	0	251	1	272
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	76	76	76	76	76	76	76	76	76	76	76	76
Heavy Vehicles, %	4	4	4	2	2	2	2	2	2	1	1	1
Mvmt Flow	0	278	136	112	824	0	0	0	0	330	1	358

Major/Minor	Major1		1	Major2				Minor2				
Conflicting Flow All	-	0	0	414	0	0		1394	1462	824		
Stage 1	-	-	-	-	-	-		1048	1048	-		
Stage 2	-	-	-	-	-	-		346	414	-		
Critical Hdwy	-	-	-	4.12	-	-		6.41	6.51	6.21		
Critical Hdwy Stg 1	-	-	-	-	-	-		5.41	5.51	-		
Critical Hdwy Stg 2	-	-	-	-	-	-		5.41	5.51	-		
Follow-up Hdwy	-	-	-	2.218	-	-		3.509	4.009	3.309		
Pot Cap-1 Maneuver	0	-	-	1145	-	0		~ 157	129	374		
Stage 1	0	-	-	-	-	0		339	306	-		
Stage 2	0	-	-	-	-	0		719	595	-		
Platoon blocked, %		-	-		-							
Mov Cap-1 Maneuver	-	-	-	1145	-	-		~ 142	0	374		
Mov Cap-2 Maneuver	-	-	-	-	-	-		~ 142	0	-		
Stage 1	-	-	-	-	-	-		339	0	-		
Stage 2	-	-	-	-	-	-		649	0	-		
Approach	EB			WB				SB				
HCM Control Delay, s	0			1				\$ 357.1				
HCM LOS								F				
Minor Lane/Major Mvn	nt	EBT	EBR	WBL	WBT SBI	Ln1 SE	BLn2					
Capacity (veh/h)		-	-	1145	- '	142	374					
HCM Lane V/C Ratio		-	-	0.098	- 2.3	326	0.96					
HCM Control Delay (s))	-	-	8.5	-\$ 66	8.5	70.8					
HCM Lane LOS		-	-	А	-	F	F					
HCM 95th %tile Q(veh	I)	-	-	0.3	-	28	10.7					
Notes												
~: Volume exceeds ca	pacity	\$: De	lay exc	ceeds 30	00s +:(Compu	itation Not Defined	*: All	major \	/olume ii	n platoon	

Intersection												
Int Delay, s/veh	217.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•			el 👘		1	et F				
Traffic Vol, veh/h	98	364	0	0	379	302	332	3	92	0	0	0
Future Vol, veh/h	98	364	0	0	379	302	332	3	92	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	79	79	79	79	79	79	79	79	79	79	79	79
Heavy Vehicles, %	2	2	2	2	2	2	0	0	0	2	2	2
Mvmt Flow	124	461	0	0	480	382	420	4	116	0	0	0

Major/Minor	Major1			Major2		ľ	Minor1			
Conflicting Flow All	862	0	-	-	-	0	1380	1571	461	
Stage 1	-	-	-	-	-	-	709	709	-	
Stage 2	-	-	-	-	-	-	671	862	-	
Critical Hdwy	4.12	-	-	-	-	-	6.4	6.5	6.2	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.4	5.5	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.4	5.5	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.5	4	3.3	
Pot Cap-1 Maneuver	780	-	0	0	-	-	~ 161	112	605	
Stage 1	-	-	0	0	-	-	491	440	-	
Stage 2	-	-	0	0	-	-	512	375	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	780	-	-	-	-	-	~ 135	0	605	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 135	0	-	
Stage 1	-	-	-	-	-	-	~ 413	0	-	
Stage 2	-	-	-	-	-	-	512	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	2.2			0		\$	796.1			
HCM LOS							F			
Minor Lane/Major Mvr	nt	NBLn1	VBLn2	EBL	EBT	WBT	WBR			
Capacity (veh/h)		135	605	780	-	-	-			
HCM Lane V/C Ratio		3.113	0.199	0.159	-	-	-			
HCM Control Delay (s) \$	1020.3	12.4	10.5	-	-	-			
HCM Lane LOS		F	В	В	-	-	-			
HCM 95th %tile Q(veh	ı)	39.6	0.7	0.6	-	-	-			
Notes										
~: Volume exceeds ca	pacity	\$: De	elay exc	ceeds 30)0s	+: Com	putatior	n Not De	efined	*: All major volume in platoon

	-	\mathbf{F}	1	-	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	5	1
Traffic Volume (veh/h)	170	286	53	346	335	17
Future Volume (veh/h)	170	286	53	346	335	17
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		1.00	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1885	1885	1870	1870	1885	1885
Adj Flow Rate, veh/h	230	0	72	468	453	0
Peak Hour Factor	0.74	0.74	0.74	0.74	0.74	0.74
Percent Heavy Veh, %	1	1	2	2	1	1
Cap, veh/h	503		198	810	778	
Arrive On Green	0.27	0.00	0.11	0.43	0.43	0.00
Sat Flow, veh/h	1885	1598	1781	1870	1795	1598
Grp Volume(v) veh/h	230	0	72	468	453	0
Grp Sat Flow(s) veh/h/ln	1885	1598	1781	1870	1795	1598
Q Serve(a, s) s	9.2	0.0	34	17.0	17.2	0.0
Cvcle Q Clear(q, c) s	9.2	0.0	3.4	17.0	17.2	0.0
Prop In Lane	0.2	1 00	1 00	11.0	1 00	1 00
Lane Grp Cap(c) veh/h	503	1.00	198	810	778	1.00
V/C Ratio(X)	0.46		0.36	0.58	0.58	
Avail Cap(c, a) veh/h	503		198	810	778	
HCM Platoon Batio	1 00	1 00	1 00	1 00	1 00	1 00
Instream Filter(I)	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d) s/yeb	27.6	0.00	37.1	10.00	10.3	0.00
Incr Delay (d2), s/veh	3.0	0.0	5.1	3.0	3.0	0.0
Initial O Delay(d3) s/yeb	0.0	0.0	0.0	0.0	0.0	0.0
% ile Back Ω f Ω (50%) veh/ln	0.0 4 4	0.0	17	7.6	7.2	0.0
Unsig Movement Delay, s/vel	т. т h	0.0	1.7	1.0	1.2	0.0
InGro Delay(d) s/veb	30.5	0.0	122	22 3	22.5	0.0
	00.0 C	0.0	42.2 D	22.5	22.J C	0.0
	220	٨	U	E40	452	٨
Approach Vol, Ven/n	230	A		540	453	A
Approach Delay, s/ven	30.5			24.9	22.5	
Approach LOS	C			C	C	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc), s		45.0		45.0	15.0	30.0
Change Period (Y+Rc), s		6.0		6.0	5.0	6.0
Max Green Setting (Gmax), s		39.0		39.0	10.0	24.0
Max Q Clear Time (g c+11), s		19.0		19.2	5.4	11.2
Green Ext Time (p. c), s		6.4		1.8	0.0	2.1
Intersection Summary						
			2E 1			
HOW OTH UTH Delay			25.1			
HCIVI 6th LOS			C			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{r}	1	1	Ŧ	<			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ካካ	**	**	1			
Traffic Volume (vph)	0	183	124	1615	1053	8			
Future Volume (vph)	0	183	124	1615	1053	8			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1536	3303	3406	3085	1380			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)		1536	3303	3406	3085	1380			
Peak-hour factor, PHF	0.92	0.84	0.84	0.84	0.84	0.84			
Adj. Flow (vph)	0	218	148	1923	1254	10			
RTOR Reduction (vph)	0	0	0	0	0	2			
Lane Group Flow (vph)	0	218	148	1923	1254	8			
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%			
Turn Type		Free	Prot	NA	NA	Perm			
Protected Phases			1	Free	2				
Permitted Phases		Free				2			
Actuated Green, G (s)		100.0	10.0	100.0	77.0	77.0			
Effective Green, g (s)		100.0	10.0	100.0	77.0	77.0			
Actuated g/C Ratio		1.00	0.10	1.00	0.77	0.77			
Clearance Time (s)			6.0		7.0	7.0			
Vehicle Extension (s)			3.0		5.0	5.0			
Lane Grp Cap (vph)		1536	330	3406	2375	1062			
v/s Ratio Prot			0.04	0.56	0.41				
v/s Ratio Perm		0.14				0.01			
v/c Ratio		0.14	0.45	0.56	0.53	0.01			
Uniform Delay, d1		0.0	42.4	0.0	4.5	2.7			
Progression Factor		1.00	0.61	1.00	0.06	0.01			
Incremental Delay, d2		0.2	0.8	0.5	0.6	0.0			
Delay (s)		0.2	26.7	0.5	0.8	0.0			
Level of Service		Α	С	Α	Α	А			
Approach Delay (s)	0.2			2.4	0.8				
Approach LOS	Α			А	А				
Intersection Summary									
HCM 2000 Control Delay			1.7	H	CM 2000	Level of Servi	се	A	
HCM 2000 Volume to Capacity	/ ratio		0.65						
Actuated Cycle Length (s)			100.0	Si	um of lost	t time (s)		13.0	
Intersection Capacity Utilization	n		48.0%	IC	U Level o	of Service		А	
Analysis Period (min)			15						
c Critical Lane Group									

	٦	→	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	1	ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5		1				5	ĥ			•	1
Traffic Volume (vph)	169	0	286	0	0	0	544	1195	0	0	1065	207
Future Volume (vph)	169	0	286	0	0	0	544	1195	0	0	1065	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	1776			1529	1392
Flt Permitted	0.95		1.00				0.03	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				54	1776			1529	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	199	0	336	0	0	0	640	1406	0	0	1253	244
RTOR Reduction (vph)	0	0	44	0	0	0	0	0	0	0	0	15
Lane Group Flow (vph)	199	0	292	0	0	0	640	1406	0	0	1253	229
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	12.5		70.5				184.0	184.0			126.0	138.5
Effective Green, g (s)	12.5		70.5				184.0	184.0			126.0	138.5
Actuated g/C Ratio	0.06		0.34				0.88	0.88			0.60	0.66
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	97		456				448	1559			919	963
v/s Ratio Prot	c0.12		0.21				c0.35	0.79			0.82	0.01
v/s Ratio Perm							c0.91					0.15
v/c Ratio	2.05		0.64				1.43	0.90			1.36	0.24
Uniform Delay, d1	98.5		58.8				74.6	7.5			41.8	14.3
Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Incremental Delay, d2	507.0		2.9				205.4	7.6			170.6	0.2
Delay (s)	605.5		61.7				280.0	15.1			212.3	14.4
Level of Service	F		E				F	В			F	В
Approach Delay (s)		264.0			0.0			97.9			180.1	
Approach LOS		F			А			F			F	
Intersection Summary												
HCM 2000 Control Delay			149.9	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.50									
Actuated Cycle Length (s)			209.5	S	um of lost	t time (s)			19.5			
Intersection Capacity Utilization	ation		109.7%	IC	CU Level of	of Service	9		Н			
Analysis Period (min)			15									

c Critical Lane Group

	≯	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	44	
Traffic Volume (veh/h)	137	1108	0	1785	1474	0
Future Volume (veh/h)	137	1108	0	1785	1474	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	151	0	0	1962	1620	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	7	7	0	8	5	0
Cap, veh/h	217		0	3961	2826	0
Arrive On Green	0.07	0.00	0.00	0.81	0.81	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grp Volume(v). veh/h	151	0	0	1962	1620	0
Grp Sat Flow(s).veh/h/ln	1659	1522	0	1621	1735	Ū
Q Serve(g s), s	4.5	0.0	0.0	12.5	16.2	0.0
Cycle Q Clear(a c), s	4.5	0.0	0.0	12.5	16.2	0.0
Prop In Lane	1.00	1.00	0.00			0.00
Lane Grp Cap(c), veh/h	217		0	3961	2826	0
V/C Ratio(X)	0.69		0.00	0.50	0.57	0.00
Avail Cap(c_a), veh/h	398		0	3961	2826	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	45.7	0.0	0.0	2.9	3.2	0.0
Incr Delay (d2), s/veh	4.0	0.0	0.0	0.4	0.9	0.0
Initial Q Delav(d3).s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%) veh/ln	19	0.0	0.0	22	31	0.0
Unsig Movement Delay s/ve	h	0.0	0.0		0.1	0.0
InGrn Delay(d) s/veh	49 7	0.0	0.0	33	4 1	0.0
	D	0.0	0.0 A	0.0 A	Δ	0.0 A
Approach Vol. veh/h	151	Δ		1962	1620	
Approach Delay, s/yeb	/0.7	Л		3.3	/ 1	
Approach LOS	-3.7 D			Δ	4.1	
Approach 200	U			~	~	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s		76.0		12.0		76.0
Max Q Clear Time (g_c+I1), s	;	18.2		6.5		14.5
Green Ext Time (p_c), s		37.9		0.2		46.5
Intersection Summary						
HCM 6th Ctrl Delay			5.5			
HCM 6th LOS			A			
			Л			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	€	*	1	1	1	Ŧ
Movement V	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ሻሻ	11	441			***
Traffic Volume (veh/h)	656	602	935	0	0	1767
Future Volume (veh/h)	656	602	935	0	0	1767
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	•	1.00	1.00	-
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No		No			No
Adi Sat Flow veh/h/ln 1	1722	1722	1767	0	0	1841
Adi Flow Rate veh/h	713	654	1016	0	0	1921
Peak Hour Factor	0.92	0 92	0.92	0 92	0.92	0 92
Percent Heavy Veh %	12	12	0.5Z Q	0.52	0.52	0.5Z
Can veh/h	971	78/	2724	0	0	2838
Arrive On Groon	0.31	0 21	0.56	0.00	0.00	0.56
Anive On Green	0.01	0.31	0.00	0.00	0.00	0.00
Sat Flow, ven/n 3	5182	2569	5141	0	0	5356
Grp Volume(v), veh/h	713	654	1016	0	0	1921
Grp Sat Flow(s),veh/h/In1	1591	1284	1608	0	0	1675
Q Serve(g_s), s	20.1	23.7	11.6	0.0	0.0	26.9
Cycle Q Clear(g_c), s	20.1	23.7	11.6	0.0	0.0	26.9
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Grp Cap(c), veh/h	971	784	2724	0	0	2838
V/C Ratio(X)	0.73	0.83	0.37	0.00	0.00	0.68
Avail Cap(c_a), veh/h 1	1177	950	2724	0	0	2838
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
I Instream Filter/I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d) alugh	21.00	32.4	12.00	0.00	0.00	15.2
Inor Doloy (d2) - chick	1.0	JZ.4	0.4	0.0	0.0	10.0
Incr Delay (d2), s/ven	1.9	0.0	0.4	0.0	0.0	1.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	/In/.6	7.6	3.9	0.0	0.0	9.4
Unsig. Movement Delay,	s/veh					
LnGrp Delay(d),s/veh	33.0	37.9	12.4	0.0	0.0	16.6
LnGrp LOS	С	D	В	A	Α	В
Approach Vol, veh/h 1	1367		1016			1921
Approach Delay, s/veh	35.4		12.4			16.6
Approach LOS	D		В			B
						U
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc),	S	62.5		37.5		62.5
Change Period (Y+Rc), s	5	6.0		7.0		6.0
Max Green Setting (Gma	ax), s	50.0		37.0		50.0
Max Q Clear Time (g c+l	l1). s	28.9		25.7		13.6
Green Ext Time (p c), s	,, -	20.7		4.8		26.5
Intersection Summary						
			04.0			_
HUM 6th Utri Delay			21.6			
HCM 6th LOS			С			

* + + + + * * + * + + + + + +

Movement E	BL E	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		4			- 4	1	ሻ	*††	1	٦	<u>₩</u>		
Traffic Volume (veh/h)	6	1	18	161	0	88	21	1325	199	116	1920	2	
Future Volume (veh/h)	6	1	18	161	0	88	21	1325	199	116	1920	2	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT) 1.	.00		0.98	1.00		1.00	1.00		1.00	1.00		1.00	
Parking Bus, Adj 1.	.00 ´	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No			No			No			No		
Adj Sat Flow, veh/h/ln 19	00 1	900	1900	1796	1796	1796	1707	1707	1707	1826	1826	1826	
Adj Flow Rate, veh/h	6	1	19	173	0	95	23	1425	0	125	2065	2	
Peak Hour Factor 0.	.93 (0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	
Percent Heavy Veh, %	0	0	0	7	7	7	13	13	13	5	5	5	
Cap, veh/h	44	26	72	186	0	349	38	2378		156	2964	3	
Arrive On Green 0.	.25 (0.23	0.23	0.25	0.00	0.23	0.02	0.51	0.00	0.03	0.19	0.19	
Sat Flow, veh/h	0	115	311	494	0	1518	1626	4661	1447	1739	5143	5	
Grp Volume(v), veh/h	26	0	0	173	0	95	23	1425	0	125	1334	733	
Grp Sat Flow(s),veh/h/ln 4	26	0	0	494	0	1518	1626	1554	1447	1739	1662	1825	
Q Serve(g_s), s	0.0	0.0	0.0	0.0	0.0	5.1	1.4	21.6	0.0	7.1	37.5	37.5	
Cycle Q Clear(g_c), s 25	5.0	0.0	0.0	25.0	0.0	5.1	1.4	21.6	0.0	7.1	37.5	37.5	
Prop In Lane 0.	.23		0.73	1.00		1.00	1.00		1.00	1.00		0.00	
Lane Grp Cap(c), veh/h 1	51	0	0	195	0	349	38	2378		156	1915	1052	
V/C Ratio(X) 0.	.17 (0.00	0.00	0.89	0.00	0.27	0.60	0.60		0.80	0.70	0.70	
Avail Cap(c_a), veh/h 1	51	0	0	195	0	349	98	2378		243	1915	1052	
HCM Platoon Ratio 1.	.00 ´	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.33	0.33	0.33	
Upstream Filter(I) 1.	.00 (0.00	0.00	1.00	0.00	1.00	1.00	1.00	0.00	0.70	0.70	0.70	
Uniform Delay (d), s/veh 32	1.6	0.0	0.0	41.8	0.0	31.6	48.4	17.3	0.0	47.6	32.3	32.3	
Incr Delay (d2), s/veh (0.5	0.0	0.0	34.8	0.0	0.4	14.1	1.1	0.0	7.1	1.5	2.7	
Initial Q Delay(d3),s/veh (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/ln	D.5	0.0	0.0	6.1	0.0	1.9	0.7	7.3	0.0	3.5	16.9	18.9	
Unsig. Movement Delay, s	/veh												
LnGrp Delay(d),s/veh 32	2.1	0.0	0.0	76.6	0.0	32.0	62.4	18.4	0.0	54.7	33.8	35.0	
LnGrp LOS	С	Α	Α	E	A	С	E	В		D	С	D	
Approach Vol, veh/h		26			268			1448	А		2192		
Approach Delay, s/veh	3	32.1			60.8			19.1			35.4		
Approach LOS		С			E			В			D		
Timer - Assigned Phs	1	2		4	5	6		8					
Phs Duration (G+Y+Rc), s7	7.4 6	63.6		29.0	14.0	57.0		29.0					
Change Period (Y+Rc), s 5	5.0	6.0		6.0	5.0	6.0		6.0					
Max Green Setting (Gmax	\$, G {	54.0		23.0	14.0	46.0		23.0					
Max Q Clear Time (g_c+l1	3,46 3	39.5		27.0	9.1	23.6		27.0					
Green Ext Time (p_c), s (0.0	14.4		0.0	0.1	20.8		0.0					
Intersection Summary													
HCM 6th Ctrl Delay			31.1										
HCM 6th LOS			С										

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{F}	1	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1	5	**	**	1
Traffic Volume (veh/h)	387	236	186	1042	1570	382
Future Volume (veh/h)	387	236	186	1042	1570	382
Initial $O(Ob)$ yeb	007	200	0	0,72	0	002
Ped-Bike Adi(A nhT)	1 00	1 00	1 00	U	U	1 00
Parking Rus Adi	1.00	1.00	1.00	1.00	1 00	1.00
Work Zone On Annroac	h No	1.00	1.00	No	No	1.00
Adi Sat Flow, veh/h/ln	1781	1781	1678	1678	1826	1826
Adi Flow Rate veh/h	<u>1</u> 21	257	202	1122	1707	415
Peak Hour Factor	0 0 2	0 02	0 02	0 02	0 02	0 02
Porcont Hoovy Vah %	0.9Z	0.9Z	0.92	15	0.9Z	0.92
Con yoh/h	0 500	0 070	10	10 2100	0 1014	C 0 = 0
Arrivo On Croon	0 10	0.40	200	C 199	0 55	004
Arrive On Green	0.10	0.10	0.09	0.09	0.55	0.55
Sat Flow, ven/n	3291	1510	1598	3212	3561	1547
Grp Volume(v), veh/h	421	257	202	1133	1707	415
Grp Sat Flow(s),veh/h/l	n1646	1510	1598	1594	1735	1547
Q Serve(g_s), s	12.0	16.8	6.6	17.1	43.4	16.4
Cycle Q Clear(g_c), s	12.0	16.8	6.6	17.1	43.4	16.4
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	n 592	272	233	2199	1914	854
V/C Ratio(X)	0.71	0.95	0.87	0.52	0.89	0.49
Avail Cap(c_a), veh/h	592	272	316	2199	1914	854
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.92	0.92	1.00	1.00
Uniform Delay (d), s/vel	h 38.6	40.5	27.0	7.5	19.8	13.7
Incr Delay (d2) s/veh	4 0	40.0	15.8	0.8	6.8	2.0
Initial Q Delav(d3) s/vel	h 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) ve	h/lm5 1	9.0	3.6	<u>4</u> 9	17.1	5.6
Unsig Movement Delay	y s/voh	0.1	0.0	- T .J	17.1	0.0
InGrn Delay(d) aluch	y, 5/VEII 12 5	80 F	12 0	63	26.6	15.7
	42.0 D	00.5 E	42.0 D	0.J ^	20.0	13.7 D
	070	Г	U	A 1005	0400	В
Approach Vol, ven/h	6/8			1335	2122	
Approach Delay, s/veh	56.9			13.5	24.5	
Approach LOS	E			В	С	
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), \$ 3.8	62.2		24.0		76.0
Change Period (Y+Rc)	s 5.0	7.0		6.0		7.0
Max Green Setting (Gr	na1k4 @	50.0		18.0		69.0
Max O Clear Time (o. c	+118 6	<u>45</u> <u>4</u>		18.8		19.1
Green Ext Time (n. o)	- 0.2	-J.4 / 5		0.0		38.0
$(p_c), s$	5 0.5	4.5		0.0		0.0
Intersection Summary						
HCM 6th Ctrl Delay			26.2			
HCM 6th LOS			С			

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\$			et F			÷	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1468	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	32	1468	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	36	1649	0

Major/Minor		Minor1		Ν	1ajor1		Ν	Major2			
Conflicting Flow All		3245	3245	1524	-	0	0	1560	0	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		1721	1721	-	-	-	-	-	-	-	
Critical Hdwy		6.44	6.54	6.24	-	-	-	4.16	-	-	
Critical Hdwy Stg 1		5.44	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.44	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy		3.536	4.036	3.336	-	-	-	2.254	-	-	
Pot Cap-1 Maneuver		~ 10	9	144	0	-	-	413	-	0	
Stage 1		196	178	-	0	-	-	-	-	0	
Stage 2		157	142	-	0	-	-	-	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		0	0	144	-	-	-	413	-	-	
Mov Cap-2 Maneuver		0	0	-	-	-	-	-	-	-	
Stage 1		196	0	-	-	-	-	-	-	-	
Stage 2		0	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		37.5			0			0.3			
HCM LOS		E									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT							
Capacity (veh/h)	-	- 144	413	-							
HCM Lane V/C Ratio	-	- 0.234	0.087	-							
HCM Control Delay (s)	-	- 37.5	14.5	0							
HCM Lane LOS	-	- E	В	А							
HCM 95th %tile Q(veh)	-	- 0.9	0.3	-							
Notes							_				
~: Volume exceeds capacity	\$: De	lay exceeds 3	00s	+: Comp	outation	Not Defin	ed	*: All r	najor vol	ume in	platoon

HCM 6th Signalized Intersection Summary 8: MD 201 & Powder Mill Road

	۶	→	$\mathbf{\hat{z}}$	∢	+	•	٠	Ť	۲	5	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	•	1	1	•	1	٦	•	1	۲	A12	
Traffic Volume (veh/h)	244	373	412	475	239	78	414	591	231	97	517	113
Future Volume (veh/h)	244	373	412	475	239	78	414	591	231	97	517	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	419	0	534	269	0	465	664	0	109	581	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	315	524		187	689		527	939		236	713	155
Arrive On Green	0.31	0.31	0.00	0.04	0.37	0.00	0.27	0.55	0.00	0.25	0.25	0.25
Sat Flow, veh/h	1005	1693	1434	1753	1841	1560	1612	1693	1434	753	2832	617
Grp Volume(v), veh/h	274	419	0	534	269	0	465	664	0	109	355	353
Grp Sat Flow(s),veh/h/ln	1005	1693	1434	1753	1841	1560	1612	1693	1434	753	1735	1715
Q Serve(g_s), s	41.4	35.2	0.0	5.5	16.6	0.0	34.1	44.5	0.0	19.6	29.9	30.0
Cycle Q Clear(g_c), s	48.0	35.2	0.0	5.5	16.6	0.0	34.1	44.5	0.0	19.6	29.9	30.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.36
Lane Grp Cap(c), veh/h	315	524		187	689		527	939		236	436	431
V/C Ratio(X)	0.87	0.80		2.85	0.39		0.88	0.71		0.46	0.81	0.82
Avail Cap(c_a), veh/h	315	524		187	689		527	939		236	436	431
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	57.2	49.1	0.0	57.3	35.5	0.0	36.6	25.3	0.0	50.8	54.6	54.6
Incr Delay (d2), s/veh	26.4	12.1	0.0	847.7	1.7	0.0	18.8	4.5	0.0	6.4	15.3	15.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	13.0	16.6	0.0	49.0	8.0	0.0	13.5	18.4	0.0	4.1	14.8	14.8
Unsig. Movement Delay, s/veh										/		
LnGrp Delay(d),s/veh	83.7	61.2	0.0	905.0	37.2	0.0	55.5	29.7	0.0	57.1	69.8	70.3
LnGrp LOS	F	E		F	D		E	C		E	E	<u> </u>
Approach Vol, veh/h		693	A		803	A		1129	A		817	
Approach Delay, s/veh		70.1			614.3			40.3			68.4	
Approach LOS		E			F			D			E	
Timer - Assigned Phs	1	2	3	4		6		8				
Phs Duration (G+Y+Rc), s	47.0	45.0	10.0	53.0		92.0		63.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0		5.0				
Max Green Setting (Gmax), s	42.5	39.0	5.5	48.0		86.0		58.0				
Max Q Clear Time (g_c+I1), s	0.0	0.0	0.0	0.0		0.0		0.0				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0		0.0		0.0				
Intersection Summary												
HCM 6th Ctrl Delay			186.9									
HCM 6th LOS			F									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			र्च	1		र्च	1		4	
Traffic Vol, veh/h	23	2	6	2	1	2	29	714	3	1	733	30
Future Vol, veh/h	23	2	6	2	1	2	29	714	3	1	733	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	744	3	1	764	31

Major/Minor	Minor2		Ν	Minor1			Major1			N	lajor2			
Conflicting Flow All	1589	1589	780	1590	1601	744	795	0	(0	747	0	0	
Stage 1	782	782	-	804	804	-	-	-		-	-	-	-	
Stage 2	807	807	-	786	797	-	-	-		-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-		-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-		- 1	2.281	-	-	
Pot Cap-1 Maneuver	78	97	365	88	107	418	764	-		-	830	-	-	
Stage 1	359	377	-	380	398	-	-	-		-	-	-	-	
Stage 2	347	367	-	388	401	-	-	-		-	-	-	-	
Platoon blocked, %								-		-		-	-	
Mov Cap-1 Maneuver	73	90	365	81	100	418	764	-		-	830	-	-	
Mov Cap-2 Maneuver	73	90	-	81	100	-	-	-		-	-	-	-	
Stage 1	335	376	-	355	371	-	-	-		-	-	-	-	
Stage 2	321	342	-	378	400	-	-	-		-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	67.9	34.5	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	764	-	-	88	86	418	830	-	-
HCM Lane V/C Ratio	0.04	-	-	0.367	0.036	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	67.9	48.4	13.7	9.3	0	-
HCM Lane LOS	А	А	-	F	Е	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-

276.8
F

Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations		÷	el el		¥		
Traffic Vol, veh/h	6	737	284	6	375	487	
Future Vol, veh/h	6	737	284	6	375	487	
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87	
Heavy Vehicles, %	2	2	3	3	0	0	
Mvmt Flow	7	847	326	7	431	560	
Number of Lanes	0	1	1	0	1	0	
Approach	EB		WB		SB		
Opposing Approach	WB		EB				
Opposing Lanes	1		1		0		
Conflicting Approach Left	SB				WB		
Conflicting Lanes Left	1		0		1		
Conflicting Approach Right			SB		EB		
Conflicting Lanes Right	0		1		1		
HCM Control Delay	283.6		29.3		354.3		
HCM LOS	F		D		F		

Lane	EBLn1	WBLn1	SBLn1
Vol Left, %	1%	0%	44%
Vol Thru, %	99%	98%	0%
Vol Right, %	0%	2%	56%
Sign Control	Stop	Stop	Stop
Traffic Vol by Lane	743	290	862
LT Vol	6	0	375
Through Vol	737	284	0
RT Vol	0	6	487
Lane Flow Rate	854	333	991
Geometry Grp	1	1	1
Degree of Util (X)	1.557	0.651	1.728
Departure Headway (Hd)	8.368	9.794	7.259
Convergence, Y/N	Yes	Yes	Yes
Сар	444	373	515
Service Time	6.368	7.794	5.259
HCM Lane V/C Ratio	1.923	0.893	1.924
HCM Control Delay	283.6	29.3	354.3
HCM Lane LOS	F	D	F
HCM 95th-tile Q	36.8	4.4	51.4

Intersection

Int Delay, s/veh	1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ef –			↑	<u>۲</u>		
Traffic Vol, veh/h	1055	50	0	255	30	0)
Future Vol, veh/h	1055	50	0	255	30	0)
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	;
Storage Length	-	-	-	-	0	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	84	84	84	84	84	84	ļ
Heavy Vehicles, %	2	2	3	3	2	2)
Mvmt Flow	1256	60	0	304	36	0)

Major/Minor	Major1	Major2	Minor1		
Conflicting Flow All	0	0 -	- 1590	-	
Stage 1	-		- 1286	-	
Stage 2	-		- 304	-	
Critical Hdwy	-		- 6.42	-	
Critical Hdwy Stg 1	-		- 5.42	-	
Critical Hdwy Stg 2	-		- 5.42	-	
Follow-up Hdwy	-		- 3.518	-	
Pot Cap-1 Maneuver	-	- 0	- 118	0	
Stage 1	-	- 0	- 259	0	
Stage 2	-	- 0	- 748	0	
Platoon blocked, %	-	-	-		
Mov Cap-1 Maneuver	-		- 118	-	
Mov Cap-2 Maneuver	-		- 118	-	
Stage 1	-		- 259	-	
Stage 2	-		- 748	-	
Annroach	FB	WR	NB		
HCM Control Delay	0	0	48.2		
HCM LOS	0	0			

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	118	-	-	-
HCM Lane V/C Ratio	0.303	-	-	-
HCM Control Delay (s)	48.2	-	-	-
HCM Lane LOS	E	-	-	-
HCM 95th %tile Q(veh)	1.2	-	-	-

Intersection

Int Delay, s/veh	125.2							
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	٦	1	4		Y			
Traffic Vol, veh/h	20	961	271	152	300	9		
Future Vol, veh/h	20	961	271	152	300	9		
Conflicting Peds, #/hr	0	0	0	0	0	0		
Sign Control	Free	Free	Free	Free	Stop	Stop		
RT Channelized	-	None	-	None	-	None		
Storage Length	50	-	-	-	0	-		
Veh in Median Storage	e, # -	0	0	-	0	-		
Grade, %	-	0	0	-	0	-		
Peak Hour Factor	92	92	92	92	92	92		
Heavy Vehicles, %	2	2	4	4	2	2		
Mvmt Flow	22	1045	295	165	326	10		

Major/Minor	Major1	Ν	1ajor2	Minor2				
Conflicting Flow All	460	0	-	0 1467	378			
Stage 1	-	-	-	- 378	-			
Stage 2	-	-	-	- 1089	-			
Critical Hdwy	4.12	-	-	- 6.42	6.22			
Critical Hdwy Stg 1	-	-	-	- 5.42	-			
Critical Hdwy Stg 2	-	-	-	- 5.42	-			
Follow-up Hdwy	2.218	-	-	- 3.518	3.318			
Pot Cap-1 Maneuver	1101	-	-	- ~ 141	669			
Stage 1	-	-	-	- 693	-			
Stage 2	-	-	-	- ~ 323	-			
Platoon blocked, %		-	-	-				
Mov Cap-1 Maneuver	1101	-	-	- ~ 138	669			
Mov Cap-2 Maneuver	-	-	-	- ~ 138	-			
Stage 1	-	-	-	- 679	-			
Stage 2	-	-	-	- ~ 323	-			
Approach	EB		WB	SB				
HCM Control Delay, s	0.2		0	\$ 693.7				
HCM LOS			-	F				
Minor Long/Major Mur	mt.	EDI	EDT					
	m		EDI	VUDI VUDA				
Capacity (ven/n)		1101	-		141			
HCIVI Lane V/C Ratio	1	0.02	-		2.382			
HCIVI Control Delay (s	5)	8.3	-	1	693.7 E			
HOW Lane LUS	-)	A	-					
HUM 95th %tile Q(Ver	1)	0.1	-		28.7			
Notes								
~: Volume exceeds ca	apacity	\$: De	lay exc	eeds 300s	+: Comp	outation Not Defined	*: All major volume in platoon	

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		et		۲.	•					1	et 👘	
Traffic Vol, veh/h	0	863	414	141	291	0	0	0	0	286	2	144
Future Vol, veh/h	0	863	414	141	291	0	0	0	0	286	2	144
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	225	-	-	-	-	-	25	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	16974	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	94	94	94	94	94	94	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	3	3	3	0	0	0	2	2	2
Mvmt Flow	0	918	440	150	310	0	0	0	0	304	2	153

Major/Minor	Major1		N	Major2			Minor2			
Conflicting Flow All	-	0	0	1358	0	0	1748	1968	310	
Stage 1	-	-	-	-	-	-	610	610	-	
Stage 2	-	-	-	-	-	-	1138	1358	-	
Critical Hdwy	-	-	-	4.13	-	-	6.42	6.52	6.22	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.42	5.52	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.42	5.52	-	
Follow-up Hdwy	-	-	-	2.227	-	-	3.518	4.018	3.318	
Pot Cap-1 Maneuver	0	-	-	503	-	0	~ 95	63	730	
Stage 1	0	-	-	-	-	0	542	485	-	
Stage 2	0	-	-	-	-	0	306	217	-	
Platoon blocked, %		-	-		-					
Mov Cap-1 Maneuver	-	-	-	503	-	-	~ 67	0	730	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 67	0	-	
Stage 1	-	-	-	-	-	-	542	0	-	
Stage 2	-	-	-	-	-	-	~ 215	0	-	
Annroach	FR			W/R			SB			
HCM Control Dolay				5			¢ 11/1 5			
HCM LOS	U			5			φ 1141.5 Ε			
							1			
Minor Lane/Major Mvn	nt	EBT	EBR	WBL	WBT SBLn	1 SBLn2				
Capacity (veh/h)		-	-	503	- 6	7 730				
HCM Lane V/C Ratio		-	-	0.298	- 4.54	1 0.213				
HCM Control Delay (s)	-	-	15.2	\$ 1718.	4 11.3				
HCM Lane LOS		-	-	С	-	F B				
HCM 95th %tile Q(veh	ו)	-	-	1.2	- 33.	1 0.8				
Notes										
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30)0s +: Co	mputatior	Not Defined *: All	I major	volume i	n platoon

67

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	↑			4		٦	4				
Traffic Vol, veh/h	362	752	0	0	348	545	73	3	46	0	0	0
Future Vol, veh/h	362	752	0	0	348	545	73	3	46	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	250	-	-	-	-	-	50	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	16965	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	1	1	1	0	0	0
Mvmt Flow	398	826	0	0	382	599	80	3	51	0	0	0

Major/Minor	Major1			Major2			Minor1			
Conflicting Flow All	981	0	-	-	-	0	2304	2603	826	
Stage 1	-	-	-	-	-	-	1622	1622	-	
Stage 2	-	-	-	-	-	-	682	981	-	
Critical Hdwy	4.12	-	-	-	-	-	6.41	6.51	6.21	
Critical Hdwy Stg 1	-	-	-	-	-	-	5.41	5.51	-	
Critical Hdwy Stg 2	-	-	-	-	-	-	5.41	5.51	-	
Follow-up Hdwy	2.218	-	-	-	-	-	3.509	4.009	3.309	
Pot Cap-1 Maneuver	704	-	0	0	-	-	~ 43	25	373	
Stage 1	-	-	0	0	-	-	178	162	-	
Stage 2	-	-	0	0	-	-	504	329	-	
Platoon blocked, %		-			-	-				
Mov Cap-1 Maneuver	704	-	-	-	-	-	~ 19	0	373	
Mov Cap-2 Maneuver	-	-	-	-	-	-	~ 19	0	-	
Stage 1	-	-	-	-	-	-	~ 77	0	-	
Stage 2	-	-	-	-	-	-	504	0	-	
Approach	EB			WB			NB			
HCM Control Delay, s	5.4			0		\$	1119.8			
HCM LOS							F			
Minor Lane/Maior Myn	nt	NBI n1	NBI n2	FBI	FRT	WBT	WBR			
Canacity (veh/h)		19	373	704			-			
HCM Lane V/C Ratio		4 222	0 144	0 565	_	-	_			
HCM Control Delay (s)) \$	1860.5	16.3	16.5	-	-	-			
HCM Lane LOS) Ψ	F	C.01	C	-	-	-			
HCM 95th %tile Q(veh	1)	10.5	0.5	3.6	-	-	-			
	.,			0.0						
Notes		A =								
~: Volume exceeds ca	pacity	\$: De	elay exo	ceeds 30)0s	+: Com	putatio	n Not D	efined	*: All major volume in platoon

-	\mathbf{r}	-	-	1	1
EBT	EBR	WBL	WBT	NBL	NBR
•	1	۲	•	5	1
390	400	35	315	619	38
390	400	35	315	619	38
0	0	0	0	0	0
	1.00	1.00		1.00	1.00
1.00	1.00	1.00	1.00	1.00	1.00
No			No	No	
1856	1856	1856	1856	1885	1885
443	0	40	358	703	0
0.88	0.88	0.88	0.88	0.88	0.88
3	3	3	3	1	1
536		98	742	838	
0.29	0.00	0.06	0.40	0.47	0.00
1856	1572	1767	1856	1795	1598
443	0	40	358	703	0
1856	1572	1767	1856	1795	1598
20.1	0.0	2.0	12.9	30.9	0.0
20.1	0.0	2.0	12.9	30.9	0.0
_*••	1.00	1.00		1.00	1.00
536		98	742	838	
0.83		0.41	0.48	0.84	
536		98	742	838	
1.00	1.00	1.00	1.00	1.00	1.00
1.00	0.00	1.00	1.00	1.00	0.00
29.9	0.0	41.1	20.1	21.0	0.0
13.6	0.0	12.1	2.2	9.9	0.0
0.0	0.0	0.0	0.0	0.0	0.0
10.6	0.0	1.2	5.7	13.8	0.0
h					2.0
43.5	0.0	53.1	22.3	30.9	0.0
D	0.0	D	C	C	5.0
443	Δ		398	703	Δ
43.5			25.4	30.9	
-5.5 D			20.4	00.0 C	
U			U	U	
	2		4	5	6
	42.0		48.0	10.0	32.0
	6.0		6.0	5.0	6.0
	36.0		42.0	5.0	26.0
	14.9		32.9	4.0	22.1
	4.8		2.3	0.0	1.8
		33.1			
		С			
	EBT 390 390 0 1.00 No 1856 443 0.88 3 536 0.29 1856 443 1856 20.1 20.1 20.1 536 0.29 1856 443 1856 20.1 20.1 20.1 536 0.83 536 1.00 1.00 29.9 13.6 0.0 10.0 29.9 13.6 0.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 29.9 13.6 0.0 10.0 10.0 10.0 29.9 13.6 0.0 10.	→ ↓ EBT EBR ↑ ℓ 390 400 390 400 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 No 1856 1856 1856 443 0 0.88 0.88 3 3 536 0.00 1856 1572 443 0 1856 1572 20.1 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 29.9 0.0 13.6 0.0 0 0.0 10.6 0.0 h 43.5 D 2 443 A 43.5 0.0 0 36.0 4.8	→ × × EBT EBR WBL ↑ ↑ ↑ 390 400 35 390 400 35 390 400 35 390 400 35 390 400 35 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 No 0 1856 1856 1856 443 0 40 0.88 0.88 0.88 3 3 3 536 98 0.29 0.29 0.00 0.06 1856 1572 1767 20.1 0.0 2.0 20.1 0.0 2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 1.00 1.00 0.0 1.0	EBT EBR WBL WBT \bullet \bullet \bullet \bullet 390 400 35 315 390 400 35 315 390 400 35 315 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 No No No 1856 1856 1856 1856 443 0 40 358 0.88 0.88 0.88 0.88 3 3 3 3 536 98 742 0.29 0.00 0.06 0.40 1856 1572 1767 1856 20.1 0.0 2.0 12.9 20.1 0.0 2.0 12.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	EBT EBR WBL WBT NBL 390 400 35 315 619 390 400 35 315 619 0 0 0 0 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.856 1856 1856 1858 3 3 3 3 1 536 98 742 838 0.29 0.00 0.66 0.40 0.47 1856 1572 1767 1856 1795 20.1 0.0 2.0 12.9 30.9 20.1 0.0 2.0 12.9 30.9 20.1 0.0 1.00

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{i}	1	1	Ŧ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		1	ካካ	**	**	1		
Traffic Volume (vph)	0	274	198	1210	1761	10		
Future Volume (vph)	0	274	198	1210	1761	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0		
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00		
Frpb. ped/bikes		0.99	1.00	1.00	1.00	1.00		
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00		
Frt		0.86	1.00	1.00	1.00	0.85		
Flt Protected		1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)		1591	3099	3195	3406	1524		
Flt Permitted		1.00	0.95	1.00	1.00	1.00		
Satd. Flow (perm)		1591	3099	3195	3406	1524		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adi, Flow (vph)	0	291	211	1287	1873	11		
RTOR Reduction (vph)	0	0		0	0	3		
Lane Group Flow (vph)	0	291	211	1287	1873	8		
Confl. Peds. (#/hr)	-	1	<u> </u>			-		
Heavy Vehicles (%)	2%	2%	13%	13%	6%	6%		
Turn Type	_,,	Free	Prot	NA	NA	Perm		
Protected Phases			1	Free	2			
Permitted Phases		Free			-	2		
Actuated Green, G (s)		100.0	12.0	100.0	75.0	75.0		
Effective Green, g (s)		100.0	12.0	100.0	75.0	75.0		
Actuated g/C Ratio		1.00	0.12	1.00	0.75	0.75		
Clearance Time (s)			6.0		7.0	7.0		
Vehicle Extension (s)			3.0		5.0	5.0		
Lane Grp Cap (vph)		1591	371	3195	2554	1143		
v/s Ratio Prot		1001	0.07	0.40	c0 55			
v/s Ratio Perm		0.18	0.07	0.70	00.00	0.01		
v/c Ratio		0.10	0.57	0 40	0.73	0.01		
Uniform Delay d1		0.10	41.6	0.40	6.9	31		
Progression Factor		1.00	0.54	1.00	0.36	0.06		
Incremental Delay d2		0.3	17	0.3	0.9	0.0		
Delay (s)		0.3	24.0	0.3	3.4	0.2		
Level of Service		Α	 C	Α	Α	A		
Approach Delay (s)	0.3		Ŭ	3.7	3.4			
Approach LOS	A			Α	A			
				~	~			
Intersection Summary								
HCM 2000 Control Delay			3.2	Н	CM 2000	Level of Service	9	A
HCM 2000 Volume to Capaci	ity ratio		0.72					
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)	13	.0
Intersection Capacity Utilizati	ion		73.2%	IC	CU Level o	of Service		D
Analysis Period (min)			15					

c Critical Lane Group

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBL SBT SBR Lane Configurations 76 0 612 0 0 427 1113 0 0 1319 232 Future Volume (vph) 276 0 612 0 0 427 1113 0 0 1319 232 Ideal Flow (vphp) 1900 100 1.00 1.00 1.00 1.00 1.00 1.00		٠	→	$\mathbf{\hat{z}}$	•	+	*	1	t	۲	1	ŧ	-
Lane Configurations 1	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 276 0 612 0 0 427 1113 0 0 1319 232 Future Volume (vph) 276 0 612 0 0 427 1113 0 0 1319 232 Ideal Flow (vphpl) 1900 1100 100 100 100 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	Lane Configurations	ሻ		1				ሻ	4			↑	7
Future Volume (vph) 276 0 612 0 0 427 1113 0 0 1390 1900 100 100 100<	Traffic Volume (vph)	276	0	612	0	0	0	427	1113	0	0	1319	232
Ideal Flow (vphpl) 1900 <td>Future Volume (vph)</td> <td>276</td> <td>0</td> <td>612</td> <td>0</td> <td>0</td> <td>0</td> <td>427</td> <td>1113</td> <td>0</td> <td>0</td> <td>1319</td> <td>232</td>	Future Volume (vph)	276	0	612	0	0	0	427	1113	0	0	1319	232
Lane Width 12 12 10 12 12 12 12 12 12 12 12 10 10 12 Total Lost time (s) 6.5	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s) 6.5	Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 Fpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00 1	Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Frpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 9.88 Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 Flt Protected 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 Satd. Flow (pert) 1752 1463 1583 1667 1673 1497 Peak-hour factor, PHF 0.93	Lane Util. Factor	1.00		1.00				1.00	1.00			1.00	1.00
Flpb, ped/bikes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 0.05 1.00	Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Frt 1.00 0.85 1.00 1.00 1.00 0.85 FIP Protected 0.95 1.00 0.95 1.00	Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Fit Protected 0.95 1.00 0.95 1.00 1.00 1.00 1.00 Satd. Flow (pert) 1752 1463 0.95 1.00 1.00 1.00 1.00 1.00 Satd. Flow (pert) 1752 1463 69 1667 1673 1497 Peak-hour factor, PHF 0.93 <td>Frt</td> <td>1.00</td> <td></td> <td>0.85</td> <td></td> <td></td> <td></td> <td>1.00</td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td>0.85</td>	Frt	1.00		0.85				1.00	1.00			1.00	0.85
Satd. Flow (prot) 1752 1463 1583 1667 1673 1497 FI Permitted 0.95 1.00 0.04 1.00 1.00 1.00 Satd. Flow (perm) 1752 1463 69 1667 1673 1497 Peak-hour factor, PHF 0.93 0.9	Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Fit Permitted 0.95 1.00 0.04 1.00 </td <td>Satd. Flow (prot)</td> <td>1752</td> <td></td> <td>1463</td> <td></td> <td></td> <td></td> <td>1583</td> <td>1667</td> <td></td> <td></td> <td>1673</td> <td>1497</td>	Satd. Flow (prot)	1752		1463				1583	1667			1673	1497
Satd. Flow (perm) 1752 1463 69 1667 1673 1497 Peak-hour factor, PHF 0.93	Flt Permitted	0.95		1.00				0.04	1.00			1.00	1.00
Peak-hour factor, PHF 0.93	Satd. Flow (perm)	1752		1463				69	1667			1673	1497
Adj. Flow (vph) 297 0 658 0 0 459 1197 0 0 1418 249 RTOR Reduction (vph) 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 Lane Group Flow (vph) 297 0 637 0 0 0 459 1197 0 0 1418 222 Confl. Peds. (#/hr) 1 1 1 1 1 1 1 14% 14% 14% 14% 14% 14% 14% 1 1 6 6 6% 6% 6% 6% 1100 1 16 2 4 1 1 16 2 4 1 1 16 2 4 1 16 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
RTOR Reduction (vph) 0 0 21 0 0 0 0 0 0 0 0 0 27 Lane Group Flow (vph) 297 0 637 0 0 0 459 1197 0 0 1418 222 Confl. Peds. (#/hr) 1	Adj. Flow (vph)	297	0	658	0	0	0	459	1197	0	0	1418	249
Lane Group Flow (vph) 297 0 637 0 0 459 1197 0 0 1418 222 Confl. Peds. (#/hr) 1	RTOR Reduction (vph)	0	0	21	0	0	0	0	0	0	0	0	27
Confl. Peds. (#/hr) 1 1 1 Confl. Bikes (#/hr) 1 1 1 Heavy Vehicles (%) 3% 3% 0% 0% 0% 14% 14% 6% 6% Turn Type Prot pt+ov pm+pt NA NA pm+ov Protected Phases 4 14 1 16 2 4 Permitted Phases 4 16 2 4 Actuated Green, G (s) 20.5 61.5 131.0 131.0 90.0 110.5 Effective Green, g (s) 20.5 61.5 131.0 131.0 90.0 110.5 Clearance Time (s) 6.5 6.5 6.5 6.5 6.6 6.5 Clearance Time (s) 6.5 3.5 3.0 6.0 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 V/s Ratio Perm 0.72 0.12 0.03 0.55 0.03 0.5 0.12 V/c Ratio 1.36 1.17 1.23 0.90 1.55	Lane Group Flow (vph)	297	0	637	0	0	0	459	1197	0	0	1418	222
Confl. Bikes (#/hr) 1 Heavy Vehicles (%) 3% 3% 0% 0% 0% 14% 14% 6% 6% 6% Turn Type Prot pt+ov pm+pt NA NA pm+ov Protected Phases 4 1 1 6 2 4 Permitted Phases 4 1 1 6 2 4 Actuated Green, G (s) 20.5 61.5 131.0 131.0 90.0 110.5 Effective Green, g (s) 20.5 61.5 131.0 131.0 90.0 110.5 Actuated g/C Ratio 0.12 0.37 0.80 0.80 0.55 0.67 Clearance Time (s) 6.5 6.5 6.5 6.5 6.5 0.65 0.60 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Perm 0.72 c0.85 0.03 0.12 0.12 0.12 0.12 0.12	Confl. Peds. (#/hr)							1					1
Heavy Vehicles (%) 3% 3% 3% 0% 0% 0% 14% 14% 14% 6% 1105 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 131.0 130.0 100.0 110.5 6.5 6.5 0.65 0.65 0.65 0.65 0.65 1.5 0	Confl. Bikes (#/hr)												1
Turn TypeProtpt+ovpm+ptNANApm+ovProtected Phases41411624Permitted Phases41622Actuated Green, G (s)20.561.5131.0131.090.0110.5Effective Green, g (s)20.561.5131.0131.090.0110.5Actuated g/C Ratio0.120.370.800.800.550.67Clearance Time (s)6.56.56.56.56.5Vehicle Extension (s)3.53.06.03.5Lane Grp Cap (vph)21854637213279151064v/s Ratio Protc0.17c0.440.260.72c0.850.03v/s Ratio Perm0.720.120.120.120.120.12Uniform Delay, d172.051.560.512.137.210.3Progression Factor1.001.001.001.001.001.001.00Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Protected Phases 4 1 4 1 1 6 2 4 Permitted Phases 4 1 6 2 Actuated Green, G (s) 20.5 61.5 131.0 131.0 90.0 110.5 Effective Green, g (s) 20.5 61.5 131.0 131.0 90.0 110.5 Actuated g/C Ratio 0.12 0.37 0.80 0.80 0.55 0.67 Clearance Time (s) 6.5 6.5 6.5 6.5 6.5 6.5 0.60 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12 0.12 0.12 0.12 0.12 V/c Ratio 1.36 1.17 1.23 0.90 1.55 0.21 Uniform Delay, d1 72.0 51.5 60.5 12.1 37.2 10.3 Progression Factor 1.00 1.	Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Permitted Phases 4 1 6 2 Actuated Green, G (s) 20.5 61.5 131.0 131.0 90.0 110.5 Effective Green, g (s) 20.5 61.5 131.0 131.0 90.0 110.5 Actuated g/C Ratio 0.12 0.37 0.80 0.80 0.55 0.67 Clearance Time (s) 6.5 6.5 6.5 6.5 6.5 0.67 Vehicle Extension (s) 3.5 3.0 6.0 3.5 0.00 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12 <	Protected Phases	4		. 14					16			2	. 4
Actuated Green, G (s) 20.5 61.5 131.0 131.0 90.0 110.5 Effective Green, g (s) 20.5 61.5 131.0 131.0 90.0 110.5 Actuated g/C Ratio 0.12 0.37 0.80 0.80 0.55 0.67 Clearance Time (s) 6.5 6.5 6.5 6.5 6.5 6.5 Vehicle Extension (s) 3.5 3.0 6.0 3.5 3.0 6.0 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12	Permitted Phases			4				16					2
Effective Green, g (s)20.561.5131.0131.090.0110.5Actuated g/C Ratio0.120.370.800.800.550.67Clearance Time (s)6.56.56.56.56.5Vehicle Extension (s)3.53.06.03.5Lane Grp Cap (vph)21854637213279151064v/s Ratio Protc0.17c0.440.260.72c0.850.03v/s Ratio Perm0.720.120.120.120.12v/c Ratio1.361.171.230.901.550.21Uniform Delay, d172.051.560.512.137.210.3Progression Factor1.001.001.001.001.001.00Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	Actuated Green, G (s)	20.5		61.5				131.0	131.0			90.0	110.5
Actuated g/C Ratio 0.12 0.37 0.80 0.80 0.55 0.67 Clearance Time (s) 6.5 1.5 1064 V/s Ratio Prot c0.85 0.03 0.72 c0.85 0.03 0.72 0.12 V/s Ratio Perm 0.72 0.12 0.12 0.12 0.90 1.55 0.21 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.10 1.00 <t< td=""><td>Effective Green, g (s)</td><td>20.5</td><td></td><td>61.5</td><td></td><td></td><td></td><td>131.0</td><td>131.0</td><td></td><td></td><td>90.0</td><td>110.5</td></t<>	Effective Green, g (s)	20.5		61.5				131.0	131.0			90.0	110.5
Clearance Time (s) 6.5 6.5 6.5 6.5 6.5 Vehicle Extension (s) 3.5 3.0 6.0 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12 v/s 0.12 0.10	Actuated g/C Ratio	0.12		0.37				0.80	0.80			0.55	0.67
Vehicle Extension (s) 3.5 3.0 6.0 3.5 Lane Grp Cap (vph) 218 546 372 1327 915 1064 v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12 0.12 0.12 0.12 0.12 v/c Ratio 1.36 1.17 1.23 0.90 1.55 0.21 Uniform Delay, d1 72.0 51.5 60.5 12.1 37.2 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 189.8 93.7 126.5 8.8 252.8 0.1 Delay (s) 261.8 145.2 187.0 20.9 290.1 10.4	Clearance Time (s)	6.5						6.5				6.5	6.5
Lane Grp Cap (vph)21854637213279151064v/s Ratio Protc0.17c0.440.260.72c0.850.03v/s Ratio Perm0.720.120.120.12v/c Ratio1.361.171.230.901.550.21Uniform Delay, d172.051.560.512.137.210.3Progression Factor1.001.001.001.001.001.00Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	Vehicle Extension (s)	3.5						3.0				6.0	3.5
v/s Ratio Prot c0.17 c0.44 0.26 0.72 c0.85 0.03 v/s Ratio Perm 0.72 0.12 0.12 0.12 0.12 v/c Ratio 1.36 1.17 1.23 0.90 1.55 0.21 Uniform Delay, d1 72.0 51.5 60.5 12.1 37.2 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 189.8 93.7 126.5 8.8 252.8 0.1 Delay (s) 261.8 145.2 187.0 20.9 290.1 10.4	Lane Grp Cap (vph)	218		546				372	1327			915	1064
v/s Ratio Perm 0.72 0.12 v/c Ratio 1.36 1.17 1.23 0.90 1.55 0.21 Uniform Delay, d1 72.0 51.5 60.5 12.1 37.2 10.3 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 189.8 93.7 126.5 8.8 252.8 0.1 Delay (s) 261.8 145.2 187.0 20.9 290.1 10.4	v/s Ratio Prot	c0.17		c0.44				0.26	0.72			c0.85	0.03
v/c Ratio1.361.171.230.901.550.21Uniform Delay, d172.051.560.512.137.210.3Progression Factor1.001.001.001.001.001.00Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	v/s Ratio Perm							0.72					0.12
Uniform Delay, d172.051.560.512.137.210.3Progression Factor1.001.001.001.001.001.00Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	v/c Ratio	1.36		1.17				1.23	0.90			1.55	0.21
Progression Factor 1.00 1.01 1.01 <td>Uniform Delay, d1</td> <td>72.0</td> <td></td> <td>51.5</td> <td></td> <td></td> <td></td> <td>60.5</td> <td>12.1</td> <td></td> <td></td> <td>37.2</td> <td>10.3</td>	Uniform Delay, d1	72.0		51.5				60.5	12.1			37.2	10.3
Incremental Delay, d2189.893.7126.58.8252.80.1Delay (s)261.8145.2187.020.9290.110.4	Progression Factor	1.00		1.00				1.00	1.00			1.00	1.00
Delay (s) 261.8 145.2 187.0 20.9 290.1 10.4	Incremental Delay, d2	189.8		93.7				126.5	8.8			252.8	0.1
	Delay (s)	261.8		145.2				187.0	20.9			290.1	10.4
Level of Service F F F F F B	Level of Service	F		F				F	С			F	В
Approach Delay (s) 181.5 0.0 66.9 248.3	Approach Delay (s)		181.5			0.0			66.9			248.3	
Approach LOS F A E F	Approach LOS		F			А			E			F	
Intersection Summary	Intersection Summary												
HCM 2000 Control Delay 163.2 HCM 2000 Level of Service F	HCM 2000 Control Delay			163.2	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacity ratio 146	HCM 2000 Volume to Canaci	ity ratio		1 46	11	2000	2010101						
Actuated Cycle Length (s) 164.5 Sum of lost time (s) 19.5	Actuated Cycle Length (s)			164.5	S	um of lost	time (s)			19.5			
Intersection Capacity Utilization 122.5% ICU evel of Service H	Intersection Canacity Utilization	on		122 5%			of Service	2		н Н			
Analysis Period (min) 15	Analysis Period (min)			15		5 10.010		-					

c Critical Lane Group

	۶	$\mathbf{\hat{z}}$	1	t	Ŧ	∢_
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ካካ	1		***	* *	
Traffic Volume (veh/h)	222	884	0	1244	970	0
Future Volume (veh/h)	222	884	0	1244	970	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1767	1767	0	1767	1752	0
Adj Flow Rate, veh/h	255	0	0	1430	1115	0
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87
Percent Heavy Veh, %	9	9	0	9	10	0
Cap, veh/h	328	-	0	3759	2594	0
Arrive On Green	0.10	0.00	0.00	0.78	0.78	0.00
Sat Flow, veh/h	3264	1497	0	5141	3504	0
Grp Volume(v) veh/h	255	0	0	1430	1115	0
Grp Sat Flow(s) veh/h/ln	1632	1497	0	1608	1664	0
Q Serve(q , s) s	7.6	0.0	0.0	93	11 1	0.0
Cvcle Q Clear(q, c) s	7.6	0.0	0.0	93	11.1	0.0
Prop In Lane	1 00	1.00	0.00	0.0		0.00
Lane Grp Cap(c) veh/h	328	1.00	0.00	3759	2594	0.00
V/C Ratio(X)	0 78		0.00	0.38	0.43	0.00
Avail Cap(c, a) veh/h	522		0.00	3759	2594	0.00
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d) s/veb	43.9	0.0	0.0	3.5	37	0.00
Incr Delay (d2) s/veh	40.5	0.0	0.0	0.3	0.5	0.0
Initial O Delay(d3) s/veh	 0 0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh/ln	3.0	0.0	0.0	2.0	2.5	0.0
Unsig Movement Delay s/ve	eh	0.0	0.0	2.0	2.0	0.0
InGrn Delav(d) s/veh	47.8	0.0	0.0	38	42	0.0
LinGrn LOS	ס. <i>ו</i> ד ח	0.0	Δ	Δ	Δ	Δ
Approach Vol. voh/h	255	٨		1/20	1115	
Approach Vol, Vell/II		A		1430	CI II 0 1/	
Approach LOS	47.0			۵.o ۸	4.2	
Approach LOS	U			A	A	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		83.9		16.1		83.9
Change Period (Y+Rc), s		6.0		6.0		6.0
Max Green Setting (Gmax), s	8	72.0		16.0		72.0
Max Q Clear Time (g_c+I1),	S	13.1		9.6		11.3
Green Ext Time (p_c), s		22.1		0.4		30.8
Intersection Summary						
HCM 6th Ctrl Delay			79			
HCM 6th LOS			Δ			
			A			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	4	•	1	1	\$	Ŧ
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	ካካ	11	440			***
Traffic Volume (veh/h)	545	1050	684	0	0	1070
Future Volume (veh/h)	545	1050	684	0	0	1070
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1 00	1 00	•	1 00	1 00	•
Parking Bus, Adi	1.00	1.00	1 00	1.00	1.00	1 00
Work Zone On Approac	ch No		No	1.00		No
Adi Sat Flow veh/h/ln	1841	1841	1781	0	0	1693
Adi Flow Rate veh/h	657	1265	824	0	0	1289
Peak Hour Factor	0.83	0 83	024	0 83	0.83	0 83
Percent Heavy Vah %	0.05	0.05	0.00 Q	0.05	0.05	1/
Con yoh/h	4	4	0 1004	0	0	1004
Cap, ven/n	1004	1203	1994	0 00	0 00	1094
Arrive On Green	0.46	0.46	0.41	0.00	0.00	0.41
Sat Flow, veh/h	3401	2745	5184	0	0	4925
Grp Volume(v), veh/h	657	1265	824	0	0	1289
Grp Sat Flow(s), veh/h/l	n1700	1373	1621	0	0	1540
Q Serve(g_s), s	12.9	46.0	12.0	0.0	0.0	22.8
Cycle Q Clear(g_c), s	12.9	46.0	12.0	0.0	0.0	22.8
Prop In Lane	1.00	1.00		0.00	0.00	
Lane Gro Cap(c), veh/h	1564	1263	1994	0	0	1894
V/C Ratio(X)	0.42	1.00	0.41	0.00	0.00	0.68
Avail $Can(c, a)$ veh/h	156/	1263	100/	0.00	0.00	180/
HCM Distoon Datio	1 00	1 00	1 00	1 00	1 00	1 00
	1.00	1.00	1.00	0.00	0.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/ve	n 18.1	27.0	21.0	0.0	0.0	24.1
Incr Delay (d2), s/veh	0.2	25.7	0.6	0.0	0.0	2.0
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),ve	h/lr4.8	18.1	4.4	0.0	0.0	8.1
Unsig. Movement Delay	y, s/veh	1				
LnGrp Delay(d),s/veh	18.3	52.7	21.6	0.0	0.0	26.1
LnGrp LOS	В	F	С	А	Α	С
Approach Vol. veh/h	1922		824			1289
Approach Delay s/veh	40.9		21.6			26.1
Approach LOS	.э.э П		21.0 C			<u> </u>
	U		U			U
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s	47.0		53.0		47.0
Change Period (Y+Rc).	S	6.0		7.0		6.0
Max Green Setting (Gr	ıax). s	41.0		46.0		41.0
Max Q Clear Time (q. c	+11), s	24.8		48.0		14.0
Green Ext Time (n. c)	s,, 5	14.8		0.0		17.9
	-	11.0		0.0		
Intersection Summary						
HCM 6th Ctrl Delay			32.3			
HCM 6th LOS			С			

∢ t WBT Movement EBL EBT EBR WBL WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 ٦ *** 1 朴朴ኈ đ ۴ ٦ Traffic Volume (veh/h) 127 83 1654 42 0 3 38 31 1200 1 5 1 Future Volume (veh/h) 1 0 3 127 1 83 38 1654 42 31 1200 5 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 1159 1826 1159 1856 1856 1856 1826 1633 1633 1633 1159 1826 Adj Flow Rate, veh/h 0 4 155 1 101 46 2017 0 38 1463 6 1 0.82 0.82 Peak Hour Factor 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 Percent Heavy Veh, % 50 50 50 3 3 3 5 5 5 18 18 18 376 63 51 2539 Cap, veh/h 43 14 57 183 1 2778 10 Arrive On Green 0.26 0.26 0.24 0.00 0.00 0.24 0.24 0.04 0.56 0.01 0.18 0.18 Sat Flow, veh/h 0 59 236 463 3 1569 1739 4985 1547 1555 4584 19 Grp Volume(v), veh/h 5 0 0 156 0 101 46 2017 0 38 949 520 Grp Sat Flow(s),veh/h/ln 295 1569 0 466 0 1739 1662 1547 1555 1486 1630 0 Q Serve(g_s), s 0.0 0.0 5.2 30.1 2.4 29.2 29.2 0.0 0.0 0.0 2.6 0.0 Cycle Q Clear(g_c), s 26.0 0.0 5.2 30.1 0.0 2.4 29.2 29.2 26.0 0.0 0.0 2.6 Prop In Lane 0.20 0.80 0.99 1.00 1.00 1.00 1.00 0.01 Lane Grp Cap(c), veh/h 120 376 1647 903 0 0 193 0 63 2778 51 V/C Ratio(X) 0.04 0.00 0.00 0.81 0.00 0.27 0.73 0.73 0.75 0.58 0.58 Avail Cap(c a), veh/h 120 0 122 124 903 0 0 193 376 2778 1647 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.33 Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.88 0.88 0.88 Uniform Delay (d), s/veh 30.5 0.0 0.0 40.7 0.0 30.9 47.7 16.5 0.0 49.1 30.1 30.1 Incr Delay (d2), s/veh 0.0 0.0 22.0 0.0 0.4 15.1 1.7 0.0 17.5 1.3 2.4 0.1 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr0.1 0.0 0.0 5.0 0.0 2.0 1.4 10.6 0.0 1.2 13.2 11.8 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 0.0 62.7 0.0 31.2 62.9 18.1 0.0 66.5 31.4 32.5 30.6 LnGrp LOS С А А Е А С Е В Е С С 5 257 2063 Α 1507 Approach Vol, veh/h Approach Delay, s/veh 30.6 50.3 19.1 32.7 Approach LOS В С D С Timer - Assigned Phs 2 4 5 6 8 Phs Duration (G+Y+Rc), s8.6 61.4 30.0 61.7 30.0 8.3 Change Period (Y+Rc), s 5.0 6.0 6.0 6.0 5.0 6.0 Max Green Setting (Gmax7.6 52.0 24.0 8.0 51.0 24.0 Max Q Clear Time (g_c+I14),6s 31.2 28.0 4.4 32.1 28.0 Green Ext Time (p_c), s 0.0 0.0 0.0 0.0 19.5 18.7 Intersection Summary HCM 6th Ctrl Delay 26.6 HCM 6th LOS С

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	۶	$\mathbf{\hat{z}}$	1	Ť	Ļ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	55	1	5	**	**	1
Traffic Volume (veh/h)	350	65	219	1395	996	350
Future Volume (veh/h)	350	65	219	1395	996	350
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A pbT)	1.00	1.00	1.00	v	v	1.00
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approac	h No			No	No	
Adi Sat Flow veh/h/ln	1737	1737	1811	1811	1678	1678
Adi Flow Rate veh/h	438	81	274	1744	1245	438
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh %	11	11	00.0 A	00.0 A	15	15
Can yeh/h	510	234	310	2446	1800	Q10
Arrivo On Groop	0.16	204	0.00	2440 0 71	0.57	012
Anive On Green	0.10	0.10	1705	0./1	0.07	1404
Sat Flow, ven/n	3209	1472	1725	3532	3212	1421
Grp Volume(v), veh/h	438	81	274	1744	1245	438
Grp Sat Flow(s),veh/h/li	า1605	1472	1725	1721	1594	1421
Q Serve(g_s), s	13.3	4.9	6.4	29.7	27.5	19.1
Cycle Q Clear(g_c), s	13.3	4.9	6.4	29.7	27.5	19.1
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	510	234	310	2446	1822	812
V/C Ratio(X)	0.86	0.35	0.88	0.71	0.68	0.54
Avail Cap(c a), veh/h	578	265	432	2446	1822	812
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Unstream Filter(I)	1.00	1.00	0.80	0.80	1.00	1.00
Uniform Delay (d) s/vel	140.9	37.4	19.8	85	15.1	13.3
Incr Delay (d2) shuch	11 2	00	12.0	1 /	2.1	2.6
Initial O Delay (uz), sivel	0.0	0.9	0.0	0.0	2.1	2.0
		1.0	0.0	0.0	0.0	0.0
Wile BackOTQ(50%),Vel	1/110.9	l.ŏ	4.0	Ŏ.Ŏ	9.3	0.0
Unsig. Movement Delay	, s/veh	00.0	04.0	^	47.0	45.0
LnGrp Delay(d),s/veh	52.2	38.3	31.9	9.9	17.2	15.8
LnGrp LOS	D	D	С	A	В	В
Approach Vol, veh/h	519			2018	1683	
Approach Delay, s/veh	50.0			12.9	16.8	
Approach LOS	D			В	В	
Timer - Assianed Phs	1	2		4		6
Phs Duration (G+V+Rc)	130	64.2		21 9		78.1
Change Deried (V De)	, 5J.9 0 E 0	7.0		21.J 60		70.1
Max Groop Cotting (1+RC),	5 0.0	1.0		0.0		0.1
wax Green Setting (Gm	121X0,.US	48.0		10.0		09.0
Max Q Clear Time (g_c	+110),46	29.5		15.3		31.7
Green Ext Time (p_c), s	0.5	17.5		0.6		36.1
Intersection Summary						
HCM 6th Ctrl Delay			19.0			
HCM 6th LOS			В			

Intersection

Int Delay, s/veh	4.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		_ ≜ î≽			^
Traffic Vol, veh/h	15	14	1356	8	0	1258
Future Vol, veh/h	15	14	1356	8	0	1258
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	20	20	9	9	17	17
Mvmt Flow	19	18	1738	10	0	1613

Major/Minor	Minor1	М	ajor1	Ма	ajor2		
Conflicting Flow All	2550	874	0	0	-	-	
Stage 1	1743	-	-	-	-	-	
Stage 2	807	-	-	-	-	-	
Critical Hdwy	7.2	7.3	-	-	-	-	
Critical Hdwy Stg 1	6.2	-	-	-	-	-	
Critical Hdwy Stg 2	6.2	-	-	-	-	-	
Follow-up Hdwy	3.7	3.5	-	-	-	-	
Pot Cap-1 Maneuver	~ 17	259	-	-	0	-	
Stage 1	104	-	-	-	0	-	
Stage 2	357	-	-	-	0	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	· ~ 17	259	-	-	-	-	
Mov Cap-2 Maneuver	· ~ 17	-	-	-	-	-	
Stage 1	104	-	-	-	-	-	
Stage 2	357	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	\$ 420.3		0		0		
HCM LOS	F						

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBT	
Capacity (veh/h)	-	- 31	-	
HCM Lane V/C Ratio	-	- 1.199	-	
HCM Control Delay (s)	-	-\$ 420.3	-	
HCM Lane LOS	-	- F	-	
HCM 95th %tile Q(veh)	-	- 4.1	-	
Notos				
NOLES				

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

	۶	-	\mathbf{F}	∢	-	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳.	^	1	ሻሻ	↑	1	ሻ	↑	1	۳.	↑ 1≽	
Traffic Volume (veh/h)	57	190	538	187	149	41	409	517	444	71	533	78
Future Volume (veh/h)	57	190	538	187	149	41	409	517	444	71	533	78
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1796	1796	1796	1856	1856	1856	1796	1796	1796	1544	1544	1544
Adj Flow Rate, veh/h	71	238	0	234	186	0	511	646	0	89	666	98
Peak Hour Factor	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Percent Heavy Veh, %	7	7	7	3	3	3	7	7	7	24	24	24
Cap, veh/h	90	376		310	274		549	1098		293	816	120
Arrive On Green	0.05	0.11	0.00	0.09	0.15	0.00	0.24	0.61	0.00	0.32	0.32	0.32
Sat Flow, veh/h	1711	3413	1522	3428	1856	1572	1711	1796	1522	648	2566	377
Grp Volume(v), veh/h	71	238	0	234	186	0	511	646	0	89	380	384
Grp Sat Flow(s),veh/h/ln	1711	1706	1522	1714	1856	1572	1711	1796	1522	648	1467	1476
Q Serve(g_s), s	3.4	5.5	0.0	5.5	7.8	0.0	17.1	18.0	0.0	9.0	19.7	19.7
Cycle Q Clear(g_c), s	3.4	5.5	0.0	5.5	7.8	0.0	17.1	18.0	0.0	9.0	19.7	19.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.26
Lane Grp Cap(c), veh/h	90	376		310	274		549	1098		293	466	469
V/C Ratio(X)	0.78	0.63		0.75	0.68		0.93	0.59		0.30	0.82	0.82
Avail Cap(c_a), veh/h	214	911		312	432		607	1198		307	498	501
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	38.6	35.1	0.0	36.6	33.3	0.0	18.2	9.7	0.0	22.2	25.9	25.9
Incr Delay (d2), s/veh	13.7	2.5	0.0	10.0	4.2	0.0	20.1	1.9	0.0	2.1	13.2	13.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.7	2.3	0.0	2.7	3.7	0.0	8.7	6.2	0.0	1.5	8.1	8.2
Unsig. Movement Delay, s/veh			• •									
LnGrp Delay(d),s/veh	52.3	37.6	0.0	46.6	37.5	0.0	38.3	11.6	0.0	24.3	39.1	39.2
LnGrp LOS	D	D		D	D		D	B		C	D	D
Approach Vol, veh/h		309	A		420	A		1157	A		853	
Approach Delay, s/veh		41.0			42.5			23.4			37.6	
Approach LOS		D			D			С			D	
Timer - Assigned Phs	1	2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s	24.2	32.2	12.0	14.1		56.4	8.9	17.2				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0	4.5	5.0				
Max Green Setting (Gmax), s	22.5	28.0	7.5	22.0		55.0	10.3	19.2				
Max Q Clear Time (g_c+I1), s	19.1	21.7	7.5	7.5		20.0	5.4	9.8				
Green Ext Time (p_c), s	0.6	4.5	0.0	1.6		12.3	0.0	0.8				
Intersection Summary												
HCM 6th Ctrl Delay			32.7									
HCM 6th LOS			С									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

Intersection

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		- 🗘			- सी	1		- सी	1		- 44	
Traffic Vol, veh/h	21	0	1	2	5	1	51	551	3	0	659	44
Future Vol, veh/h	21	0	1	2	5	1	51	551	3	0	659	44
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95
Heavy Vehicles, %	70	70	70	67	67	67	9	9	9	21	21	21
Mvmt Flow	22	0	1	2	5	1	54	580	3	0	694	46

Major/Minor	Minor2		I	Vinor1			Major1			Major2			
Conflicting Flow All	1410	1408	717	1406	1428	580	740	0	0	583	0	0	
Stage 1	717	717	-	688	688	-	-	-	-	-	-	-	
Stage 2	693	691	-	718	740	-	-	-	-	-	-	-	
Critical Hdwy	7.8	7.2	6.9	7.77	7.17	6.87	4.19	-	-	4.31	-	-	
Critical Hdwy Stg 1	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Critical Hdwy Stg 2	6.8	6.2	-	6.77	6.17	-	-	-	-	-	-	-	
Follow-up Hdwy	4.13	4.63	3.93	4.103	4.603	3.903	2.281	-	-	2.389	-	-	
Pot Cap-1 Maneuver	83	101	334	85	99	411	836	-	-	904	-	-	
Stage 1	330	346	-	347	362	-	-	-	-	-	-	-	
Stage 2	341	357	-	333	340	-	-	-	-	-	-	-	
Platoon blocked, %								-	-		-	-	
Mov Cap-1 Maneuver	73	91	334	79	89	411	836	-	-	904	-	-	
Mov Cap-2 Maneuver	73	91	-	79	89	-	-	-	-	-	-	-	
Stage 1	298	346	-	314	327	-	-	-	-	-	-	-	
Stage 2	303	323	-	332	340	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	71.9	46.1	0.8	0	
HCM LOS	F	Е			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	836	-	-	76	86	411	904	-	-
HCM Lane V/C Ratio	0.064	-	-	0.305	0.086	0.003	-	-	-
HCM Control Delay (s)	9.6	0	-	71.9	50.7	13.8	0	-	-
HCM Lane LOS	А	А	-	F	F	В	А	-	-
HCM 95th %tile Q(veh)	0.2	-	-	1.1	0.3	0	0	-	-

	≯	-	+	•	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	٦	+	•	1	5	1		
Traffic Volume (veh/h)	487	193	381	365	0	0		
Future Volume (veh/h)	487	193	381	365	0	0		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No	No		No			
Adj Sat Flow, veh/h/ln	1811	1811	1870	1870	1870	1870		
Adj Flow Rate, veh/h	573	227	448	429	0	0		
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85		
Percent Heavy Veh, %	6	6	2	2	2	2		
Cap, veh/h	776	1500	752	637	5	5		
Arrive On Green	0.25	0.83	0.40	0.40	0.00	0.00		
Sat Flow, veh/h	1725	1811	1870	1585	1781	1585		
Grp Volume(v), veh/h	573	227	448	429	0	0		
Grp Sat Flow(s),veh/h/ln	1725	1811	1870	1585	1781	1585		
Q Serve(g_s), s	5.0	0.9	6.6	7.8	0.0	0.0		
Cycle Q Clear(g_c), s	5.0	0.9	6.6	7.8	0.0	0.0		
Prop In Lane	1.00			1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	776	1500	752	637	5	5		
V/C Ratio(X)	0.74	0.15	0.60	0.67	0.00	0.00		
Avail Cap(c_a), veh/h	1964	3573	1604	1360	968	861		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	0.00		
Uniform Delay (d), s/veh	5.0	0.6	8.2	8.6	0.0	0.0		
Incr Delay (d2), s/veh	1.4	0.0	0.8	1.2	0.0	0.0		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	0.3	0.0	1.8	1.8	0.0	0.0		
Unsig. Movement Delay, s/veł	ı							
LnGrp Delay(d),s/veh	6.4	0.6	9.0	9.8	0.0	0.0		
LnGrp LOS	A	A	Α	A	Α	Α		
Approach Vol, veh/h		800	877		0			
Approach Delay, s/veh		4.7	9.4		0.0			
Approach LOS		А	А					
Timer - Assigned Phs				4		6	7	8
Phs Duration (G+Y+Rc), s				35.0		0.0	14.9	20.1
Change Period (Y+Rc), s				6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s				69.0		19.0	33.0	30.0
Max Q Clear Time (q c+l1), s				2.9		0.0	7.0	9.8
Green Ext Time (p_c), s				1.4		0.0	1.9	4.3
Intersection Summary								
HCM 6th Ctrl Dolay			7 0					
HCM 6th LOS			Δ					

Intersection						
Int Delay, s/veh	0.4					
••			~			
Movement	NBL	NBR	SET	SER	NWL	NWI
Lane Configurations	<u>۲</u>		4			↑
Traffic Vol, veh/h	16	0	161	32	0	731
Future Vol, veh/h	16	0	161	32	0	731
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	74	74	74	74	74	74
Heavy Vehicles, %	2	2	4	4	2	2
Mvmt Flow	22	0	218	43	0	988

Major/Minor	Minor1	Maj	jor1	Maj	or2	
Conflicting Flow All	1228	-	0	0	-	-
Stage 1	240	-	-	-	-	-
Stage 2	988	-	-	-	-	-
Critical Hdwy	6.42	-	-	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	-	-	-	-	-
Pot Cap-1 Maneuver	197	0	-	-	0	-
Stage 1	800	0	-	-	0	-
Stage 2	361	0	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	· 197	-	-	-	-	-
Mov Cap-2 Maneuver	· 197	-	-	-	-	-
Stage 1	800	-	-	-	-	-
Stage 2	361	-	-	-	-	-

Approach	NB	SE	NW
HCM Control Delay, s	25.5	0	0
HCMLOS	D		

Vinor Lane/Major Mvmt	NBLn1	NWT	SET	SER
Capacity (veh/h)	197	-	-	-
HCM Lane V/C Ratio	0.11	-	-	-
HCM Control Delay (s)	25.5	-	-	-
HCM Lane LOS	D	-	-	-
HCM 95th %tile Q(veh)	0.4	-	-	-

	≯	-	+	•	1	<	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	5	+	1.		¥.	-	
Traffic Volume (veh/h)	5	178	742	157	136	19	
Future Volume (veh/h)	5	178	742	157	136	19	
Initial Q (Qb), veh	0	0	0	0	0	0	
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	
Work Zone On Approach		No	No		No		
Adj Sat Flow, veh/h/ln	1811	1811	1856	1856	1900	1900	
Adj Flow Rate, veh/h	7	237	989	209	181	25	
Peak Hour Factor	0.75	0.75	0.75	0.75	0.75	0.75	
Percent Heavy Veh, %	6	6	3	3	0	0	
Cap, veh/h	393	1348	1014	214	208	29	
Arrive On Green	0.01	0.74	1.00	1.00	0.14	0.14	
Sat Flow, veh/h	1725	1811	1485	314	1535	212	
Grp Volume(v), veh/h	7	237	0	1198	207	0	
Grp Sat Flow(s).veh/h/ln	1725	1811	0	1799	1755	0	
Q Serve(q s), s	0.1	3.8	0.0	0.0	11.6	0.0	
Cvcle Q Clear(g_c), s	0.1	3.8	0.0	0.0	11.6	0.0	
Prop In Lane	1.00			0.17	0.87	0.12	
Lane Grp Cap(c), veh/h	393	1348	0	1228	238	0	
V/C Ratio(X)	0.02	0.18	0.00	0.98	0.87	0.00	
Avail Cap(c a), veh/h	458	1348	0	1228	246	0	
HCM Platoon Ratio	1.00	1.00	2.00	2.00	1.00	1.00	
Upstream Filter(I)	1.00	1.00	0.00	0.69	1.00	0.00	
Uniform Delay (d), s/veh	4.3	3.8	0.0	0.0	42.4	0.0	
Incr Delay (d2), s/veh	0.0	0.3	0.0	16.3	26.4	0.0	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	
%ile BackOfQ(50%),veh/In	0.0	1.2	0.0	5.6	6.7	0.0	
Unsig. Movement Delay, s/veh							
LnGrp Delay(d),s/veh	4.3	4.0	0.0	16.3	68.8	0.0	
LnGrp LOS	А	А	А	В	Е	А	
Approach Vol, veh/h		244	1198		207		
Approach Delay, s/veh		4.0	16.3		68.8		
Approach LOS		A	В		E		
Timer - Assigned Phs				4		6	7 8
Phs Duration (G+Y+Rc), s				80.5		19.5	6.2 74.3
Change Period (Y+Rc), s				6.0		6.0	5.5 6.0
Max Green Setting (Gmax), s				74.0		14.0	4.5 64.0
Max Q Clear Time (q c+l1). s				5.8		13.6	2.1 2.0
Green Ext Time (p_c), s				1.5		0.0	0.0 17.8
Intersection Summary							
HCM 6th Ctrl Delay			21.1				
HCM 6th LOS			С				

	٭	-	\mathbf{F}	4	-	*	▲	Ť	۲	1	Ŧ	∢_	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		↑	1	ሻ	↑					ሻ	Þ		
Traffic Volume (veh/h)	0	211	103	85	626	0	0	0	0	251	1	272	
Future Volume (veh/h)	0	211	103	85	626	0	0	0	0	251	1	272	
Initial Q (Qb), veh	0	0	0	0	0	0				0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00				1.00		1.00	
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00				1.00	1.00	1.00	
Work Zone On Approach	h	No			No						No		
Adj Sat Flow, veh/h/ln	0	1841	1841	1870	1870	0				1885	1885	1885	
Adj Flow Rate, veh/h	0	278	136	112	824	0				330	1	358	
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76				0.76	0.76	0.76	
Percent Heavy Veh, %	0	4	4	2	2	0				1	1	1	
Cap, veh/h	0	993	841	626	1197	0				431	1	383	
Arrive On Green	0.00	0.72	0.72	0.09	1.00	0.00				0.24	0.24	0.24	
Sat Flow, veh/h	0	1841	1560	1781	1870	0				1795	4	1594	
Grp Volume(v), veh/h	0	278	136	112	824	0				330	0	359	
Grp Sat Flow(s), veh/h/In	n 0	1841	1560	1781	1870	0				1795	0	1598	
Q Serve(g_s), s	0.0	5.3	2.8	2.7	0.0	0.0				17.1	0.0	22.0	
Cycle Q Clear(g_c), s	0.0	5.3	2.8	2.7	0.0	0.0				17.1	0.0	22.0	
Prop In Lane	0.00		1.00	1.00		0.00				1.00		1.00	
Lane Grp Cap(c), veh/h	0	993	841	626	1197	0				431	0	384	
V/C Ratio(X)	0.00	0.28	0.16	0.18	0.69	0.00				0.77	0.00	0.94	
Avail Cap(c_a), veh/h	0	993	841	696	1197	0				431	0	384	
HCM Platoon Ratio	1.00	1.33	1.33	2.00	2.00	1.00				1.00	1.00	1.00	
Upstream Filter(I)	0.00	0.87	0.87	0.71	0.71	0.00				1.00	0.00	1.00	
Uniform Delay (d), s/veh	n 0.0	7.3	6.9	8.2	0.0	0.0				35.4	0.0	37.2	
Incr Delay (d2), s/veh	0.0	0.6	0.4	0.1	2.3	0.0				8.0	0.0	30.1	
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	0.0	
%IIe BackOfQ(50%),veh	n/In0.0	2.0	0.9	0.9	0.8	0.0				8.3	0.0	11.6	
Unsig. Movement Delay	, s/veh	7.0	7 0	0.0	0.0	0.0				10.4	0.0	67 4	
LIGTP Delay(d),S/Veh	0.0	7.9	1.3	٥.J	2.3	0.0				43.4	0.0	b/.4	
	А	A	А	А	A	А				U	A	E	
Approach Vol, ven/h		414			936						689		
Approach Delay, s/veh		1.1			3.0						55.9		
Approach LUS		A			A						E		
Timer - Assigned Phs			3	4		6		8					
Phs Duration (G+Y+Rc)	, S		10.1	59.9		30.0		70.0					
Change Period (Y+Rc),	S		5.5	6.0		6.0		6.0					
Max Green Setting (Gm	ax), s		8.5	50.0		24.0		64.0					
Max Q Clear Time (g_c+	+I1), s		4.7	7.3		24.0		2.0					
Green Ext Time (p_c), s			0.1	2.2		0.0		7.5					
Intersection Summary													
HCM 6th Ctrl Delay			21.8										
HCM 6th LOS			С										

	۶	-	\mathbf{F}	•	•	•	1	t	۲	\$	ŧ	∢	
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	٦					1	1	4Î					
Traffic Volume (veh/h)	98	364	0	0	379	302	332	3	92	0	0	0	
Future Volume (veh/h)	98	364	0	0	379	302	332	3	92	0	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT) 1	1.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus, Adj 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approach		No			No			No					
Adj Sat Flow, veh/h/ln 18	870	1870	0	0	1870	1870	1900	1900	1900				
Adj Flow Rate, veh/h	124	461	0	0	480	382	420	4	116				
Peak Hour Factor 0).79	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.79				
Percent Heavy Veh, %	2	2	0	0	2	2	0	0	0				
Cap, veh/h	457	1158	0	0	767	650	472	14	408				
Arrive On Green 0).30	1.00	0.00	0.00	0.41	0.41	0.26	0.26	0.26				
Sat Flow, veh/h 1	781	1870	0	0	1870	1585	1810	54	1564				
Grp Volume(v), veh/h	124	461	0	0	480	382	420	0	120				
Grp Sat Flow(s),veh/h/ln1	781	1870	0	0	1870	1585	1810	0	1618				
Q Serve(g_s), s	0.0	0.0	0.0	0.0	20.4	18.7	22.3	0.0	5.9				
Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	20.4	18.7	22.3	0.0	5.9				
Prop In Lane 1	1.00	4450	0.00	0.00	-0-	1.00	1.00	•	0.97				
Lane Grp Cap(c), veh/h	457	1158	0	0	/6/	650	4/2	0	422				
).27	0.40	0.00	0.00	0.63	0.59	0.89	0.00	0.28				
Avail Cap(c_a), ven/n	457	1158	1 00	1 00	107	050	0/0	1 00	599				
HOW Platoon Ratio 2	2.00	2.00	0.00	0.00	1.00	1.00	1.00	0.00	1.00				
Uniform Doloy (d) shiph 2	J.70 01 7	0.70	0.00	0.00	1.00	22.0	35.6	0.00	20.5				
Incr Delay (d2) s/veh	0.2	0.0	0.0	0.0	20.4	22.9	10.5	0.0	29.5				
Initial O Delay(d3) s/veh	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4				
%ile BackOfO(50%) veh/l	n1 9	0.3	0.0	0.0	9.0	7.4	11.0	0.0	2.3				
Unsig Movement Delay	s/veh	0.0	0.0	0.0	V .T	1.7	11.0	0.0	2.0				
InGrp Delay(d) s/veh 2	21.9	0.8	0.0	0.0	27.3	26.8	46 1	0.0	29.9				
LnGrp LOS	C	A	A	A	C	20.0 C	D	A	20.0 C				
Approach Vol. veh/h		585			862			540					
Approach Delay, s/veh		5.3			27.1			42.5					
Approach LOS		A			С			D					
Timer - Assigned Phs		2		4			7	8					
Phs Duration (G+Y+Rc), s	s	32.1		67.9			20.9	47.0					
Change Period (Y+Rc). s		6.0		6.0			6.0	* 6					
Max Green Setting (Gmax	x), s	37.0		51.0			4.5	* 41					
Max Q Clear Time (g c+l	1), s	24.3		2.0			2.0	22.4					
Green Ext Time (p_c), s		1.7		3.1			0.1	4.2					
Intersection Summary													
HCM 6th Ctrl Delay			24.8										
HCM 6th LOS			С										

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.
| | - | \mathbf{F} | 1 | • | ٩. | ۲ |
|---------------------------|-------------|--------------|----------|---------|----------|------|
| Movement | EBT | EBR | WBL | WBT | NBL | NBR |
| Lane Configurations | ≜ | 1 | 5 | | 5 | 1 |
| Traffic Volume (veh/h) | 170 | 286 | 53 | 346 | 335 | 17 |
| Future Volume (veh/h) | 170 | 286 | 53 | 346 | 335 | 17 |
| Initial Q (Qb), veh | 0 | 0 | 0 | 0 | 0 | 0 |
| Ped-Bike Adi(A pbT) | | 1.00 | 1.00 | | 1.00 | 1.00 |
| Parking Bus. Adi | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approac | h No | | | No | No | |
| Adi Sat Flow, veh/h/ln | 1885 | 1885 | 1870 | 1870 | 1885 | 1885 |
| Adi Flow Rate veh/h | 230 | 0 | 72 | 468 | 453 | 0 |
| Peak Hour Factor | 0 74 | 0.74 | 0.74 | 0.74 | 0.74 | 0 74 |
| Percent Heavy Veh % | 1 | 1 | 0.74 | 0.74 | 1 | 1 |
| Cap yoh/h | 502 | I | ے
100 | ے
10 | ا
770 | I |
| | 0.07 | 0.00 | 190 | 010 | 110 | 0.00 |
| Arrive On Green | 0.27 | 0.00 | 0.11 | 0.43 | 0.43 | 0.00 |
| Sat Flow, veh/h | 1885 | 1598 | 1781 | 1870 | 1795 | 1598 |
| Grp Volume(v), veh/h | 230 | 0 | 72 | 468 | 453 | 0 |
| Grp Sat Flow(s),veh/h/lr | า1885 | 1598 | 1781 | 1870 | 1795 | 1598 |
| Q Serve(g_s), s | 9.2 | 0.0 | 3.4 | 17.0 | 17.2 | 0.0 |
| Cycle Q Clear(g_c), s | 9.2 | 0.0 | 3.4 | 17.0 | 17.2 | 0.0 |
| Prop In Lane | | 1.00 | 1.00 | | 1.00 | 1.00 |
| Lane Grp Cap(c), veh/h | 503 | | 198 | 810 | 778 | |
| V/C Ratio(X) | 0.46 | | 0.36 | 0.58 | 0.58 | |
| Avail Cap(c, a) veh/h | 503 | | 198 | 810 | 778 | |
| HCM Platoon Ratio | 1 00 | 1 00 | 1 00 | 1 00 | 1 00 | 1 00 |
| Instream Filter/I) | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | 0.00 |
| Uniform Delay (d) abush | 1.00 | 0.00 | 27.1 | 10.2 | 10.2 | 0.00 |
| Iner Deley (d), s/ver | 121.0 | 0.0 | 51.1 | 19.0 | 19.0 | 0.0 |
| Incr Delay (d2), s/veh | 3.0 | 0.0 | 0.1 | 3.0 | 3.Z | 0.0 |
| Initial Q Delay(d3),s/veh | 1 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| %IIe BackOfQ(50%),veh | n/In4.4 | 0.0 | 1./ | 1.6 | 7.2 | 0.0 |
| Unsig. Movement Delay | /, s/veh | | | | • (| |
| LnGrp Delay(d),s/veh | 30.5 | 0.0 | 42.2 | 22.3 | 22.5 | 0.0 |
| LnGrp LOS | <u>C</u> | | D | C | С | |
| Approach Vol, veh/h | 230 | Α | | 540 | 453 | Α |
| Approach Delay, s/veh | 30.5 | | | 24.9 | 22.5 | |
| Approach LOS | C | | | C | C | |
| | | | | | | |
| Timer - Assigned Phs | | 2 | | 4 | 5 | 6 |
| Phs Duration (G+Y+Rc) | , S | 45.0 | | 45.0 | 15.0 | 30.0 |
| Change Period (Y+Rc), | S | 6.0 | | 6.0 | 5.0 | 6.0 |
| Max Green Setting (Gm | iax), s | 39.0 | | 39.0 | 10.0 | 24.0 |
| Max Q Clear Time (a c- | +l1), s | 19.0 | | 19.2 | 5.4 | 11.2 |
| Green Ext Time (p, c) s | ,, , | 6.4 | | 1.8 | 0.0 | 2.1 |
| Intersection Summary | | | | | | |
| | | | 2E 1 | | | |
| | | | 20.1 | | | |
| HCM 6th LOS | | | C | | | |

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{F}	•	Ť	ţ				
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		1	ሻሻ	^	^	1			
Traffic Volume (vph)	0	183	124	1615	1053	8			
Future Volume (vph)	0	183	124	1615	1053	8			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0			
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00			
Frt		0.86	1.00	1.00	1.00	0.85			
Flt Protected		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1536	3303	3406	3085	1380			
Flt Permitted		1.00	0.95	1.00	1.00	1.00			
Satd. Flow (perm)		1536	3303	3406	3085	1380			
Peak-hour factor, PHF	0.92	0.84	0.84	0.84	0.84	0.84			
Adj. Flow (vph)	0	218	148	1923	1254	10			
RTOR Reduction (vph)	0	0	0	0	0	2			
Lane Group Flow (vph)	0	218	148	1923	1254	8			
Heavy Vehicles (%)	2%	7%	6%	6%	17%	17%			
Turn Type	_,,	Free	Prot	NA	NA	Perm			
Protected Phases		1100	1	Free	2				
Permitted Phases		Free	•	1100	-	2			
Actuated Green G (s)		100.0	10.0	100 0	77 0	77 0			
Effective Green g (s)		100.0	10.0	100.0	77.0	77.0			
Actuated g/C Ratio		1 00	0.10	1 00	0 77	0.77			
Clearance Time (s)		1.00	6.0	1.00	7.0	7.0			
Vehicle Extension (s)			3.0		5.0	5.0			
Lane Grn Can (vnh)		1536	330	3406	2375	1062			
v/s Ratio Prot		1000	0.04	0.56	0.41	1002			
v/s Ratio Perm		0 14	0.04	0.00	0.41	0.01			
v/c Ratio		0.14	0.45	0.56	0 53	0.01			
Uniform Delay, d1		0.14	42.4	0.00	4 5	27			
Progression Factor		1.00	0.59	1.00	0.04	0.00			
Incremental Delay, d2		0.2	0.00	0.5	0.04	0.00			
Delay (s)		0.2	26.0	0.5	0.0	0.0			
Level of Service		0.2	20.0	0.5	0.7	Δ			
Approach Delay (s)	0.2	Л	0	23	0.7	~			
Approach LOS	0.2 A			2.5 A	A				
Intersection Summary									
HCM 2000 Control Delay			1.6	H	CM 2000	Level of Servi	се	A	
HCM 2000 Volume to Capacity	ratio		0.65						
Actuated Cycle Length (s)			100.0	Si	um of los	t time (s)		13.0	
Intersection Capacity Utilization	1		48.0%	IC	U Level	of Service		A	
Analysis Period (min)			15						
c Critical Lane Group			• •						

	≯	→	$\mathbf{\hat{z}}$	4	+	•	•	Ť	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲.		1				۲.	∱1 ≽			^	7
Traffic Volume (vph)	169	0	286	0	0	0	544	1195	0	0	1065	207
Future Volume (vph)	169	0	286	0	0	0	544	1195	0	0	1065	207
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	0.95			0.95	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1626		1358				1687	3374			2905	1392
Flt Permitted	0.95		1.00				0.10	1.00			1.00	1.00
Satd. Flow (perm)	1626		1358				169	3374			2905	1392
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Adj. Flow (vph)	199	0	336	0	0	0	640	1406	0	0	1253	244
RTOR Reduction (vph)	0	0	21	0	0	0	0	0	0	0	0	41
Lane Group Flow (vph)	199	0	315	0	0	0	640	1406	0	0	1253	203
Heavy Vehicles (%)	11%	11%	11%	0%	0%	0%	7%	7%	7%	16%	16%	16%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		14				1	16			2	4
Permitted Phases			4				16					2
Actuated Green, G (s)	10.5		45.6				76.5	76.5			41.4	51.9
Effective Green, g (s)	10.5		45.6				76.5	76.5			41.4	51.9
Actuated g/C Ratio	0.10		0.46				0.76	0.76			0.41	0.52
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	170		619				563	2581			1202	812
v/s Ratio Prot	c0.12		0.23				c0.32	0.42			0.43	0.03
v/s Ratio Perm							c0.54					0.12
v/c Ratio	1.17		0.51				1.14	0.54			1.04	0.25
Uniform Delay, d1	44.8		19.3				26.4	4.7			29.3	13.3
Progression Factor	1.00		1.00				0.67	0.20			1.00	1.00
Incremental Delay, d2	122.4		0.7				/5./	0.2			37.7	0.2
Delay (s)	167.1		19.9				93.2	1.1			67.0	13.5
Level of Service	F	747	В		0.0		F	A			E	В
Approach Delay (s)		/4./			0.0			29.9			58.3	
Approach LOS		E			A			U			E	
Intersection Summary												
HCM 2000 Control Delay			46.2	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		1.20									
Actuated Cycle Length (s)			100.0	S	um of lost	t time (s)			19.5			
Intersection Capacity Utiliza	ation		83.1%	IC	CU Level of	of Service)		E			
Analysis Period (min)			15									

c Critical Lane Group

	۶	$\mathbf{\hat{v}}$	1	Ť	ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻሻ	1		***	^	
Traffic Volume (veh/h)	137	1108	0	1785	1474	0
Future Volume (veh/h)	137	1108	0	1785	1474	0
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00	1.00	1.00			1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	No			No	No	
Adj Sat Flow, veh/h/ln	1796	1796	0	1781	1826	0
Adj Flow Rate, veh/h	151	0	0	1962	1620	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh. %	7	7	0	8	5	0
Cap, veh/h	217		0	3961	2826	0
Arrive On Green	0.07	0.00	0.00	0.81	0.81	0.00
Sat Flow, veh/h	3319	1522	0	5184	3652	0
Grn Volume(v) veh/h	151	0	0	1962	1620	0
Grn Sat Flow(s) veh/h/ln	1659	1522	0	1621	1735	0
O Serve(a, s) s	4 5	0.0	0.0	12.5	16.2	0.0
Q Or $VC(\underline{y}_{3})$, s Cycle O Clear(q , c) s	4.5	0.0	0.0	12.5	16.2	0.0
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	1.0	1 00	0.0	12.5	10.2	0.0
Lang Gra Can(a) yoh/h	217	1.00	0.00	2061	2826	0.00
	217		0.00	0.50	2020	0 00
V/C Rallo(Λ)	0.09		0.00	0.50	0.07	0.00
Avail Cap(C_a), ven/n	390	1.00	1 00	1 00	2020	1.00
	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	0.00	1.00	1.00	0.00
Uniform Delay (d), s/ven	45.7	0.0	0.0	2.9	3.2	0.0
Incr Delay (d2), s/veh	4.0	0.0	0.0	0.4	0.9	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.9	0.0	0.0	2.2	3.1	0.0
Unsig. Movement Delay, s/veh						
LnGrp Delay(d),s/veh	49.7	0.0	0.0	3.3	4.1	0.0
LnGrp LOS	D		A	A	A	A
Approach Vol, veh/h	151	А		1962	1620	
Approach Delay, s/veh	49.7			3.3	4.1	
Approach LOS	D			А	А	
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc), s		87.5		12.5		87.5
Change Period (Y+Rc) s		6.0		6.0		6.0
Max Green Setting (Gmax) s		76.0		12.0		76.0
Max O Clear Time $(q, c+11)$ s		18.2		6.5		1/1.5
Green Ext Time (p, c)		37.0		0.0		14.5
		57.5		0.2		40.5
Intersection Summary						
HCM 6th Ctrl Delay			5.5			
HCM 6th LOS			А			

Notes

Unsignalized Delay for [EBR] is excluded from calculations of the approach delay and intersection delay.

	∢	*	Ť	۲	1	Ψ.
Movement	WBI	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**	11	441		000	***
	656	602	035	٥	٥	1767
Future Volume (veh/h)	656	602	035	0	0	1767
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	000	002	900	0	0	0
	1 00	1 00	U	1.00	1.00	U
Perking Puc Adi	1.00	1.00	1.00	1.00	1.00	1.00
Mark Zana Or America	1.00	1.00	1.00	1.00	1.00	1.00
VVORK Zone On Approach	1 INO	4700	INO	•	•	INO
Adj Sat Flow, veh/h/ln	1/22	1/22	1/6/	0	0	1841
Adj Flow Rate, veh/h	713	654	1016	0	0	1921
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	12	12	9	0	0	4
Cap, veh/h	971	784	2724	0	0	2838
Arrive On Green	0.31	0.31	0.56	0.00	0.00	0.56
Sat Flow, veh/h	3182	2569	5141	0	0	5356
Grp Volume(v) veh/h	713	654	1016	0	0	1921
Grn Sat Flow(s) veh/h/ln	1591	1284	1608	0	0	1675
\cap Serve(a, s) s	20.1	204	11.6	0.0	0.0	26.0
$(y_0) = (y_0), s$	20.1	20.1 00 7	11.0	0.0	0.0	20.3
Dren in Len-	20.1	23.7	11.0	0.0	0.0	20.9
Prop in Lane	1.00	1.00	0704	0.00	0.00	0000
Lane Grp Cap(c), veh/h	9/1	784	2724	0	0	2838
V/C Ratio(X)	0.73	0.83	0.37	0.00	0.00	0.68
Avail Cap(c_a), veh/h	1177	950	2724	0	0	2838
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	0.00	0.00	1.00
Uniform Delay (d), s/veh	31.1	32.4	12.0	0.0	0.0	15.3
Incr Delay (d2), s/veh	1.9	5.5	0.4	0.0	0.0	1.3
Initial Q Delav(d3) s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfO(50%) veh	//m7_6	7.6	3.0	0.0	0.0	9.0 9.4
Unsig Movement Delay	shin.u	1.0	0.9	0.0	0.0	J. 4
unsig. wovernent Delay,	, 5/VEN	270	10.4	0.0	0.0	16.6
Lingip Delay(d),s/veh	33.0	37.9	12.4	0.0	0.0	10.0
LINGIP LUS	U	D	В	A	A	В
Approach Vol, veh/h	1367		1016			1921
Approach Delay, s/veh	35.4		12.4			16.6
Approach LOS	D		В			В
Timer - Assigned Phs		2		4		6
Phs Duration (G+Y+Rc)	S	62.5		37.5		62.5
Change Period $(V + P_0)$, U	6.0		7 0		6.0
Max Groop Sotting (Cmr		50.0		7.0 37.0		50.0
Max O Clear Time (GMa	ax), S	20.0		37.0		00.0 12.0
	-11), S	20.9		20.7		13.0
Green Ext Time (p_c), s		20.7		4.8		20.5
Intersection Summary						
HCM 6th Ctrl Delay			21.6			
HCM 6th LOS			С			

∢ t Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 4 đ ٦ *** 7 ٦ 朴朴ኈ 1 Traffic Volume (veh/h) 161 0 88 1325 18 21 199 1920 2 6 1 116 Future Volume (veh/h) 6 1 18 161 0 88 21 1325 199 116 1920 2 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 Ped-Bike Adj(A_pbT) 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Work Zone On Approach No No No No 1707 Adj Sat Flow, veh/h/ln 1900 1826 1900 1900 1796 1796 1796 1707 1826 1826 1707 Adj Flow Rate, veh/h 6 19 173 0 95 23 1425 0 125 2065 1 2 0.93 0.93 Peak Hour Factor 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 Percent Heavy Veh, % 0 0 0 7 7 7 13 13 13 5 5 5 364 38 2331 156 2913 Cap, veh/h 44 27 72 189 0 3 Arrive On Green 0.26 0.24 0.26 0.00 0.24 0.00 0.24 0.02 0.50 0.03 0.19 0.19 Sat Flow, veh/h 0 111 301 487 0 1518 1626 4661 1447 1739 5143 5 Grp Volume(v), veh/h 26 0 0 173 0 95 23 1425 0 125 1334 733 Grp Sat Flow(s), veh/h/ln 411 0 487 1518 1626 1554 1447 1739 1662 1825 0 0 0.0 22.0 37.6 37.6 Q Serve(g_s), s 0.0 0.0 0.0 0.0 5.1 1.4 0.0 7.1 Cycle Q Clear(g_c), s 26.0 0.0 22.0 7.1 37.6 37.6 26.0 0.0 0.0 5.1 1.4 0.0 Prop In Lane 0.23 0.73 1.00 1.00 1.00 1.00 1.00 0.00 Lane Grp Cap(c), veh/h 151 364 2331 156 1882 1034 0 0 199 0 38 V/C Ratio(X) 0.17 0.00 0.00 0.87 0.00 0.26 0.60 0.61 0.80 0.71 0.71 Avail Cap(c a), veh/h 0 364 98 2331 243 1034 151 0 0 199 1882 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.33 Upstream Filter(I) 1.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.70 0.70 0.70 Uniform Delay (d), s/veh 31.0 41.2 32.9 0.0 0.0 0.0 30.8 48.4 18.0 0.0 47.6 32.9 Incr Delay (d2), s/veh 0.0 0.0 31.5 0.0 0.4 14.1 1.2 0.0 7.1 1.6 2.9 0.5 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 %ile BackOfQ(50%),veh/lr0.5 0.0 0.0 5.9 0.0 1.9 0.7 7.5 0.0 3.5 17.0 19.0 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 0.0 72.7 0.0 31.2 62.4 19.2 0.0 54.7 34.5 35.8 31.5 LnGrp LOS С А А Е А С Е В D С D 26 268 1448 Α 2192 Approach Vol, veh/h Approach Delay, s/veh 31.5 58.0 19.9 36.1 Approach LOS Е В С D Timer - Assigned Phs 2 4 5 6 8 Phs Duration (G+Y+Rc), s7.4 62.6 30.0 14.0 56.0 30.0 Change Period (Y+Rc), s 5.0 6.0 6.0 6.0 5.0 6.0 Max Green Setting (Gmax6.6 53.0 24.0 14.0 45.0 24.0 Max Q Clear Time (g_c+I13,4s 39.6 28.0 9.1 24.0 28.0 Green Ext Time (p_c), s 0.0 0.0 0.1 0.0 13.3 19.5 Intersection Summary 31.6 HCM 6th Ctrl Delay HCM 6th LOS С

Notes

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

	۶	\mathbf{F}	•	Ť	Ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	55	1	5	**	**	1
Traffic Volume (veh/h)	387	236	186	1042	1570	382
Future Volume (veh/h)	387	236	186	1042	1570	382
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adi(A nhT)	1.00	1.00	1.00	v	v	1.00
Parking Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Annroad	ch No	1.00	1.00	No	No	1.00
Adi Sat Flow, veh/h/ln	1781	1781	1678	1678	1826	1826
Adj Elow Rate veh/h	/21	257	202	1133	1707	/15
Peak Hour Factor	0 0 2	0 02	0 02	0 02	0 02	0 0 2
Percent Heavy Vah %	0.9Z	0.9Z	15	15	0.52	0.92
Con yoh/h	0 500	0 070	10	10 2100	0 1014	0 <i>E 1</i>
Cap, ven/n	0.40	212	233	2199	1914	054
Arrive On Green	0.18	0.18	0.09	0.69	0.55	0.55
Sat Flow, veh/h	3291	1510	1598	3272	3561	1547
Grp Volume(v), veh/h	421	257	202	1133	1707	415
Grp Sat Flow(s), veh/h/l	n1646	1510	1598	1594	1735	1547
Q Serve(g_s), s	12.0	16.8	6.6	17.1	43.4	16.4
Cycle Q Clear(g_c), s	12.0	16.8	6.6	17.1	43.4	16.4
Prop In Lane	1.00	1.00	1.00			1.00
Lane Grp Cap(c), veh/h	592	272	233	2199	1914	854
V/C Ratio(X)	0.71	0.95	0.87	0.52	0.89	0.49
Avail Cap(c, a) veh/h	592	272	316	2199	1914	854
HCM Platoon Ratio	1 00	1 00	1 00	1 00	1 00	1 00
Linstream Filter(I)	1.00	1.00	0.02	0.02	1.00	1.00
Uniform Delay (d) alua	h 38 6	1.00	27.0	7.5	10.0	12 7
log Doloy (d2) of the	0.001	40.0	21.0	1.5	19.0	13.7
incr Delay (dz), s/ven	4.0	40.0	10.0	0.0	0.0	2.0
Initial Q Delay(d3),s/vel	1 U.U	0.0	0.0	0.0	0.0	0.0
%Ile BackOfQ(50%),ve	n/In5.1	9.1	3.6	4.9	17.1	5.6
Unsig. Movement Delay	y, s/veh	1				
LnGrp Delay(d),s/veh	42.5	80.5	42.8	8.3	26.6	15.7
LnGrp LOS	D	F	D	A	С	B
Approach Vol, veh/h	678			1335	2122	
Approach Delay, s/veh	56.9			13.5	24.5	
Approach LOS	E			В	C	
		•				•
Timer - Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), \$ 3.8	62.2		24.0		76.0
Change Period (Y+Rc),	s 5.0	7.0		6.0		7.0
Max Green Setting (Gr	na 1x4,.G	50.0		18.0		69.0
Max Q Clear Time (q c	+118,6s	45.4		18.8		19.1
Green Ext Time (p c).	s 0.3	4.5		0.0		38.0
Intersection Summary						
HCM 6th Ctrl Dolov			26.2			
			20.2			
HCM 6th LOS			C			

2.4

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					\$			∱î ≽			^	
Traffic Vol, veh/h	0	0	0	20	0	10	0	1323	65	0	1468	0
Future Vol, veh/h	0	0	0	20	0	10	0	1323	65	0	1468	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	89	89	89	89	89	89	89	89	89	89	89	89
Heavy Vehicles, %	2	2	2	4	4	4	13	13	13	6	6	6
Mvmt Flow	0	0	0	22	0	11	0	1487	73	0	1649	0

Major/Minor		Minor1		N	lajor1		Ma	ajor2			
Conflicting Flow All		2349	3173	780	-	0	0	-	-	0	
Stage 1		1524	1524	-	-	-	-	-	-	-	
Stage 2		825	1649	-	-	-	-	-	-	-	
Critical Hdwy		6.88	6.58	6.98	-	-	-	-	-	-	
Critical Hdwy Stg 1		5.88	5.58	-	-	-	-	-	-	-	
Critical Hdwy Stg 2		5.88	5.58	-	-	-	-	-	-	-	
Follow-up Hdwy		3.54	4.04	3.34	-	-	-	-	-	-	
Pot Cap-1 Maneuver		29	10	334	0	-	-	0	-	0	
Stage 1		163	175	-	0	-	-	0	-	0	
Stage 2		386	152	-	0	-	-	0	-	0	
Platoon blocked, %						-	-		-		
Mov Cap-1 Maneuver		29	0	334	-	-	-	-	-	-	
Mov Cap-2 Maneuver		29	0	-	-	-	-	-	-	-	
Stage 1		163	0	-	-	-	-	-	-	-	
Stage 2		386	0	-	-	-	-	-	-	-	
Approach		WB			NB			SB			
HCM Control Delay, s		227.8			0			0			
HCM LOS		F									
Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBT								
Capacity (veh/h)	-	- 42	-								
HCM Lane V/C Ratio	-	- 0.803	-								
HCM Control Delay (s)	-	- 227.8	-								

F

3.1

-

-

-

-

-

_

HCM Lane LOS

HCM 95th %tile Q(veh)

	≯	-	\mathbf{F}	∢	-	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳.	<u></u>	1	ሻሻ	↑	1	ሻ	↑	1	۳.	↑ 1≽	
Traffic Volume (veh/h)	244	387	398	475	239	78	414	591	231	115	499	113
Future Volume (veh/h)	244	387	398	475	239	78	414	591	231	115	499	113
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1693	1693	1693	1841	1841	1841	1693	1693	1693	1826	1826	1826
Adj Flow Rate, veh/h	274	435	0	534	269	0	465	664	0	129	561	127
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Percent Heavy Veh, %	14	14	14	4	4	4	14	14	14	5	5	5
Cap, veh/h	299	535		576	277		468	862		217	671	151
Arrive On Green	0.19	0.17	0.00	0.17	0.15	0.00	0.23	0.51	0.00	0.24	0.24	0.24
Sat Flow, veh/h	1612	3216	1434	3401	1841	1560	1612	1693	1434	753	2812	634
Grp Volume(v), veh/h	274	435	0	534	269	0	465	664	0	129	345	343
Grp Sat Flow(s),veh/h/ln	1612	1608	1434	1700	1841	1560	1612	1693	1434	753	1735	1712
Q Serve(g_s), s	16.7	13.0	0.0	15.4	14.5	0.0	22.2	31.6	0.0	16.7	18.9	19.0
Cycle Q Clear(g_c), s	16.7	13.0	0.0	15.4	14.5	0.0	22.2	31.6	0.0	21.3	18.9	19.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.37
Lane Grp Cap(c), veh/h	299	535		576	277		468	862		217	414	409
V/C Ratio(X)	0.92	0.81		0.93	0.97		0.99	0.77		0.59	0.83	0.84
Avail Cap(c_a), veh/h	299	535	4.00	576	277	4.00	468	865	4.00	218	417	411
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	39.9	40.1	0.0	40.9	42.2	0.0	24.2	19.8	0.0	39.3	36.1	36.2
Incr Delay (d2), s/veh	31.5	9.8	0.0	21.4	46.6	0.0	39.6	6.0	0.0	9.5	16.6	17.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%IIe BackOfQ(50%),Ven/In	9.0	5.8	0.0	8.2	10.2	0.0	12.9	12.6	0.0	3.6	9.7	9.7
Unsig. Movement Delay, s/ven	74 4	40.0	• •	<u> </u>	00.0	• •	<u> </u>	05.0	0.0	40.0	F0 7	50 0
LnGrp Delay(d),s/ven	71.4	49.9	0.0	62.3	88.8	0.0	63.9	25.8	0.0	48.8	52.7	53.3
LINGRP LOS	E	U	٨	E	F	٨	E	1400	٨	D	D	D
Approach Vol, veh/h		709	A		803	A		1129	A		817	
Approach Delay, s/ven		58.2			71.1			41.5			52.4	
Approach LOS		E			E			D			D	
Timer - Assigned Phs	1	2	3	4		6	7	8				
Phs Duration (G+Y+Rc), s	27.0	29.8	21.4	21.6		56.8	23.0	20.0				
Change Period (Y+Rc), s	4.5	6.0	4.5	5.0		6.0	4.5	5.0				
Max Green Setting (Gmax), s	22.5	24.0	16.9	16.6		51.0	18.5	15.0				
Max Q Clear Time (g_c+l1), s	24.2	23.3	17.4	15.0		33.6	18.7	16.5				
Green Ext Time (p_c), s	0.0	0.5	0.0	0.5		6.6	0.0	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			54.4									
HCM 6th LOS			D									

Notes

Unsignalized Delay for [NBR, EBR, WBR] is excluded from calculations of the approach delay and intersection delay.

1.7

Intersection

Int Delay, s/veh

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			्स	1		्स	1		4	
Traffic Vol, veh/h	23	2	6	2	1	2	29	714	3	1	733	30
Future Vol, veh/h	23	2	6	2	1	2	29	714	3	1	733	30
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	50	-	-	325	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	22	22	22	0	0	0	17	17	17	9	9	9
Mvmt Flow	24	2	6	2	1	2	30	744	3	1	764	31

Major/Minor	Minor2		ľ	Minor1			Major1			Μ	lajor2			
Conflicting Flow All	1589	1589	780	1590	1601	744	795	0	C)	747	0	0	
Stage 1	782	782	-	804	804	-	-	-		-	-	-	-	
Stage 2	807	807	-	786	797	-	-	-		-	-	-	-	
Critical Hdwy	7.32	6.72	6.42	7.1	6.5	6.2	4.27	-		-	4.19	-	-	
Critical Hdwy Stg 1	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	6.32	5.72	-	6.1	5.5	-	-	-		-	-	-	-	
Follow-up Hdwy	3.698	4.198	3.498	3.5	4	3.3	2.353	-		- 2	2.281	-	-	
Pot Cap-1 Maneuver	78	97	365	88	107	418	764	-		-	830	-	-	
Stage 1	359	377	-	380	398	-	-	-		-	-	-	-	
Stage 2	347	367	-	388	401	-	-	-		-	-	-	-	
Platoon blocked, %								-		-		-	-	
Mov Cap-1 Maneuver	73	90	365	81	100	418	764	-		-	830	-	-	
Mov Cap-2 Maneuver	73	90	-	81	100	-	-	-		-	-	-	-	
Stage 1	335	376	-	355	371	-	-	-		-	-	-	-	
Stage 2	321	342	-	378	400	-	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control Delay, s	67.9	34.5	0.4	0	
HCM LOS	F	D			

Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1V	VBLn1V	VBLn2	SBL	SBT	SBR
Capacity (veh/h)	764	-	-	88	86	418	830	-	-
HCM Lane V/C Ratio	0.04	-	-	0.367	0.036	0.005	0.001	-	-
HCM Control Delay (s)	9.9	0	-	67.9	48.4	13.7	9.3	0	-
HCM Lane LOS	А	А	-	F	E	В	А	А	-
HCM 95th %tile Q(veh)	0.1	-	-	1.4	0.1	0	0	-	-

	≯	-	+	•	1	~		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	5	+	+	1	5	1		
Traffic Volume (veh/h)	6	769	284	6	375	487		
Future Volume (veh/h)	6	769	284	6	375	487		
Initial Q (Qb), veh	0	0	0	0	0	0		
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No	No		No			
Adj Sat Flow, veh/h/ln	1870	1870	1856	1856	1900	1900		
Adj Flow Rate, veh/h	7	884	326	7	431	560		
Peak Hour Factor	0.87	0.87	0.87	0.87	0.87	0.87		
Percent Heavy Veh, %	2	2	3	3	0	0		
Cap, veh/h	450	965	758	642	642	571		
Arrive On Green	0.04	0.52	0.41	0.41	0.35	0.35		
Sat Flow, veh/h	1781	1870	1856	1572	1810	1610		
Grp Volume(v), veh/h	7	884	326	7	431	560		
Grp Sat Flow(s),veh/h/ln	1781	1870	1856	1572	1810	1610		
Q Serve(g_s), s	0.2	40.3	11.7	0.2	18.8	32.0		
Cycle Q Clear(g_c), s	0.2	40.3	11.7	0.2	18.8	32.0		
Prop In Lane	1.00			1.00	1.00	1.00		
Lane Grp Cap(c), veh/h	450	965	758	642	642	571		
V/C Ratio(X)	0.02	0.92	0.43	0.01	0.67	0.98		
Avail Cap(c_a), veh/h	450	1106	898	761	642	571		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00		
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00		
Uniform Delay (d), s/veh	14.0	20.6	19.7	16.3	25.4	29.7		
Incr Delay (d2), s/veh	0.0	10.8	0.4	0.0	2.7	32.4		
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(50%),veh/In	0.1	19.4	5.1	0.1	8.3	28.9		
Unsig. Movement Delay, s/veh	ו							
LnGrp Delay(d),s/veh	14.0	31.5	20.1	16.3	28.1	62.1		
LnGrp LOS	В	С	С	В	С	E		
Approach Vol, veh/h		891	333		991			
Approach Delay, s/veh		31.3	20.0		47.3			
Approach LOS		С	С		D			
Timer - Assigned Phs				4		6	7	8
Phs Duration (G+Y+Rc), s				54.0		39.0	10.0	44.0
Change Period (Y+Rc), s				6.0		6.0	6.0	6.0
Max Green Setting (Gmax), s				55.0		33.0	4.0	45.0
Max Q Clear Time (g_c+l1), s				42.3		34.0	2.2	13.7
Green Ext Time (p_c), s				5.6		0.0	0.0	2.2
Intersection Summarv								
HCM 6th Ctrl Delay			36.8					
HCM 6th LOS			D					

Major/Minor	Major1	Majo	r2	Minor1		
Conflicting Flow All	0	0	-	- 1609	-	
Stage 1	-	-	-	- 1305	-	
Stage 2	-	-	-	- 304	-	
Critical Hdwy	-	-	-	- 6.42	-	
Critical Hdwy Stg 1	-	-	-	- 5.42	-	
Critical Hdwy Stg 2	-	-	-	- 5.42	-	
Follow-up Hdwy	-	-	-	- 3.518	-	
Pot Cap-1 Maneuver	-	-	0	- 115	0	
Stage 1	-	-	0	- 254	0	
Stage 2	-	-	0	- 748	0	
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	· -	-	-	- 115	-	
Mov Cap-2 Maneuver	· -	-	-	- 115	-	
Stage 1	-	-	-	- 254	-	
Stage 2	-	-	-	- 748	-	
Approach	EB	V	/B	NB		
HCM Control Delay, s	<u> </u>		0	49.8		

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBT
Capacity (veh/h)	115	-	-	-
HCM Lane V/C Ratio	0.311	-	-	-
HCM Control Delay (s)	49.8	-	-	-
HCM Lane LOS	E	-	-	-
HCM 95th %tile Q(veh)	1.2	-	-	-

Е

HCM LOS

	≯	-	-	•	1	-			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	5	+	1.		¥.	-			
Traffic Volume (veh/h)	20	961	271	152	300	9			
Future Volume (veh/h)	20	961	271	152	300	9			
Initial Q (Qb), veh	0	0	0	0	0	0			
Ped-Bike Adj(A pbT)	1.00			1.00	1.00	1.00			
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Work Zone On Approach		No	No		No				
Adj Sat Flow, veh/h/ln	1870	1870	1841	1841	1900	1900			
Adj Flow Rate, veh/h	22	1045	295	165	326	10			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Percent Heavy Veh, %	2	2	4	4	0	0			
Cap, veh/h	610	1291	684	382	326	10			
Arrive On Green	0.02	0.69	0.82	0.82	0.19	0.19			
Sat Flow, veh/h	1781	1870	1109	620	1717	53			
Grp Volume(v), veh/h	22	1045	0	460	337	0			
Grp Sat Flow(s),veh/h/ln	1781	1870	0	1729	1775	0			
Q Serve(q s), s	0.4	39.2	0.0	7.4	19.0	0.0			
Cycle Q Clear(q c), s	0.4	39.2	0.0	7.4	19.0	0.0			
Prop In Lane	1.00			0.36	0.97	0.03			
Lane Grp Cap(c), veh/h	610	1291	0	1066	337	0			
V/C Ratio(X)	0.04	0.81	0.00	0.43	1.00	0.00			
Avail Cap(c a), veh/h	658	1291	0	1066	337	0			
HCM Platoon Ratio	1.00	1.00	1.33	1.33	1.00	1.00			
Upstream Filter(I)	1.00	1.00	0.00	0.98	1.00	0.00			
Uniform Delay (d), s/veh	6.5	10.9	0.0	4.1	40.5	0.0			
Incr Delay (d2), s/veh	0.0	5.6	0.0	1.2	48.8	0.0			
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0			
%ile BackOfQ(50%),veh/ln	0.1	15.0	0.0	2.2	12.7	0.0			
Unsig. Movement Delay, s/veh	1								
LnGrp Delay(d),s/veh	6.5	16.5	0.0	5.4	89.3	0.0			
LnGrp LOS	А	В	А	А	F	А			
Approach Vol, veh/h		1067	460		337				
Approach Delay, s/veh		16.3	5.4		89.3				
Approach LOS		В	Α		F				
Timer - Assigned Phs				4		6	7	8	
Phs Duration (G+Y+Rc) s				75.0		25.0	7.3 67	7	
Change Period (Y+Rc) s				6.0		6.0	5.5 6	0	
Max Green Setting (Gmax) s				69.0		19.0	4.5 59	0	
Max Q Clear Time (q. c+11) s				41.2		21.0	24 9	4	
Green Ext Time (p_c), s				10.0		0.0	0.0 3	.3	
Intersection Summarv									
HCM 6th Ctrl Delay			26.8						
HCM 6th LOS			20.0 C						

Movement EBL EBR WBR WBT WBR NBL NBR SBL SBL SBR Lane Configurations 1<
Lane Configurations Image: Configurations <
Traffic Volume (veh/h) 0 863 414 141 291 0 0 0 286 2 144 Future Volume (veh/h) 0 863 414 141 291 0 0 0 0 286 2 144 Initial Q (Db), veh 0
Future Volume (veh/h) 0 863 414 141 291 0 0 0 286 2 144 Initial Q (Db), veh 0 <
Initial Q (Qb), veh 0
Ped-Bike Adj(A_pbT) 1.00 0.98 1.00 </td
Parking Bus, Adj 1.00 1.01
Work Zone On Approach No No No No Adj Sat Flow, veh/h/ln 0 1870 1870 1856 1856 0 1870 1870 1870 Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94
Adj Sat Flow, veh/h/ln 0 1870 1870 1856 1856 0 1870 1870 1870 Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94
Adj Flow Rate, veh/h 0 918 440 150 310 0 304 2 153 Peak Hour Factor 0.94 0.91 0.10 0.0
Peak Hour Factor 0.94 0.1 0.1 0.1
Percent Heavy Veh, % 0 2 2 3 3 0 2 2 2 Cap, veh/h 0 1096 910 385 1273 0 346 4 304 Arrive On Green 0.00 1.00 0.09 1.00 0.00 0.19 0.19 0.19 Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1866 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.00 365 1273 0 346 0 385 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I)<
Cap, veh/h 0 1096 910 385 1273 0 346 4 304 Arrive On Green 0.00 1.00 1.00 0.09 1.00 0.00 0.19 0.15 0 0.0 1.55 Gr Volume(v), veh/h 0 1552 1767 1856 0 1781 0 1588 Q serve(g_s), s 0.00 0.0 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
Arrive On Green 0.00 1.00 1.00 0.09 1.00 0.00 0.19 0.19 0.19 Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 0.0 3.4 0.0 0.0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sat Flow, veh/h 0 1870 1552 1767 1856 0 1781 20 1568 Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1558 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 1.00 1.00 0.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 8.4 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00
Grp Volume(v), veh/h 0 918 440 150 310 0 304 0 155 Grp Sat Flow(s), veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1558 Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 1.00 1.00 0.00 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avaii Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platcon Ratio 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Grp Sat Flow(s),veh/h/ln 0 1870 1552 1767 1856 0 1781 0 1588 Q Serve(g_s), s 0.0 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Q Serve(g_s), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 16.6 0.0 8.7 Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.00 99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cycle Q Clear(g_c), s 0.0 0.0 3.4 0.0 0.0 1.66 0.0 8.7 Prop In Lane 0.00 1.00 0.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.90 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.1 1.72 0.0 1.3 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Prop In Lane 0.00 1.00 1.00 0.00 1.00 0.99 Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 1.72 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 Unsig: Movement Delay, s/veh 1.0 0.2
Lane Grp Cap(c), veh/h 0 1096 910 385 1273 0 346 0 308 V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
V/C Ratio(X) 0.00 0.84 0.48 0.39 0.24 0.00 0.88 0.00 0.50 Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 3.5
Avail Cap(c_a), veh/h 0 1096 910 385 1273 0 410 0 365 HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
HCM Platoon Ratio 1.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 Upstream Filter(I) 0.00 0.40 0.91 0.91 0.00 1.00 1.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 </td
Upstream Filter(I) 0.00 0.40 0.40 0.91 0.91 0.00 1.00 0.00 1.00 Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
Uniform Delay (d), s/veh 0.0 0.0 6.4 0.0 0.0 39.2 0.0 36.0 Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0
Incr Delay (d2), s/veh 0.0 3.2 0.7 0.6 0.4 0.0 17.2 0.0 1.3 Initial Q Delay(d3),s/veh 0.0 <
Initial Q Delay(d3),s/veh 0.0 <t< td=""></t<>
%ile BackOfQ(50%),veh/In0.0 1.0 0.2 1.1 0.1 0.0 8.8 0.0 3.5 Unsig. Movement Delay, s/veh
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 LnGrp LOS A A A A A A D Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
LnGrp Delay(d),s/veh 0.0 3.2 0.7 7.0 0.4 0.0 56.3 0.0 37.3 LnGrp LOS A A A A A A A D Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A A D Timer - Assigned Phs 3 4 6 8
LnGrp LOS A B
Approach Vol, veh/h 1358 460 459 Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
Approach Delay, s/veh 2.4 2.6 49.9 Approach LOS A A D Timer - Assigned Phs 3 4 6 8
Approach LOS A A D Timer - Assigned Phs 3 4 6 8 Phe Duration (C) V: Po) = 10.0 64.6 25.4 74.6
Timer - Assigned Phs 3 4 6 8 Pho Duration (C) V(Po) and the second sec
Pris Duration (G+Y+RC), S 10.0 04.0 25.4 74.0
Change Period (Y+Rc), s 5.5 6.0 6.0 6.0
Max Green Setting (Gmax), s 4.5 55.0 23.0 65.0
Max Q Clear Time (g c+l1), s 5.4 2.0 18.6 2.0
Green Ext Time (p c), s 0.0 11.9 0.8 2.0
UCM 6th Ctrl Dolov 12.0

	۶	-	\mathbf{F}	•	-	*	۸	Ť	۲	1	Ŧ	∢	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	۲.				•	1	<u> </u>	ef -					
Traffic Volume (veh/h)	362	752	0	0	348	545	73	3	46	0	0	0	
Future Volume (veh/h)	362	752	0	0	348	545	73	3	46	0	0	0	
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0				
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00				
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Work Zone On Approac	h	No			No			No					
Adj Sat Flow, veh/h/ln	1870	1870	0	0	1870	1870	1885	1885	1885				
Adj Flow Rate, veh/h	398	826	0	0	382	599	80	3	51				
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91				
Percent Heavy Veh, %	2	2	0	0	2	2	1	1	1				
Cap, veh/h	518	1571	0	0	1384	1173	72	4	61				
Arrive On Green	0.08	1.00	0.00	0.00	0.74	0.74	0.04	0.04	0.04				
Sat Flow, veh/h	1781	1870	0	0	1870	1585	1795	90	1522				
Grp Volume(v), veh/h	398	826	0	0	382	599	80	0	54				
Grp Sat Flow(s),veh/h/lr	1781	1870	0	0	1870	1585	1795	0	1611				
Q Serve(g_s), s	0.0	0.0	0.0	0.0	6.7	15.8	4.0	0.0	3.3				
Cycle Q Clear(g_c), s	0.0	0.0	0.0	0.0	6.7	15.8	4.0	0.0	3.3				
Prop In Lane	1.00		0.00	0.00		1.00	1.00		0.94				
Lane Grp Cap(c), veh/h	518	1571	0	0	1384	1173	72	0	64				
V/C Ratio(X)	0.77	0.53	0.00	0.00	0.28	0.51	1.11	0.00	0.84				
Avail Cap(c_a), veh/h	527	1571	0	0	1384	1173	72	0	64				
HCM Platoon Ratio	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00				
Upstream Filter(I)	0.37	0.37	0.00	0.00	1.00	1.00	1.00	0.00	1.00				
Uniform Delay (d), s/veh	n 13.5	0.0	0.0	0.0	4.2	5.4	48.0	0.0	47.7				
Incr Delay (d2), s/veh	2.6	0.5	0.0	0.0	0.5	1.6	140.6	0.0	59.3				
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				
%ile BackOfQ(50%),veh	n/In6.5	0.2	0.0	0.0	2.2	4.5	4.6	0.0	2.4				
Unsig. Movement Delay	, s/veh	1											
LnGrp Delay(d),s/veh	16.0	0.5	0.0	0.0	4.7	7.0	188.6	0.0	107.0				
LnGrp LOS	B	A	A	A	A	A	F	A	F				
Approach Vol, veh/h		1224			981			134					
Approach Delay, s/veh		5.5			6.1			155.7					
Approach LOS		А			А			F					
Timer - Assigned Phs		2		4			7	8					
Phs Duration (G+Y+Rc)	, S	10.0		90.0			10.0	80.0					
Change Period (Y+Rc),	S	6.0		6.0			6.0	* 6					
Max Green Setting (Gm	ax), s	4.0		84.0			4.5	* 74					
Max Q Clear Time (g_c-	+I1), s	6.0		2.0			2.0	17.8					
Green Ext Time (p_c), s	;	0.0		7.5			0.3	5.3					
Intersection Summary													
HCM 6th Ctrl Delay			14.4										
HCM 6th LOS			В										

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

	-	$\mathbf{\hat{z}}$	1	+	1	1
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	1	5	•	5	1
Traffic Volume (veh/h)	390	400	35	315	619	38
Future Volume (veh/h)	390	400	35	315	619	38
Initial Q (Qb) veh	0	0	0	0	0	0
Ped-Bike Adi(A_nhT)	v	1 00	1 00	Ū	1 00	1 00
Parking Rus Adi	1 00	1.00	1.00	1 00	1.00	1.00
Work Zone On Approac	h No	1.00	1.00	No	No	1.00
Adi Sat Flow, yeb/b/lp	1856	1856	1856	1856	1885	1885
Adj Sat How, ven/n/m	1000	1000	1030	358	703	1005
Auj Flow Rale, veli/li	443	0	40	0.00	703	0 00
Peak Hour Factor	0.00	0.00	0.00	0.00	0.00	0.00
Percent Heavy Veh, %	3	3	3	3	1	1
Cap, veh/h	536		98	742	838	
Arrive On Green	0.29	0.00	0.06	0.40	0.47	0.00
Sat Flow, veh/h	1856	1572	1767	1856	1795	1598
Grp Volume(v), veh/h	443	0	40	358	703	0
Grp Sat Flow(s),veh/h/li	n1856	1572	1767	1856	1795	1598
Q Serve(g_s), s	20.1	0.0	2.0	12.9	30.9	0.0
Cycle Q Clear(g c), s	20.1	0.0	2.0	12.9	30.9	0.0
Prop In Lane		1.00	1.00		1.00	1.00
Lane Grn Can(c) veh/h	536	1.00	98	742	838	1.00
V/C Ratio(X)	0.83		0.41	0.48	0.84	
Avail Can(c, a) veh/h	536		0.41 QQ	7/2	0.04	
HCM Plateen Patie	1.00	1.00	1 00	1 00	1.00	1 00
Lingtroom Filter/I)	1.00	0.00	1.00	1.00	1.00	0.00
	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/vel	129.9	0.0	41.1	20.1	21.0	0.0
Incr Delay (d2), s/veh	13.6	0.0	12.1	2.2	9.9	0.0
Initial Q Delay(d3),s/vel	n 0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),vel	h/11n0.6	0.0	1.2	5.7	13.8	0.0
Unsig. Movement Delay	/, s/veh					
LnGrp Delay(d),s/veh	43.5	0.0	53.1	22.3	30.9	0.0
LnGrp LOS	D		D	С	С	
Approach Vol. veh/h	443	А		398	703	А
Approach Delay, s/veh	43.5			25.4	30.9	
Approach LOS	D			C	C	
	U			U	J	
Timer - Assigned Phs		2		4	5	6
Phs Duration (G+Y+Rc)), S	42.0		48.0	10.0	32.0
Change Period (Y+Rc).	S	6.0		6.0	5.0	6.0
Max Green Setting (Gm	nax). s	36.0		42.0	5.0	26.0
Max Q Clear Time (g c	+ 1). s	14.9		32.9	4.0	22.1
Green Ext Time (n_c)	· · /, J	4.8		2.3	0.0	1.8
				2.0	0.0	1.0
Intersection Summary						
HCM 6th Ctrl Delay			33.1			
HCM 6th LOS			С			

Notes

Unsignalized Delay for [NBR, EBR] is excluded from calculations of the approach delay and intersection delay.

	≯	\mathbf{i}	1	Ť	ţ	∢		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations		1	ካካ	^	^	1		
Traffic Volume (vph)	0	274	198	1210	1761	10		
Future Volume (vph)	0	274	198	1210	1761	10		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		4.0	6.0	4.0	7.0	7.0		
Lane Util. Factor		1.00	0.97	0.95	0.95	1.00		
Frpb, ped/bikes		0.99	1.00	1.00	1.00	1.00		
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00		
Frt		0.86	1.00	1.00	1.00	0.85		
Flt Protected		1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)		1591	3099	3195	3406	1524		
Flt Permitted		1.00	0.95	1.00	1.00	1.00		
Satd. Flow (perm)		1591	3099	3195	3406	1524		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	0	291	211	1287	1873	11		
RTOR Reduction (vph)	0	0	0	0	0	3		
Lane Group Flow (vph)	0	291	211	1287	1873	8		
Confl. Peds. (#/hr)		1						
Heavy Vehicles (%)	2%	2%	13%	13%	6%	6%		
Turn Type		Free	Prot	NA	NA	Perm		
Protected Phases			1	Free	2			
Permitted Phases		Free				2		
Actuated Green, G (s)		100.0	12.1	100.0	74.9	74.9		
Effective Green, g (s)		100.0	12.1	100.0	74.9	74.9		
Actuated g/C Ratio		1.00	0.12	1.00	0.75	0.75		
Clearance Time (s)			6.0		7.0	7.0		
Vehicle Extension (s)			3.0		5.0	5.0		
Lane Grp Cap (vph)		1591	374	3195	2551	1141		
v/s Ratio Prot			0.07	0.40	c0.55			
v/s Ratio Perm		0.18				0.01		
v/c Ratio		0.18	0.56	0.40	0.73	0.01		
Uniform Delay, d1		0.0	41.5	0.0	7.0	3.2		
Progression Factor		1.00	0.52	1.00	0.36	0.07		
Incremental Delay, d2		0.3	1.6	0.3	0.9	0.0		
Delay (s)		0.3	23.4	0.3	3.4	0.2		
Level of Service		А	С	A	A	A		
Approach Delay (s)	0.3			3.6	3.4			
Approach LOS	Α			А	А			
Intersection Summarv								
HCM 2000 Control Delay			32	H	CM 2000	Level of Service	2	
HCM 2000 Volume to Canacity	v ratio		0.72		2000	20101 01 001 100		
Actuated Cycle Length (s)	, 1000		100.0	Si	um of lost	time (s)		
Intersection Capacity Utilizatio	n		73.2%		U Level o	of Service		
Analysis Period (min)			15	10	2 201010			

c Critical Lane Group

	≯	→	$\mathbf{\hat{z}}$	4	+	*	•	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲		1				۲	≜t≽			44	1
Traffic Volume (vph)	276	0	612	0	0	0	427	1113	0	0	1319	232
Future Volume (vph)	276	0	612	0	0	0	427	1113	0	0	1319	232
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	10	12	12	12	12	12	12	10	10	12
Total Lost time (s)	6.5		6.5				6.5	6.5			6.5	6.5
Lane Util. Factor	1.00		1.00				1.00	0.95			0.95	1.00
Frpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	0.98
Flpb, ped/bikes	1.00		1.00				1.00	1.00			1.00	1.00
Frt	1.00		0.85				1.00	1.00			1.00	0.85
Flt Protected	0.95		1.00				0.95	1.00			1.00	1.00
Satd. Flow (prot)	1752		1463				1583	3167			3179	1498
Flt Permitted	0.95		1.00				0.08	1.00			1.00	1.00
Satd. Flow (perm)	1752		1463				131	3167			3179	1498
Peak-hour factor, PHF	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Adj. Flow (vph)	297	0	658	0	0	0	459	1197	0	0	1418	249
RTOR Reduction (vph)	0	0	22	0	0	0	0	0	0	0	0	47
Lane Group Flow (vph)	297	0	636	0	0	0	459	1197	0	0	1418	202
Confl. Peds. (#/hr)							1					1
Confl. Bikes (#/hr)												1
Heavy Vehicles (%)	3%	3%	3%	0%	0%	0%	14%	14%	14%	6%	6%	6%
Turn Type	Prot		pt+ov				pm+pt	NA			NA	pm+ov
Protected Phases	4		. 14				1	16			2	. 4
Permitted Phases			4				16					2
Actuated Green, G (s)	13.5		42.5				73.5	73.5			44.5	58.0
Effective Green, g (s)	13.5		42.5				73.5	73.5			44.5	58.0
Actuated g/C Ratio	0.14		0.42				0.74	0.74			0.44	0.58
Clearance Time (s)	6.5						6.5				6.5	6.5
Vehicle Extension (s)	3.5						3.0				6.0	3.5
Lane Grp Cap (vph)	236		621				422	2327			1414	966
v/s Ratio Prot	c0.17		c0.43				0.24	0.38			0.45	0.03
v/s Ratio Perm							c0.55					0.11
v/c Ratio	1.26		1.02				1.09	0.51			1.00	0.21
Uniform Delay, d1	43.2		28.8				30.0	5.6			27.8	10.0
Progression Factor	1.00		1.00				0.65	0.30			1.00	1.00
Incremental Delay, d2	145.9		42.5				66.4	0.2			24.6	0.1
Delay (s)	189.2		71.2				85.8	1.9			52.4	10.2
Level of Service	F		E				F	А			D	В
Approach Delay (s)		107.9			0.0			25.1			46.1	
Approach LOS		F			А			С			D	
Intersection Summary												
HCM 2000 Control Delay			51.8		CM 2000	Level of	Sonvico					
HCM 2000 Volume to Canacity ratio 51						Level OI	Gervice		U			
				C		time (s)			10.5			
Intersection Canacity Litilize	89.6%			of Service	2		19.5 E					
Analysis Period (min)			15	IC.			5		L			
			10									

c Critical Lane Group

8 ATTACHMENT C (SIMTRAFFIC[™] REPORTS)

SimTraffic Simulation Summary No Action Conditions AM 04/30/2020

Summary of All Intervals

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Start Time		5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52
End Time		7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00
Total Time (min)		68	68	68	68	68	68	68	68	68	68	68
Time Recorded (min)	60	60	60	60	60	60	60	60	60	60	60
# of Intervals		5	5	5	5	5	5	5	5	5	5	5
# of Recorded Interv	/als	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		9382	9197	9328	9320	9349	9314	9345	9337	9313	9069	9289
Vehs Exited		8940	8781	8840	8873	8879	8981	8939	8919	8962	8778	8889
Starting Vehs		432	433	440	439	428	430	481	421	447	455	434
Ending Vehs		874	849	928	886	898	763	887	839	798	746	841
Travel Distance (mi)		10403	10379	10185	10224	10412	10517	10140	10272	10339	10144	10302
Travel Time (hr)		667.0	668.3	734.1	749.4	747.1	703.7	775.5	672.4	723.4	668.3	710.9
Total Delay (hr)		377.1	378.3	450.0	464.4	455.7	410.5	492.2	385.5	434.1	384.7	423.2
Total Stops		14682	14389	15728	15582	15294	15283	14979	15148	14852	14546	15049
Fuel Used (gal)		410.8	410.3	419.3	422.3	426.0	419.2	424.5	406.9	420.7	406.0	416.6
Interval #0 Informat	ion See	ding										
Start Time	5:52											
End Time	6:00											
Total Time (min)	8											
Volumes adjusted b	y Growtł	n Factors.										
No data recorded th	is interv	al.										
Interval #1 Informat	ion Reco	ording										

 Interval #1 Information Recording

 Start Time
 6:00

 End Time
 6:15

 Total Time (min)
 15

 Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2315	2279	2295	2290	2427	2447	2378	2399	2337	2266	2334
Vehs Exited	2234	2209	2147	2149	2265	2291	2257	2242	2188	2222	2219
Starting Vehs	432	433	440	439	428	430	481	421	447	455	434
Ending Vehs	513	503	588	580	590	586	602	578	596	499	560
Travel Distance (mi)	2655	2634	2498	2513	2726	2641	2645	2566	2595	2559	2603
Travel Time (hr)	120.2	116.3	125.3	126.8	124.1	129.6	134.3	121.0	125.9	128.3	125.2
Total Delay (hr)	45.9	42.6	55.5	56.8	47.6	56.0	60.4	48.9	53.1	56.8	52.4
Total Stops	3088	2913	3384	3383	3206	3294	3296	3105	3187	3363	3215
Fuel Used (gal)	94.4	94.0	92.0	92.5	96.2	95.9	96.7	92.7	94.4	94.4	94.3

Interval #2 Information Recording

Start Time6:15End Time6:30

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2416	2324	2323	2356	2309	2308	2339	2274	2385	2359	2335
Vehs Exited	2320	2206	2253	2215	2200	2216	2275	2204	2312	2258	2245
Starting Vehs	513	503	588	580	590	586	602	578	596	499	560
Ending Vehs	609	621	658	721	699	678	666	648	669	600	642
Travel Distance (mi)	2677	2608	2601	2508	2594	2640	2559	2509	2654	2554	2590
Travel Time (hr)	152.3	144.5	158.7	165.9	161.5	160.7	168.6	155.7	163.5	144.7	157.6
Total Delay (hr)	77.9	71.8	86.0	95.8	89.2	87.1	97.3	85.6	89.0	73.2	85.3
Total Stops	3724	3639	3873	4011	3871	3903	3787	3795	3969	3630	3818
Fuel Used (gal)	101.6	98.3	101.0	99.5	100.5	101.8	101.5	97.5	103.1	97.7	100.2

SimTraffic Simulation Summary No Action Conditions AM 04/30/2020

Interval #3 Information RecordingStart Time6:30End Time6:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2310	2324	2360	2298	2322	2268	2291	2290	2357	2281	2301
Vehs Exited	2156	2184	2210	2203	2206	2198	2213	2209	2307	2169	2207
Starting Vehs	609	621	658	721	699	678	666	648	669	600	642
Ending Vehs	763	761	808	816	815	748	744	729	719	712	754
Travel Distance (mi)	2496	2552	2548	2526	2521	2565	2504	2595	2558	2508	2537
Travel Time (hr)	178.1	179.6	199.6	205.2	207.6	187.9	210.0	182.4	199.2	180.7	193.0
Total Delay (hr)	108.5	108.6	128.7	135.0	136.9	116.4	139.9	110.2	127.9	110.5	122.3
Total Stops	3915	3777	4167	3863	4032	4034	3862	4098	3889	3791	3934
Fuel Used (gal)	102.0	103.4	108.0	108.7	109.4	105.5	108.0	105.3	109.2	104.0	106.4

Interval #4 Information RecordingStart Time6:45End Time7:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2341	2270	2350	2376	2291	2291	2337	2374	2234	2163	2300
Vehs Exited	2230	2182	2230	2306	2208	2276	2194	2264	2155	2129	2214
Starting Vehs	763	761	808	816	815	748	744	729	719	712	754
Ending Vehs	874	849	928	886	898	763	887	839	798	746	841
Travel Distance (mi)	2575	2585	2539	2677	2571	2671	2433	2602	2531	2522	2571
Travel Time (hr)	216.5	227.9	250.5	251.5	253.9	225.5	262.6	213.3	234.7	214.6	235.1
Total Delay (hr)	144.7	155.4	179.7	176.8	181.9	151.0	194.5	140.8	164.1	144.3	163.3
Total Stops	3955	4060	4304	4325	4185	4052	4034	4150	3807	3762	4057
Fuel Used (gal)	112.7	114.6	118.4	121.7	119.9	116.0	118.3	111.5	114.1	109.9	115.7

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report No Action Conditions AM 04/30/2020

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	FB	FB	FR	NR	NB	NB	SB	SB
wovernent	LD	LD	LD	ND	ND	ND	30	50
Directions Served	L	L	R	Т	Т	Т	Т	Т
Maximum Queue (ft)	112	174	74	135	133	195	112	123
Average Queue (ft)	18	87	5	51	30	78	30	38
95th Queue (ft)	65	152	107	108	87	155	82	97
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)				0				
Queuing Penalty (veh)				0				
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								

Queuing Penalty (veh)

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB		
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т		
Maximum Queue (ft)	209	260	355	318	134	153	136	205	215	252		
Average Queue (ft)	99	155	204	183	56	77	71	83	89	113		
95th Queue (ft)	181	235	295	281	114	136	123	161	172	208		
Link Distance (ft)		1405	1405			282	282	215	215	215		
Upstream Blk Time (%)								0	0	0		
Queuing Penalty (veh)								0	1	2		
Storage Bay Dist (ft)	400			300	250							
Storage Blk Time (%)				0	0							
Queuing Penalty (veh)				1	1							
Intersection: 3: MD 201 &	SHA Dist.	3/Crescent	t Drive									
Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	51	184	99	91	153	210	212	21	87	85	167	191
Average Queue (ft)	5	88	38	35	25	69	62	1	23	14	28	34
95th Queue (ft)	29	156	78	75	89	154	158	22	63	53	105	120
Link Distance (ft)	239	429			266	266	266			783	783	783
Upstream Blk Time (%)							0	0				
Queuing Penalty (veh)							0	0				
Storage Bay Dist (ft)			250	250				200	300			
Storage Blk Time (%)			0	0				0				
Queuing Penalty (veh)			0	0				0				

Intersection: 4: MD 201 & Ivy Lane

Movement	NB	NB	NB	NB	SB	SB
Directions Served	L	L	Т	Т	Т	Т
Maximum Queue (ft)	89	163	194	203	70	110
Average Queue (ft)	33	67	21	22	8	35
95th Queue (ft)	78	127	181	187	39	90
Link Distance (ft)		783	783	783	1193	1193
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	350					
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 5: MD 201 & Cherrywood Lane

Movement	EB	EB	EB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	L	Т	Т	Т	Т	R
Maximum Queue (ft)	274	818	145	603	1007	1013	250	318	247
Average Queue (ft)	156	263	40	200	331	331	119	162	70
95th Queue (ft)	286	679	104	624	926	928	215	280	178
Link Distance (ft)		1306	1306		1193	1193	610	610	
Upstream Blk Time (%)			0			1	2		
Queuing Penalty (veh)			0			9	12		
Storage Bay Dist (ft)	250			750					250
Storage Blk Time (%)	8	19		0	13			1	0
Queuing Penalty (veh)	13	34		0	29			3	0

Queuing and Blocking Report No Action Conditions AM 04/30/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	B6006	SB	SB
Directions Served	L	R	L	TR	Т	Т	Т	R
Maximum Queue (ft)	655	375	475	1479	2326	597	1664	275
Average Queue (ft)	289	253	463	1303	1503	239	1553	120
95th Queue (ft)	723	404	513	1838	3045	683	1928	306
Link Distance (ft)	968			1368	2212	490	1542	
Upstream Blk Time (%)		6			29	22	19	33
Queuing Penalty (veh)		0			409	320	268	415
Storage Bay Dist (ft)		350	450					250
Storage Blk Time (%)	8	5	37	0			34	0
Queuing Penalty (veh)	24	6	324	2			71	1

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	
Directions Served		LR	TR	LT
Maximum Queue (ft) 590	104	938		
Average Queue (ft)	296	5	748	
95th Queue (ft)	642	45	1266	
Link Distance (ft)	625	1542	843	
Upstream Blk Time (%)	13		29	
Queuing Penalty (veh)	0		370	
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	111	978	525	269	361	65	421	489	208	300	848	835
Average Queue (ft)	42	565	349	140	125	18	201	169	12	75	521	486
95th Queue (ft)	97	1276	726	246	266	62	368	356	107	266	903	878
Link Distance (ft)		920			512			617			813	813
Upstream Blk Time (%)		48			0			0			15	14
Queuing Penalty (veh)		0			0			1			0	0
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)			0	53	2	38	0	1	2	0	0	54
Queuing Penalty (veh)			1	88	4	86	1	4	11	0	0	14

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	106	68	41	161	9
Average Queue (ft)	30	9	3	35	0
95th Queue (ft)	83	41	23	110	7
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			1	0	
Queuing Penalty (veh)			0	0	

Intersection: 10: Powder Mill Road & Poultry Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh)	EB LT 106 55 90 97	WB TR 127 76 110 858 0 0
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)		0

Intersection: 11: Powder Mill Road

Movement	NB
Directions Served	L
Maximum Queue (ft)	38
Average Queue (ft)	13
95th Queue (ft)	38
Link Distance (ft)	46
Upstream Blk Time (%)	0
Queuing Penalty (veh)	0
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

Intersection: 12: Powder Mill Road

Movement	EB	WB	SB
Directions Served	L	TR	LR
Maximum Queue (ft)	24	5	102
Average Queue (ft)	1	0	47
95th Queue (ft)	12	4	83
Link Distance (ft)		153	467
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)	50		
Storage Blk Time (%)		0	
Queuing Penalty (veh)		0	

Intersection: 13: Powder Mill Road

Movement	WB	WB	SB	SB
Directions Served	L	Т	L	TR
Maximum Queue (ft)	49	2	58	237
Average Queue (ft)	13	0	47	92
95th Queue (ft)	37	2	58	187
Link Distance (ft)		550		850
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	225		25	
Storage Blk Time (%)			47	22
Queuing Penalty (veh)			95	55
Intersection: 14: Powder Mill	Road			
Movement	EB	WB	NB	NB
Directions Served	L	TR	L	TR
Maximum Queue (ft)	80	11	67	87
Average Queue (ft)	26	1	35	31
95th Queue (ft)	59	8	58	59
Link Distance (ft)		268		857
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)	250		50	
Storage Blk Time (%)			5	1
Queuing Penalty (veh)			5	1
Intersection: 15: Powder Mill	Road			
Movement	EB	EB	WB	WB
Directions Served	Т	R	L	Т
Maximum Queue (ft)	193	53	98	215
Average Queue (ft)	92	6	38	107
95th Queue (ft)	157	31	80	183
Link Distance (ft)	546			792
Upstream Blk Time (%)				
Queuing Penalty (veh)				
Storage Bay Dist (ft)		260	300	
Storage Blk Time (%)		0		
Queuing Penalty (veh)		0		

SimTraffic Simulation Summary No Action Conditions PM 05/01/2020

Summary of All Intervals

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Start Time		2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52
End Time		4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00
Total Time (min)		68	68	68	68	68	68	68	68	68	68	68
Time Recorded (mir	ר)	60	60	60	60	60	60	60	60	60	60	60
# of Intervals		5	5	5	5	5	5	5	5	5	5	5
# of Recorded Inter	vals	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		12725	12715	12624	12551	12747	12640	12583	12544	12792	12681	12663
Vehs Exited		12510	12480	12449	12398	12573	12428	12390	12385	12666	12459	12471
Starting Vehs		563	602	629	611	601	573	621	641	590	597	598
Ending Vehs		778	837	804	764	775	785	814	800	716	819	783
Travel Distance (mi)	1	13559	13646	13569	13531	13553	13488	13557	13340	13553	13548	13534
Travel Time (hr)		914.4	933.4	898.4	854.0	908.0	929.6	965.4	985.6	857.7	957.4	920.4
Total Delay (hr)		524.4	540.5	507.0	464.2	517.6	542.5	577.0	602.4	467.4	567.6	531.1
Total Stops		16113	16846	17110	16060	15847	16586	17225	16104	15917	16695	16449
Fuel Used (gal)		548.2	552.9	542.5	535.9	547.3	550.5	557.9	557.4	541.5	557.0	549.1
Interval #0 Informa	tion Seed	ling										
Start Time	2:52											
End Time	3:00											
Total Time (min)	8											
Volumes adjusted b	y Growth	Factors.										
No data recorded th	nis interva	al.										

Interval #1 Information RecordingStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3155	3258	3283	3177	3226	3110	3225	3114	3310	3192	3200
Vehs Exited	3077	3125	3215	3119	3104	2987	3062	3073	3164	3105	3101
Starting Vehs	563	602	629	611	601	573	621	641	590	597	598
Ending Vehs	641	735	697	669	723	696	784	682	736	684	703
Travel Distance (mi)	3263	3355	3493	3388	3400	3209	3346	3339	3431	3396	3362
Travel Time (hr)	163.7	175.2	171.9	170.4	175.0	169.8	180.4	183.5	164.1	175.6	173.0
Total Delay (hr)	70.1	78.4	71.2	73.0	77.2	77.5	84.7	88.0	65.5	78.0	76.3
Total Stops	3665	3708	3970	4037	4073	3785	4227	3952	3645	4048	3908
Fuel Used (gal)	120.4	125.3	127.5	124.5	125.9	120.3	125.9	126.4	125.9	126.4	124.8

Interval #2 Information Recording

Start Time3:15End Time3:30

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3251	3166	3088	3147	3152	3212	3108	3135	3285	3194	3171
Vehs Exited	3119	3049	3075	3104	3184	3160	3107	3102	3277	3094	3125
Starting Vehs	641	735	697	669	723	696	784	682	736	684	703
Ending Vehs	773	852	710	712	691	748	785	715	744	784	748
Travel Distance (mi)	3381	3401	3329	3388	3336	3419	3425	3289	3450	3432	3385
Travel Time (hr)	215.4	219.2	190.0	193.3	212.7	216.4	224.5	233.6	201.5	219.7	212.6
Total Delay (hr)	118.2	121.4	93.9	95.6	116.1	118.9	126.1	139.1	102.0	120.8	115.2
Total Stops	4145	4189	4140	3943	3781	4138	4185	4024	4055	4150	4066
Fuel Used (gal)	133.4	135.8	127.1	129.5	132.2	136.1	136.6	136.0	134.6	136.4	133.8

SimTraffic Simulation Summary No Action Conditions PM 05/01/2020

Interval #3 Information RecordingStart Time3:30End Time3:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3160	3185	3158	3072	3224	3128	3107	3117	3127	3111	3142
Vehs Exited	3137	3190	3062	3004	3133	3107	3075	3065	3062	3082	3091
Starting Vehs	773	852	710	712	691	748	785	715	744	784	748
Ending Vehs	796	847	806	780	782	769	817	767	809	813	795
Travel Distance (mi)	3478	3426	3405	3342	3406	3402	3371	3304	3295	3311	3374
Travel Time (hr)	248.1	248.9	249.1	221.3	244.8	253.7	260.4	268.6	224.7	258.8	247.8
Total Delay (hr)	147.9	150.7	150.8	125.0	146.6	156.1	163.5	173.6	129.5	163.5	150.7
Total Stops	4129	4473	4389	3935	3929	4401	4465	3990	4067	4150	4190
Fuel Used (gal)	142.4	141.6	141.5	134.1	141.5	142.9	142.3	142.1	134.7	140.7	140.4
Interval #4 Information Re	ecording										

Start Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3159	3106	3095	3155	3145	3190	3143	3178	3070	3184	3141
Vehs Exited	3177	3116	3097	3171	3152	3174	3146	3145	3163	3178	3152
Starting Vehs	796	847	806	780	782	769	817	767	809	813	795
Ending Vehs	778	837	804	764	775	785	814	800	716	819	783
Travel Distance (mi)	3438	3463	3342	3414	3412	3457	3415	3408	3377	3409	3413
Travel Time (hr)	287.2	290.1	287.3	269.1	275.5	289.7	300.1	299.8	267.4	303.4	287.0
Total Delay (hr)	188.2	190.1	191.1	170.6	177.7	190.0	202.7	201.7	170.4	205.3	188.8
Total Stops	4174	4476	4611	4145	4064	4262	4348	4138	4150	4347	4271
Fuel Used (gal)	151.9	150.1	146.4	147.8	147.7	151.1	152.9	153.0	146.3	153.6	150.1

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report No Action Conditions PM 05/01/2020

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	т	Т	Т	т	Т
Maximum Queue (ft)	98	463	450	156	194	215	149	173
Average Queue (ft)	21	100	19	68	58	103	61	72
95th Queue (ft)	64	257	211	128	140	188	124	139
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)			0	0				
Queuing Penalty (veh)			0	0				
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								

Queuing Penalty (veh)

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	B6001	SB	SB	SB	
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т	Т	
Maximum Queue (ft)	273	332	283	268	148	180	219	8	172	180	203	
Average Queue (ft)	154	206	170	152	70	94	103	0	84	90	90	
95th Queue (ft)	247	295	250	231	128	159	175	8	144	155	170	
Link Distance (ft)		1405	1405			282	282	39	215	215	215	
Upstream Blk Time (%)							0	0	0	0	0	
Queuing Penalty (veh)							0	0	0	0	1	
Storage Bay Dist (ft)	400			300	250							
Storage Blk Time (%)				0	0							
Queuing Penalty (veh)				0	0							
Intersection: 3: MD 201 &	SHA Dist.	3/Crescent	Drive									
Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	Т	R	L	Т	Т	TR
Maximum Queue (ft)	55	233	91	68	223	281	314	202	149	102	128	146
Average Queue (ft)	14	111	41	19	85	147	145	16	67	18	31	36
95th Queue (ft)	39	193	78	53	185	248	258	110	122	62	85	101
Link Distance (ft)	239	429			266	266	266			783	783	783
Upstream Blk Time (%)						0	0	0				
Queuing Penalty (veh)						0	1	2				
Storage Bay Dist (ft)			250	250				200	300			
Storage Blk Time (%)			0			0		2	0			
Queuing Penalty (veh)			0			0		3	0			

Intersection: 4: MD 201 & Ivy Lane

NB	NB	SB	SB
L	L	Т	Т
152	172	141	171
59	89	58	96
118	141	116	153
	783	1193	1193
350			
	NB L 152 59 118 350	NB NB L L 152 172 59 89 118 141 783 350	NB NB SB L L T 152 172 141 59 89 58 118 141 116 783 1193 350

Intersection: 5: MD 201 & Cherrywood Lane

Movement	EB	EB	EB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	L	Т	Т	Т	Т	R
Maximum Queue (ft)	213	230	308	207	186	191	269	276	237
Average Queue (ft)	113	139	166	104	56	51	131	156	60
95th Queue (ft)	185	207	277	187	144	137	228	254	145
Link Distance (ft)		1306	1306		1193	1193	610	610	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250			750					250
Storage Blk Time (%)	0	0						1	0
Queuing Penalty (veh)	0	0						3	0

Queuing and Blocking Report No Action Conditions PM 05/01/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	SB	SB
Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	1019	375	475	1363	316	1648	275
Average Queue (ft)	950	367	417	620	18	1368	144
95th Queue (ft)	1181	425	546	1278	178	2041	341
Link Distance (ft)	968			1368	2212	1546	
Upstream Blk Time (%)		64			2		25
Queuing Penalty (veh)		0			32		272
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	30	38	13	1		39	0
Queuing Penalty (veh)	186	106	147	5		67	1

Intersection: 7: MD 201 & Beaver Dam Road

WB	NB	SB
LTR	TR	LT
560	11	919
300	1	655
618	10	1192
626	1546	837
8		28
0		316
	WB LTR 560 300 618 626 8 0	WB NB LTR TR 560 11 300 1 618 10 626 1546 8 0

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	275	894	524	205	277	65	425	659	300	299	461	417
Average Queue (ft)	211	366	109	68	107	20	272	329	76	113	280	254
95th Queue (ft)	321	699	440	141	216	64	451	596	290	258	443	413
Link Distance (ft)		1433			523			618			816	816
Upstream Blk Time (%)			0						1			
Queuing Penalty (veh)			0						16			
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)		6	16	1		33	1	2	9	0	0	12
Queuing Penalty (veh)		47	103	4		45	2	13	61	1	0	11

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	84	25	23	200	16
Average Queue (ft)	28	2	2	31	1
95th Queue (ft)	68	12	13	118	16
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					0
Queuing Penalty (veh)					0
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			0		0
Queuing Penalty (veh)			0		0

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	B69	WB	SB
Directions Served	LT	Т	TR	LR
Maximum Queue (ft)	192	176	114	22
Average Queue (ft)	149	44	67	7
95th Queue (ft)	200	133	98	24
Link Distance (ft)	97	325	866	391
Upstream Blk Time (%)		31		
Queuing Penalty (veh)		218		
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Queuing and Blocking Report No Action Conditions PM 05/01/2020

Intersection: 11: Powder Mill Road

EB	NB
TR	L
65	54
7	19
36	47
383	48
	1
	0
	EB TR 65 7 36 383

Intersection: 12: Powder Mill Road & Springfield Road

Movement	EB	SB
Directions Served	L	LR
Maximum Queue (ft)	33	305
Average Queue (ft)	6	128
95th Queue (ft)	27	257
Link Distance (ft)		467
Upstream Blk Time (%)		0
Queuing Penalty (veh)		0
Storage Bay Dist (ft)	50	
Storage Blk Time (%)		0
Queuing Penalty (veh)		0

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

EB	WB	SB	SB
TR	L	L	TR
27	111	58	899
2	44	49	767
15	83	54	1112
153			850
			74
			0
	225	25	
		98	12
		143	34
	EB TR 27 2 15 153	EB WB TR L 27 111 2 44 15 83 153 225	EB WB SB TR L L 27 111 58 2 44 49 15 83 54 153 225 25 98 143

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	NB	NB
Directions Served	L	Т	TR	L	TR
Maximum Queue (ft)	234	33	47	75	618
Average Queue (ft)	116	1	10	63	278
95th Queue (ft)	204	29	33	87	678
Link Distance (ft)		550	268		857
Upstream Blk Time (%)					1
Queuing Penalty (veh)					0
Storage Bay Dist (ft)	250			50	
Storage Blk Time (%)	0	0		82	5
Queuing Penalty (veh)	2	0		40	4

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement	EB	EB	WB	WB	NB
Directions Served	Т	R	L	Т	L
Maximum Queue (ft)	257	75	79	231	439
Average Queue (ft)	144	7	28	119	232
95th Queue (ft)	225	44	66	202	375
Link Distance (ft)	546			792	892
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		260	300		
Storage Blk Time (%)	0	0		0	0
Queuing Penalty (veh)	1	0		0	0

SimTraffic Simulation Summary Action Conditions AM 05/04/2020

Summary of All Intervals

Run Number		1	10	2	3	4	5	6	7	8	9	Avg	
Start Time		5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	
End Time		7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	
Total Time (min)		68	68	68	68	68	68	68	68	68	68	68	
Time Recorded (m	in)	60	60	60	60	60	60	60	60	60	60	60	
# of Intervals		5	5	5	5	5	5	5	5	5	5	5	
# of Recorded Inte	ervals		4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		10110	10080	10012	9873	9882	9857	9987	9864	9928	9919	9954	
Vehs Exited		9481	9504	9376	9288	9268	9242	9417	9334	9259	9296	9345	
Starting Vehs		519	537	543	530	533	570	517	523	507	505	525	
Ending Vehs		1148	1113	1179	1115	1147	1185	1087	1053	1176	1128	1127	
Travel Distance (m	ni)	11803	11757	11745	11577	11337	11606	11509	11597	11563	11659	11615	
Travel Time (hr)		971.2	895.0	985.4	1008.8	993.0	1176.8	957.8	969.9	1037.5	930.6	992.6	
Total Delay (hr)		639.9	564.8	655.5	683.6	673.6	850.8	634.9	643.8	712.3	603.4	666.3	
Total Stops		20136	18417	19732	18594	19091	19904	17265	18466	19886	18464	18991	
Fuel Used (gal)		508.1	491.9	511.2	512.1	505.5	548.9	502.3	502.1	515.7	495.4	509.3	
Interval #0 Inform	ation See	eding											
Start Time	5:52												
End Time	6:00												
Total Time (min)	8												
Volumes adjusted	by Growt	h Factors.											
No data recorded	this inter	val.											
Interval #1 Inform	ation Red	cording											
Start Time	6:00	Ū											
End Time	6:15												
Total Time (min)	15												

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2599	2534	2511	2544	2556	2606	2510	2596	2580	2451	2543
Vehs Exited	2389	2430	2303	2371	2367	2344	2333	2405	2359	2247	2353
Starting Vehs	519	537	543	530	533	570	517	523	507	505	525
Ending Vehs	729	641	751	703	722	832	694	714	728	709	713
Travel Distance (mi)	3004	2964	3021	2955	2919	2989	2900	2940	2979	2915	2959
Travel Time (hr)	159.2	152.9	164.7	155.5	157.7	181.8	154.7	152.9	165.8	159.7	160.5
Total Delay (hr)	74.9	69.7	80.0	72.7	75.6	97.7	73.0	70.3	82.1	77.6	77.4
Total Stops	4022	3558	3929	3920	3808	4004	3801	3768	4039	3728	3854
Fuel Used (gal)	111.4	109.2	113.3	110.8	109.8	116.1	107.7	108.5	111.9	109.3	110.8

Interval #2 Information Recording

Start Time6:15End Time6:30

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2609	2582	2533	2514	2578	2458	2459	2568	2518	2479	2528
Vehs Exited	2419	2392	2396	2333	2383	2312	2350	2377	2317	2398	2367
Starting Vehs	729	641	751	703	722	832	694	714	728	709	713
Ending Vehs	919	831	888	884	917	978	803	905	929	790	882
Travel Distance (mi)	3011	2986	2887	2912	2869	2901	2847	2946	2896	2915	2917
Travel Time (hr)	211.3	188.3	215.1	218.7	207.6	254.1	213.2	209.8	216.5	196.6	213.1
Total Delay (hr)	126.8	104.3	134.1	136.8	126.4	172.3	133.5	126.8	135.0	114.7	131.1
Total Stops	4895	4251	4588	4514	4757	4707	3913	4512	4690	4187	4498
Fuel Used (gal)	121.5	117.4	120.3	120.7	118.3	128.2	119.2	119.1	119.8	116.4	120.1

SimTraffic Simulation Summary Action Conditions AM 05/04/2020

Interval #3 InformationRecordingStart Time6:30End Time6:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avø
Vehs Entered	2482	2534	2505	2532	2492	2469	2590	2437	2513	2549	2508
Vehs Exited	2322	2365	2312	2332	2291	2301	2409	2279	2347	2321	2329
Starting Vehs	919	831	888	884	917	978	803	905	929	790	882
Ending Vehs	1079	1000	1081	1084	1118	1146	984	1063	1095	1018	1055
Travel Distance (mi)	2852	2850	2878	2872	2785	2880	2892	2892	2843	2930	2867
Travel Time (hr)	268.8	253.3	271.3	274.4	278.1	333.4	261.2	272.3	291.0	254.0	275.8
Total Delay (hr)	188.7	173.2	190.5	193.7	199.5	252.8	180.2	190.9	211.0	171.9	195.3
Total Stops	5556	4810	5287	4987	5384	5638	4504	5050	5482	5189	5186
Fuel Used (gal)	129.6	125.9	130.9	131.7	130.8	144.5	130.8	131.0	134.5	128.6	131.8

Interval #4 Information RecordingStart Time6:45End Time7:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2420	2430	2463	2283	2256	2324	2428	2263	2317	2440	2357
Vehs Exited	2351	2317	2365	2252	2227	2285	2325	2273	2236	2330	2292
Starting Vehs	1079	1000	1081	1084	1118	1146	984	1063	1095	1018	1055
Ending Vehs	1148	1113	1179	1115	1147	1185	1087	1053	1176	1128	1127
Travel Distance (mi)	2936	2958	2959	2839	2764	2836	2870	2819	2844	2899	2872
Travel Time (hr)	331.9	300.6	334.3	360.1	349.7	407.5	328.6	334.9	364.2	320.3	343.2
Total Delay (hr)	249.4	217.5	251.0	280.4	272.1	328.0	248.2	255.8	284.2	239.2	262.6
Total Stops	5663	5798	5928	5173	5142	5555	5047	5136	5675	5360	5450
Fuel Used (gal)	145.6	139.4	146.7	148.9	146.5	160.1	144.6	143.5	149.5	141.1	146.6

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report Action Conditions AM 05/04/2020

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	т
Maximum Queue (ft)	182	257	148	135	130	175	118	138
Average Queue (ft)	42	130	3	64	37	91	41	48
95th Queue (ft)	129	216	74	120	94	166	93	107
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)				0				
Queuing Penalty (veh)				0				
Storage Bay Dist (ft)	325							
Storage Blk Time (%)			0					
Queuing Penalty (veh)			0					

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	B6004	NB	NB	NB	SB	SB	SB	
Directions Served	L	L	R	R	Т	UT	Т	Т	Т	Т	Т	
Maximum Queue (ft)	270	1019	1492	325	475	175	194	183	201	216	241	
Average Queue (ft)	86	243	573	254	92	79	101	95	90	92	103	
95th Queue (ft)	183	654	1427	362	405	145	170	160	166	171	192	
Link Distance (ft)		1405	1405		465		282	282	215	215	215	
Upstream Blk Time (%)			13		11		0	0	0	0	0	
Oueuing Penalty (veh)			0		0		0	0	0	0	1	
Storage Bay Dist (ft)	400			300		250						
Storage Blk Time (%)			1	23	13			0				
Queuing Penalty (veh)			3	119	69			0				
Intersection: 3: MD 201 &	SHA Dist.	3/Crescent	Drive									
Movement	EB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	т	т	т	R	L	т	т	TR
Maximum Queue (ft)	52	192	109	266	471	494	495	225	89	98	118	165
Average Queue (ft)	5	83	46	63	186	263	267	75	23	16	23	38
95th Queue (ft)	27	149	88	200	463	578	587	250	63	62	73	112
Link Distance (ft)	239	429			266	266	266			783	783	783
Upstream Blk Time (%)	200	.20			0	17	42	44		, 66	,	,
Queuing Penalty (veh)					0	96	245	251				
Storage Bay Dist (ft)			250	250	U	50	245	200	300			
Storage Blk Time (%)			0	250	0	18		45	0			
Queuing Penalty (veh)			0		0	7		19	0			
Intersection: 4: MD 201 &	lvy Lane											
Movement	NB	NB	NB	NB	SB	SB						
Directions Served	L	L	Т	Т	Т	Т						
Maximum Queue (ft)	118	831	834	840	69	116						
Average Queue (ft)	29	430	489	490	9	33						
95th Queue (ft)	86	1026	1096	1097	40	88						
Link Distance (ft)		783	783	783	1193	1193						
Upstream Blk Time (%)			6	16	14							
Oueuing Penalty (veh)			35	93	80							
Storage Bay Dist (ft)	350		00	50								
Storage Blk Time (%)	000		0									
Queuing Penalty (veh)			0									
Intersection: 5: MD 201 &	Cherrywo	od Lane										
Movement	EB	EB	EB	NB	NB	NB	SB	SB	SB			
Directions Served	L	L	R	L	Т	Т	Т	Т	R			
Maximum Queue (ft)	275	714	149	775	1237	1230	246	334	274			
Average Queue (ft)	214	343	42	615	1021	1020	118	160	68			
95th Queue (ft)	325	701	106	1098	1573	1566	223	290	180			
Link Distance (ft)		1306	1306		1193	1193	610	610				
Upstream Blk Time (%)						16	18					

Queuing Penalty (veh)

Storage Bay Dist (ft)

Storage Blk Time (%)

Queuing Penalty (veh)

Queuing and Blocking Report Action Conditions AM 05/04/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	B6006	SB	SB
Directions Served	L	R	L	TR	Т	Т	Т	R
Maximum Queue (ft)	1027	375	475	1438	824	59	1662	275
Average Queue (ft)	895	324	435	718	178	11	1489	110
95th Queue (ft)	1243	475	533	1598	955	134	1968	290
Link Distance (ft)	968			1368	2212	490	1542	
Upstream Blk Time (%)		67			6	1	1	29
Queuing Penalty (veh)		0			107	17	10	364
Storage Bay Dist (ft)		350	450					250
Storage Blk Time (%)	71	11	20	0			34	0
Queuing Penalty (veh)	203	19	234	0			71	1

Intersection: 7: MD 201 & Beaver Dam Road

WB	NB	SB
LR	TR	LT
626	58	940
309	2	709
682	25	1254
625	1542	843
14		28
0		354
	WB LR 626 309 682 625 14 0	WB NB LR TR 626 58 309 2 682 25 625 1542 14 0

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	177	975	525	238	190	64	362	404	300	300	752	709
Average Queue (ft)	44	474	268	130	90	14	160	152	17	116	436	401
95th Queue (ft)	110	1126	677	222	160	55	288	295	131	305	796	767
Link Distance (ft)		920			512			617			813	813
Upstream Blk Time (%)		29									8	6
Queuing Penalty (veh)		0									0	0
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)			2	38	0	36	0		1	0	0	38
Queuing Penalty (veh)			10	89	1	81	1		9	0	0	23

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	118	60	50	189	11
Average Queue (ft)	34	8	4	43	0
95th Queue (ft)	91	37	27	131	6
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			1	0	
Queuing Penalty (veh)			0	0	

Intersection: 10: Powder Mill Road & Poultry Road

Movement	ED	DC0	D7/	\A/D	DEC
WOVEITIETIL	ED	D09	D/4	VVD	D20
Directions Served	LT	Т	Т	TR	Т
Maximum Queue (ft)	208	368	119	965	355
Average Queue (ft)	165	113	11	713	174
95th Queue (ft)	219	316	87	1192	461
Link Distance (ft)	97	313	1099	858	371
Upstream Blk Time (%)	53	6		54	4
Queuing Penalty (veh)	363	40		406	32
Storage Bay Dist (ft)					
Storage Blk Time (%)					
Queuing Penalty (veh)					

Intersection: 11: Powder Mill Road

Movement	NB	NW
Directions Served	L	Т
Maximum Queue (ft)	46	61
Average Queue (ft)	14	22
95th Queue (ft)	41	67
Link Distance (ft)	46	46
Upstream Blk Time (%)	6	8
Queuing Penalty (veh)	1	56
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: Powder Mill Road

SB
LR
170
71
138
467

Intersection: 13: Powder Mill Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (yeh)	EB TR 4 0 2 153	WB L 46 14 38	WB T 2 0 2 550	SB L 51 50 51	SB TR 886 625 1083 850 38
Storage Bay Dist (ft)		225		25	U U
Storage Blk Time (%)				82	52
Queuing Penalty (veh)				225	130
Intersection: 14: Powder Mill	Road				
Movement	EB	WB	NB	NB	
Directions Served	L	TR	L	TR	
Maximum Queue (ft)	71	10	75	683	
Average Queue (ft)	26	1	73	358	
95th Queue (ft)	55	6	81	789	
Link Distance (ft)		268		857	
Upstream Blk Time (%)				11	
Queuing Penalty (veh)				0	
Storage Bay Dist (ft)	250		50		
Storage Blk Time (%)			84	2	
Queuing Penalty (veh)			80	7	
Intersection: 15: Powder Mill	Road				
Movement	EB	EB	WB	WB	NB
Directions Served	Т	R	L	Т	L
Maximum Queue (ft)	167	50	104	243	224
Average Queue (ft)	82	6	40	123	127
95th Queue (ft)	138	31	84	209	204
Link Distance (ft)	546			792	892
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		260	300		
Storage Blk Time (%)					0
Queuing Penalty (veh)					0

Summary of All Intervals

Run Number		1	10	2	3	4	5	6	7	8	9	Avg	
Start Time		2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	
End Time		4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	
Total Time (min)		68	68	68	68	68	68	68	68	68	68	68	
Time Recorded ((min)	60	60	60	60	60	60	60	60	60	60	60	
# of Intervals		5	5	5	5	5	5	5	5	5	5	5	
# of Recorded In	ntervals		4	4	4	4	4	4	4	4	4	4	4
Vehs Entered		13105	13201	13044	13056	12975	12974	13038	13099	13150	13072	13070	
Vehs Exited		12648	12693	12575	12664	12439	12507	12588	12674	12706	12571	12609	
Starting Vehs		729	715	666	707	637	689	679	710	694	680	680	
Ending Vehs		1186	1223	1135	1099	1173	1156	1129	1135	1138	1181	1154	
Travel Distance ((mi)	14258	14181	13859	14150	14017	14123	14137	14038	14180	14102	14105	
Travel Time (hr)		1447.2	1489.2	1274.6	1381.8	1501.2	1497.5	1413.2	1392.7	1344.6	1527.7	1427.0	
Total Delay (hr)		1033.4	1077.9	872.9	971.1	1094.5	1088.2	1003.3	985.1	932.1	1117.5	1017.6	
Total Stops		19001	17902	16269	17621	17227	17973	17472	17725	17240	16986	17537	
Fuel Used (gal)		677.8	684.7	633.0	664.1	685.9	682.3	670.6	663.7	655.7	697.7	671.6	
Interval #0 Infor	mation See	eding											
Start Time	2:52												
Field Time a	2.00												

End Time 3:00 Total Time (min) 8 Volumes adjusted by Growth Factors. No data recorded this interval.

Interval #1 InformationRecordingStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3348	3473	3349	3323	3382	3299	3450	3321	3429	3388	3373
Vehs Exited	3148	3237	3195	3147	3102	3091	3203	3091	3220	3118	3158
Starting Vehs	729	715	666	707	637	689	679	710	694	680	680
Ending Vehs	929	951	820	883	917	897	926	940	903	950	902
Travel Distance (mi)	3682	3605	3594	3558	3514	3501	3636	3594	3627	3565	3588
Travel Time (hr)	227.4	224.2	205.5	215.8	209.8	230.3	215.3	230.3	229.4	238.3	222.6
Total Delay (hr)	120.5	119.2	101.0	112.1	107.5	128.5	109.8	125.5	123.9	134.1	118.2
Total Stops	4689	4248	4141	4298	4069	4631	4334	4403	4471	4290	4355
Fuel Used (gal)	143.8	141.9	137.0	139.2	136.3	139.9	140.5	141.7	143.6	144.2	140.8

Interval #2 Information Recording

Start Time3:15End Time3:30

Total Time (min) 15 Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3295	3351	3319	3317	3321	3272	3318	3256	3302	3334	3304
Vehs Exited	3131	3189	3143	3186	3155	3152	3168	3125	3199	3158	3161
Starting Vehs	929	951	820	883	917	897	926	940	903	950	902
Ending Vehs	1093	1113	996	1014	1083	1017	1076	1071	1006	1126	1053
Travel Distance (mi)	3561	3609	3486	3550	3558	3595	3628	3504	3560	3538	3559
Travel Time (hr)	303.9	331.6	270.9	299.3	326.9	333.6	306.2	313.7	295.5	333.9	311.5
Total Delay (hr)	200.3	226.9	170.2	196.2	223.6	229.4	200.7	212.0	191.7	230.8	208.2
Total Stops	4451	4750	3897	4462	4578	4360	4448	4544	4318	4351	4415
Fuel Used (gal)	156.4	163.5	148.3	156.5	161.8	163.1	159.2	158.1	155.5	164.0	158.6
SimTraffic Simulation Summary Action Conditions PM 05/04/2020

Interval #3 Information RecordingStart Time3:30End Time3:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3232	3162	3271	3259	3110	3259	3135	3294	3245	3220	3211
Vehs Exited	3091	3126	3179	3142	3050	3142	3082	3255	3153	3218	3144
Starting Vehs	1093	1113	996	1014	1083	1017	1076	1071	1006	1126	1053
Ending Vehs	1234	1149	1088	1131	1143	1134	1129	1110	1098	1128	1133
Travel Distance (mi)	3461	3458	3469	3537	3488	3541	3449	3536	3530	3565	3503
Travel Time (hr)	407.1	419.5	356.9	383.1	435.5	420.3	402.4	383.4	368.0	434.3	401.1
Total Delay (hr)	306.4	319.5	256.1	280.6	334.3	317.7	302.4	280.7	265.2	330.7	299.4
Total Stops	4810	4279	4420	4368	4467	4652	4437	4573	4306	4357	4463
Fuel Used (gal)	176.7	178.7	166.4	173.5	184.0	179.9	176.1	174.2	169.9	187.3	176.7

Interval #4 InformationRecordingStart Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3230	3215	3105	3157	3162	3144	3135	3228	3174	3130	3163
Vehs Exited	3278	3141	3058	3189	3132	3122	3135	3203	3134	3077	3148
Starting Vehs	1234	1149	1088	1131	1143	1134	1129	1110	1098	1128	1133
Ending Vehs	1186	1223	1135	1099	1173	1156	1129	1135	1138	1181	1154
Travel Distance (mi)	3553	3510	3310	3506	3457	3486	3425	3405	3462	3433	3455
Travel Time (hr)	508.8	514.0	441.3	483.5	529.0	513.3	489.4	465.3	451.6	521.3	491.7
Total Delay (hr)	406.2	412.3	345.7	382.2	429.1	412.5	390.3	366.8	351.3	421.9	391.8
Total Stops	5051	4625	3811	4493	4113	4330	4253	4205	4145	3988	4294
Fuel Used (gal)	200.9	200.7	181.3	194.9	203.8	199.5	194.9	189.8	186.8	202.3	195.5

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report 05/04/2020 Action Conditions PM

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	т	т
Maximum Queue (ft)	112	356	378	161	202	229	133	140
Average Queue (ft)	21	94	21	65	56	102	52	67
95th Queue (ft)	67	228	228	130	134	194	107	122
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)			0	0				
Queuing Penalty (veh)			0	0				
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	WB L 290 154 253	WB L 334 209 303 1405	WB R 302 178 266 1405	WB R 291 160 248	NB UT 160 70 132	NB T 182 95 157 282	NB T 186 98 162 282	SB T 165 80 143 215	SB T 188 89 158 215 0	SB T 246 117 206 215 0		
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	400		0 0	300 0 0	250 0 0	0 0	0 0		0	3		
Intersection: 3: MD 201 & SH	IA Dist. 3/	Crescent D	Drive									
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Blk Time (%) Queuing Penalty (veh) Intersection: 4: MD 201 & Ix	EB LTR 48 14 36 239	WB LT 230 110 187 429	WB R 121 39 89 250 0 0	NB L 22 59 250	NB T 217 82 181 266	NB T 270 139 237 266 0	NB T 280 139 239 266 0 1	NB R 178 12 94 0 1 200 1 3	SB L 139 61 120 300 0 0	SB T 113 20 71 783	SB T 129 32 88 783	SB TR 184 46 129 783
Movement	NB	NB	NB	SB	SB							
Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%) Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	L 135 53 109 350	L 154 87 136 783	T 160 6 117 783	T 140 53 114 1193 0 0	T 178 95 155 1193							
Intersection: 5: MD 201 & Ch	nerrywood	l Lane										
Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB L 228 115 191	EB L 248 143 217 1306	EB R 285 151 261 1306	NB L 216 101 181	NB T 189 63 148 1193	NB T 185 58 147 1193	SB T 278 146 243 610	SB T 329 188 294 610	SB R 274 68 183			
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%)	250 0	0		750				2	250 0			

7

0

Queuing Penalty (veh)

0

0

Queuing and Blocking Report Action Conditions PM 05/04/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	B35	SB	SB
Directions Served	L	R	L	TR	Т	Т	R
Maximum Queue (ft)	1023	375	475	1289	322	1653	275
Average Queue (ft)	922	373	421	590	45	1530	148
95th Queue (ft)	1203	393	545	1245	354	1889	344
Link Distance (ft)	968			1368	2212	1546	
Upstream Blk Time (%)		55			3		36
Queuing Penalty (veh)		0			36		536
Storage Bay Dist (ft)		350	450				250
Storage Blk Time (%)	22	42	13	2		41	0
Queuing Penalty (veh)	137	115	140	7		95	1

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB
Directions Served	LTR	TR	LT
Maximum Queue (ft)	597	32	924
Average Queue (ft)	361	1	823
95th Queue (ft)	678	18	1143
Link Distance (ft)	626	1546	837
Upstream Blk Time (%)	19		44
Queuing Penalty (veh)	0		654
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	Т	R	L	Т	R	L	Т	R	L	Т	TR
Maximum Queue (ft)	275	1355	525	275	612	62	424	664	300	300	686	649
Average Queue (ft)	219	680	294	274	578	12	293	361	88	157	369	337
95th Queue (ft)	337	1440	687	282	622	50	457	650	313	339	623	583
Link Distance (ft)		1433			523			618			816	816
Upstream Blk Time (%)		10			93			2			0	0
Queuing Penalty (veh)		0			734			32			0	0
Storage Bay Dist (ft)	250		500	250		40	400		275	275		
Storage Blk Time (%)		6	23	13	95	25	1	2	10	0	0	29
Queuing Penalty (veh)		46	149	79	300	140	9	17	65	1	0	28

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	88	28	29	293	5
Average Queue (ft)	27	2	2	31	0
95th Queue (ft)	68	14	16	137	4
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					0
Queuing Penalty (veh)					0
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			0		0
Queuing Penalty (veh)			0		0

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	B69	WB	SB
Directions Served	LT	Т	TR	LR
Maximum Queue (ft)	211	397	759	406
Average Queue (ft)	171	244	222	406
95th Queue (ft)	199	468	646	409
Link Distance (ft)	97	325	866	391
Upstream Blk Time (%)	84	33	4	99
Queuing Penalty (veh)	590	230	12	0
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Queuing and Blocking Report Action Conditions PM 05/04/2020

Intersection: 11: Powder Mill Road

Movement	EB	WB	NB
Directions Served	TR	Т	L
Maximum Queue (ft)	88	11	53
Average Queue (ft)	10	1	20
95th Queue (ft)	47	13	49
Link Distance (ft)	383	50	48
Upstream Blk Time (%)		1	1
Queuing Penalty (veh)		3	0
Storage Bay Dist (ft)			
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 12: Powder Mill Road & Springfield Road

Movement	EB	EB	WB	SB
Directions Served	L	Т	TR	LR
Maximum Queue (ft)	31	40	6	446
Average Queue (ft)	6	2	0	308
95th Queue (ft)	25	49	4	574
Link Distance (ft)		609	153	467
Upstream Blk Time (%)				35
Queuing Penalty (veh)				0
Storage Bay Dist (ft)	50			
Storage Blk Time (%)		0	0	
Queuing Penalty (veh)		0	0	

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement	EB	WB	WB	SB	SB
Directions Served	TR	L	Т	L	TR
Maximum Queue (ft)	73	144	33	61	891
Average Queue (ft)	10	60	2	48	812
95th Queue (ft)	45	119	43	58	1072
Link Distance (ft)	153		550		850
Upstream Blk Time (%)	0				85
Queuing Penalty (veh)	3				0
Storage Bay Dist (ft)		225		25	
Storage Blk Time (%)		0	0	99	10
Queuing Penalty (veh)		1	0	144	28

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	NB	NB
Directions Served	L	Т	TR	L	TR
Maximum Queue (ft)	251	262	71	75	641
Average Queue (ft)	133	27	11	62	284
95th Queue (ft)	241	203	43	88	698
Link Distance (ft)		550	268		857
Upstream Blk Time (%)		0			8
Queuing Penalty (veh)		5			0
Storage Bay Dist (ft)	250			50	
Storage Blk Time (%)	4	0		81	5
Queuing Penalty (veh)	27	0		40	4

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement	EB	EB	WB	WB	NB	NB
Directions Served	Т	R	L	Т	L	R
Maximum Queue (ft)	235	54	79	239	404	49
Average Queue (ft)	136	6	27	115	226	2
95th Queue (ft)	215	33	64	200	352	50
Link Distance (ft)	546			792	892	
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)		260	300			475
Storage Blk Time (%)		0			0	0
Queuing Penalty (veh)		1			0	0

SimTraffic Simulation Summary Action Alternative AM with Mitigation 05/07/2020

Summary of All Intervals

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Start Time	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52	5:52
End Time	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00	7:00
Total Time (min)	68	68	68	68	68	68	68	68	68	68	68
Time Recorded (min)	60	60	60	60	60	60	60	60	60	60	60
# of Intervals	5	5	5	5	5	5	5	5	5	5	5
# of Recorded Intervals	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered	10376	10653	10513	10204	10314	10153	10493	10457	10430	10394	10397
Vehs Exited	10226	10461	10429	10140	10266	10152	10344	10225	10323	10220	10279
Starting Vehs	461	503	502	529	520	506	510	476	520	473	495
Ending Vehs	611	695	586	593	568	507	659	708	627	647	618
Travel Distance (mi)	12965	13225	13232	12910	13029	12641	13173	13198	13253	12815	13044
Travel Time (hr)	598.6	633.8	591.5	541.1	551.0	575.9	588.0	648.0	590.6	571.5	589.0
Total Delay (hr)	236.5	265.6	223.3	181.6	187.5	224.9	221.7	280.0	221.6	215.3	225.8
Total Stops	15857	16822	16272	13177	13084	15853	15468	17549	15856	15352	15525
Fuel Used (gal)	475.4	490.4	482.6	459.4	467.3	461.4	479.3	491.5	480.6	464.9	475.3

Interval #0 InformationSeedingStart Time5:52End Time6:00Total Time (min)8Volumes adjusted by Growth Factors.No data recorded this interval.

Interval #1 InformationRecordingStart Time6:00End Time6:15Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2569	2712	2630	2530	2487	2508	2601	2630	2561	2556	2577
Vehs Exited	2473	2621	2596	2556	2507	2444	2565	2533	2509	2544	2534
Starting Vehs	461	503	502	529	520	506	510	476	520	473	495
Ending Vehs	557	594	536	503	500	570	546	573	572	485	537
Travel Distance (mi)	3196	3247	3256	3238	3140	3169	3285	3177	3271	3117	3210
Travel Time (hr)	139.4	139.9	138.7	132.9	127.4	135.9	135.5	138.4	138.6	132.1	135.9
Total Delay (hr)	49.7	49.4	47.9	42.5	39.6	47.6	44.3	49.7	47.2	45.6	46.3
Total Stops	3414	3125	3494	3124	2945	3610	3230	3785	3611	3516	3382
Fuel Used (gal)	114.7	117.4	116.9	114.6	110.6	113.0	117.2	114.7	117.2	112.5	114.9

Interval #2 Information Recording

Start Time6:15End Time6:30

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2634	2639	2667	2534	2624	2531	2672	2654	2603	2570	2609
Vehs Exited	2609	2638	2583	2517	2581	2576	2632	2560	2604	2526	2581
Starting Vehs	557	594	536	503	500	570	546	573	572	485	537
Ending Vehs	582	595	620	520	543	525	586	667	571	529	572
Travel Distance (mi)	3294	3386	3317	3175	3263	3132	3362	3316	3348	3146	3274
Travel Time (hr)	147.2	153.0	148.0	132.9	134.5	142.6	147.1	154.4	145.3	132.2	143.7
Total Delay (hr)	55.8	58.7	55.8	44.3	43.8	55.7	53.6	62.2	52.5	44.5	52.7
Total Stops	3937	4156	4082	3072	3074	3864	3959	4264	3878	3363	3764
Fuel Used (gal)	120.0	124.0	121.3	112.8	115.4	114.1	121.5	121.9	120.5	111.1	118.3

SimTraffic Simulation Summary Action Alternative AM with Mitigation 05/07/2020

Interval #3 Information RecordingStart Time6:30End Time6:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number		1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered		2602	2662	2591	2581	2566	2616	2626	2615	2610	2677	2614
Vehs Exited		2608	2570	2621	2565	2551	2521	2617	2556	2609	2589	2578
Starting Vehs		582	595	620	520	543	525	586	667	571	529	572
Ending Vehs		576	687	590	536	558	620	595	726	572	617	606
Travel Distance (mi)	3272	3293	3324	3217	3257	3160	3305	3366	3280	3289	3276
Travel Time (hr)		155.9	165.6	153.2	130.5	137.5	149.2	150.8	178.3	141.3	146.4	150.9
Total Delay (hr)		64.7	74.0	60.8	40.8	46.9	61.4	58.9	84.5	50.1	55.1	59.7
Total Stops		4277	4598	4420	2886	2996	4111	4071	4645	3854	4105	3993
Fuel Used (gal)		121.0	123.5	122.6	113.4	118.0	116.8	121.7	128.2	118.0	119.5	120.3
Interval #4 Informa	tion Reco	ording										
Start Time	6:45											
End Time	7:00											

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	2571	2640	2625	2559	2637	2498	2594	2558	2656	2591	2587
Vehs Exited	2536	2632	2629	2502	2627	2611	2530	2576	2601	2561	2581
Starting Vehs	576	687	590	536	558	620	595	726	572	617	606
Ending Vehs	611	695	586	593	568	507	659	708	627	647	618
Travel Distance (mi)	3204	3300	3335	3280	3369	3180	3221	3339	3353	3263	3284
Travel Time (hr)	156.1	175.3	151.5	144.8	151.7	148.2	154.5	176.9	165.4	160.9	158.5
Total Delay (hr)	66.3	83.4	58.7	54.0	57.3	60.2	65.0	83.6	71.8	70.1	67.0
Total Stops	4229	4943	4276	4095	4069	4268	4208	4855	4513	4368	4375
Fuel Used (gal)	119.6	125.5	121.9	118.6	123.3	117.5	118.9	126.7	125.0	121.8	121.9

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report Action Alternative AM with Mitigation 05/07/2020

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	ED	ED	NR	NR		S D	C P					
Directions Served				ND T		зь т	зь т					
Maximum Queue (ft)	180	230	141	130	194	131	158					
Average Queue (ft)	42	127	70	130 41	92	42	50					
95th Queue (ft)	125	207	124	97	171	97	119					
Link Distance (ft)	125	734	124	1249	1749	542	542					
Upstream Blk Time (%)		/31	1215	1215	12 15	512	512					
Queuing Penalty (veh)												
Storage Bay Dist (ft)	325											
Storage Blk Time (%)			0									
Queuing Penalty (veh)			0									
Intersection: 2: MD 201 & I-9	95 NB Off F	Ramp										
Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB		
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т		
Maximum Queue (ft)	199	231	369	319	167	179	169	217	218	280		
Average Queue (ft)	87	139	231	216	69	93	86	109	114	133		
95th Queue (ft)	160	206	314	298	132	151	144	192	197	236		
Link Distance (ft)		1405	1405			282	282	215	215	215		
Upstream Blk Time (%)								0	0	1		
Queuing Penalty (veh)								1	1	3		
Storage Bay Dist (ft)	400			300	250							
Storage Blk Time (%)				1	0							
Queuing Penalty (veh)				3	1							
Intersection: 3: MD 201 & SH	IA Dist. 3/	Crescent [Drive									
Movement	FB	WB	WB	NB	NB	NB	NB	NB	SB	SB	SB	SB
Directions Served	LTR	LT	R	L	Т	Т	T	R	L	T	T	TR
Maximum Queue (ft)	51	183	98	96	186	250	290	90	100	94	93	157
Average Queue (ft)	4	89	41	33	40	89	92	5	31	16	21	34
95th Queue (ft)	25	155	81	77	125	193	215	58	78	58	62	101
Link Distance (ft)	239	429			266	266	266			783	783	783
Upstream Blk Time (%)						0	0	0				
Queuing Penalty (veh)						0	1	2				
Storage Bay Dist (ft)			250	250				200	300			
Storage Blk Time (%)						0		1	0			
Queuing Penalty (veh)						0		0	0			
Intersection: 4: MD 201 & Iv	y Lane											
Mariana	ND		ND	ND	C D	CD.						
Directions Served	IN D	IN D	IND T	IND T	зв т	зв т						
Maximum Quouo (ft)	L 9/1	L 100	ו 202	1 212	50	104						
	04 20	100	202 11	212	59	104 27						
95th Oueue (ft)	30 70	73 212	303	278	32	27 79						
Link Distance (ft)	/0	783	783	783	1193	1193						
Unstream Blk Time (%)		700	0	0	0	1100						
Queuing Penalty (veh)			0	2	2							
Storage Bay Dist (ft)	350		U U	-	-							
Storage Blk Time (%)												
Queuing Penalty (veh)												
Intersection: 5: MD 201 & Ch	ierrywood	l Lane										
Mayamant	FD	FD	FD	ND	ND	ND	CD.	C D	C D			
iviovement	EB I	EB I	EB D	INR	IN B	IN B	т 28	т 28	2R 2R			
Maximum Qualla (#)	L 246	L 220	к 101	L 605		1 020	ו 272	1	к 275			
	240 150	329 170	27	217	922	929 402	272	300 100	215			
Average Queue (IL)	247	225	57 95	217	440 1041	402 1015	140 241	207	92 215			
Link Distance (ft)	241	333 1306	00 1306	000	1102	1102	241 610	507 610	212			
Link Distance (IL)		1300	1300		1132	7 7722	1	010				
Queuing Penalty (veh)						ے 14	10					
Storage Bay Dist (ft)	250			750		±.	10		250			
Storage Blk Time (%)	4	3		0	13			2	0			
Queuing Penalty (veh)	6	6		0	28			7	0			

Queuing and Blocking Report Action Alternative AM with Mitigation 05/07/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	NB	B6006	B6006	SB	SB	SB
Directions Served	L	R	L	Т	TR	Т		Т	Т	R
Maximum Queue (ft)	326	283	458	430	230	591	549	840	812	275
Average Queue (ft)	165	113	320	116	74	467	188	494	448	151
95th Queue (ft)	309	236	476	358	175	814	599	820	789	328
Link Distance (ft)	414			939	939	492	492	1541	1541	
Upstream Blk Time (%)		1					16	2		
Queuing Penalty (veh)		6					140	15		
Storage Bay Dist (ft)		350	450							250
Storage Blk Time (%)	2	0	3	0					20	0
Queuing Penalty (veh)	7	0	21	0					41	2

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	SB
Directions Served	LR	Т
Maximum Queue (ft)	77	4
Average Queue (ft)	25	0
95th Queue (ft)	60	4
Link Distance (ft)	614	844
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	Т	Т	R	L	L	Т	R	L	Т	L	Т	TR
Maximum Queue (ft)	99	183	152	117	118	115	219	65	287	248	181	324	300
Average Queue (ft)	42	82	34	8	61	57	92	16	163	135	56	183	166
95th Queue (ft)	88	146	105	79	108	98	177	58	263	229	126	290	272
Link Distance (ft)		587	587				578			599		809	809
Upstream Blk Time (%)													
Queuing Penalty (veh)													
Storage Bay Dist (ft)	250			500	500	500		40	400		275		
Storage Blk Time (%)								32	0			0	1
Queuing Penalty (veh)								73	1			0	1

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	90	69	56	161	11
Average Queue (ft)	27	10	4	34	0
95th Queue (ft)	73	43	30	117	5
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			2	0	
Queuing Penalty (veh)			0	0	

Intersection: 10: Powder Mill Road & Poultry Road

Movement	EB	EB	WB	WB
Directions Served	L	Т	Т	R
Maximum Queue (ft)	180	34	175	154
Average Queue (ft)	76	1	83	61
95th Queue (ft)	139	35	149	114
Link Distance (ft)		351	1365	
Upstream Blk Time (%)			0	
Queuing Penalty (veh)			0	
Storage Bay Dist (ft)	200			200
Storage Blk Time (%)	0	0	0	0
Queuing Penalty (veh)	0	0	0	0

Queuing and Blocking Report Action Alternative AM with Mitigation 05/07/2020

Intersection: 11: Powder Mill Road

Movement	NB	SE
Directions Served	L	TR
Maximum Queue (ft)	39	10
Average Queue (ft)	13	1
95th Queue (ft)	38	9
Link Distance (ft)	46	371
Upstream Blk Time (%)		0
Queuing Penalty (veh)		0
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Intersection: 12: Powder Mill Road

Movement	EB	EB	WB	SB
Directions Served	L	Т	TR	LR
Maximum Queue (ft)	34	130	172	206
Average Queue (ft)	3	30	103	98
95th Queue (ft)	20	91	187	177
Link Distance (ft)		3475	151	467
Upstream Blk Time (%)				2
Queuing Penalty (veh)				21
Storage Bay Dist (ft)	50			
Storage Blk Time (%)		0	2	
Queuing Penalty (veh)		0	0	

Intersection: 13: Powder Mill Road

Movement	EB	EB	WB	WB	SB	SB
Directions Served	Т	R	L	Т	L	TR
Maximum Queue (ft)	158	89	64	205	273	244
Average Queue (ft)	87	37	23	78	152	93
95th Queue (ft)	155	74	53	160	243	193
Link Distance (ft)	151	151		550		850
Upstream Blk Time (%)		1				
Queuing Penalty (veh)		2				
Storage Bay Dist (ft)			225		300	
Storage Blk Time (%)				0	0	0
Queuing Penalty (veh)				0	0	1
Intersection: 14: Powder Mil	l Road					

Movement	EB	EB	WB	WB	B51	NB	NB
Directions Served	L	Т	Т	R	Т	L	TR
Maximum Queue (ft)	211	296	255	137	2	311	172
Average Queue (ft)	47	173	93	55	0	196	36
95th Queue (ft)	129	268	187	121	2	293	114
Link Distance (ft)		550	264		546		857
Upstream Blk Time (%)				0			
Queuing Penalty (veh)				1			
Storage Bay Dist (ft)	250			100		300	
Storage Blk Time (%)			1	5	0		1
Queuing Penalty (veh)			1	15	0		1
Interrection, 15, Dourdor Mill	Dood						

Intersection: 15: Powder Mill Road

Movement	EB	EB	WB	WB	NB
Directions Served	Т	R	L	Т	L
Maximum Queue (ft)	202	54	124	255	226
Average Queue (ft)	95	8	41	120	119
95th Queue (ft)	178	36	89	211	197
Link Distance (ft)	546			792	892
Upstream Blk Time (%)					
Queuing Penalty (veh)					
Storage Bay Dist (ft)		260	300		
Storage Blk Time (%)		0			0
Queuing Penalty (veh)		0			0

SimTraffic Simulation Summary Action Alternative PM with Mitigation 05/07/2020

Summary of All Intervals

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Start Time	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52	2:52
End Time	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00	4:00
Total Time (min)	68	68	68	68	68	68	68	68	68	68	68
Time Recorded (min)	60	60	60	60	60	60	60	60	60	60	60
# of Intervals	5	5	5	5	5	5	5	5	5	5	5
# of Recorded Intervals	4	4	4	4	4	4	4	4	4	4	4
Vehs Entered	13851	14074	14000	13825	13878	14064	14118	13949	14038	13849	13957
Vehs Exited	13605	13793	13724	13646	13695	13767	13851	13679	13648	13569	13698
Starting Vehs	692	625	655	651	683	696	657	663	641	670	651
Ending Vehs	938	906	931	830	866	993	924	933	1031	950	928
Travel Distance (mi)	15370	15685	15776	15509	15483	15973	15709	15743	15676	15566	15649
Travel Time (hr)	950.1	858.4	892.9	787.6	958.9	962.8	877.1	925.0	917.5	961.8	909.2
Total Delay (hr)	499.2	398.6	430.7	334.1	505.2	493.7	417.4	463.8	458.1	505.0	450.6
Total Stops	18735	19322	19522	18548	19365	20030	18965	19312	18904	19210	19189
Fuel Used (gal)	614.4	604.8	614.3	583.4	617.9	634.9	608.3	620.2	614.2	620.5	613.3

 Interval #0 Information Seeding

 Start Time
 2:52

 End Time
 3:00

 Total Time (min)
 8

 Volumes adjusted by Growth Factors.

 No data recorded this interval.

Interval #1 InformationRecordingStart Time3:00End Time3:15Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3452	3579	3586	3539	3482	3494	3516	3484	3508	3444	3504
Vehs Exited	3369	3404	3469	3421	3404	3396	3402	3376	3404	3296	3396
Starting Vehs	692	625	655	651	683	696	657	663	641	670	651
Ending Vehs	775	800	772	769	761	794	771	771	745	818	777
Travel Distance (mi)	3880	3901	3985	3888	3842	3973	3907	3911	3880	3846	3901
Travel Time (hr)	190.5	182.3	187.1	181.6	184.9	190.8	181.3	190.2	182.5	185.1	185.6
Total Delay (hr)	76.6	68.2	70.6	67.7	72.4	74.5	66.8	75.4	68.8	71.9	71.3
Total Stops	4702	4696	4782	4525	4656	4754	4379	4793	4428	4471	4613
Fuel Used (gal)	145.0	143.5	147.5	142.1	142.1	147.0	143.4	145.6	142.6	141.5	144.0

Interval #2 Information Recording

Start Time3:15End Time3:30

Total Time (min) 15

Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3358	3538	3489	3490	3530	3496	3579	3474	3452	3491	3485
Vehs Exited	3296	3506	3473	3486	3379	3467	3563	3358	3364	3448	3437
Starting Vehs	775	800	772	769	761	794	771	771	745	818	777
Ending Vehs	837	832	788	773	912	823	787	887	833	861	830
Travel Distance (mi)	3765	4050	3998	3832	3899	4009	3949	3965	3842	3881	3919
Travel Time (hr)	218.8	207.3	212.2	188.5	226.4	222.5	204.9	214.9	210.1	224.9	213.1
Total Delay (hr)	108.4	88.4	95.5	76.8	112.2	105.1	89.6	98.9	97.3	111.4	98.3
Total Stops	4430	5112	5115	4598	4896	5081	4918	4757	4709	4915	4853
Fuel Used (gal)	147.6	152.9	153.1	143.2	151.3	155.7	150.1	151.3	147.1	152.9	150.5

SimTraffic Simulation Summary Action Alternative PM with Mitigation 05/07/2020

Interval #3 Information RecordingStart Time3:30End Time3:45Total Time (min)15Volumes adjusted by Growth Factors.

Run Number	1	10	2	3	4	5	6	7	8	9	Avg
Vehs Entered	3617	3479	3512	3327	3500	3491	3485	3484	3543	3450	3482
Vehs Exited	3565	3439	3419	3305	3470	3404	3419	3508	3461	3377	3437
Starting Vehs	837	832	788	773	912	823	787	887	833	861	830
Ending Vehs	889	872	881	795	942	910	853	863	915	934	883
Travel Distance (mi)	3907	3896	3977	3847	3928	3910	3915	3910	3983	3903	3917
Travel Time (hr)	260.4	222.8	235.7	198.6	265.5	252.3	232.9	248.0	245.8	261.2	242.3
Total Delay (hr)	145.7	108.3	118.7	86.0	150.6	137.1	118.4	133.7	128.8	147.0	127.4
Total Stops	4983	4782	4997	4597	5058	4833	4802	4891	4711	4991	4863
Fuel Used (gal)	160.0	153.0	157.0	144.6	162.5	158.3	154.6	159.0	158.5	159.7	156.7

Interval #4 Information RecordingStart Time3:45End Time4:00Total Time (min)15Volumes adjusted by Growth Factors.

Pup Number	1	10	2	2	1	5	6	7	0	٥	Δυσ
Kull Nullibel	T	10	Z	5	4	5	0	/	0	9	Avg
Vehs Entered	3424	3478	3413	3469	3366	3583	3538	3507	3535	3464	3473
Vehs Exited	3375	3444	3363	3434	3442	3500	3467	3437	3419	3448	3433
Starting Vehs	889	872	881	795	942	910	853	863	915	934	883
Ending Vehs	938	906	931	830	866	993	924	933	1031	950	928
Travel Distance (mi)	3818	3837	3816	3942	3815	4081	3937	3957	3970	3936	3911
Travel Time (hr)	280.4	246.1	257.9	219.0	282.0	297.2	257.9	271.9	279.0	290.5	268.2
Total Delay (hr)	168.5	133.7	146.0	103.7	170.0	176.9	142.6	155.8	163.1	174.6	153.5
Total Stops	4620	4732	4628	4828	4755	5362	4866	4871	5056	4833	4857
Fuel Used (gal)	161.8	155.3	156.7	153.5	162.1	173.9	160.3	164.4	166.0	166.4	162.0

SimTraffic Report

Bureau of Engraving and Printing LBG Page 0

♠

Queuing and Blocking Report Action Alternative PM with Mitigation 05/07/2020

Intersection: 1: MD 201 & I-95 SB off-Ramp

Movement	EB	EB	EB	NB	NB	NB	SB	SB
Directions Served	L	L	R	Т	Т	Т	Т	т
Maximum Queue (ft)	130	463	447	144	179	231	161	172
Average Queue (ft)	24	98	21	64	55	107	65	79
95th Queue (ft)	79	256	226	126	133	196	127	142
Link Distance (ft)		734	734	1249	1249	1249	542	542
Upstream Blk Time (%)			0	0				
Queuing Penalty (veh)			0	0				
Storage Bay Dist (ft)	325							
Storage Blk Time (%)								
Queuing Penalty (veh)								

Intersection: 2: MD 201 & I-95 NB Off Ramp

Movement	WB	WB	WB	WB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	R	UT	Т	Т	Т	Т	Т
Maximum Queue (ft)	287	332	314	297	138	180	186	181	204	275
Average Queue (ft)	160	214	178	156	66	94	96	87	98	138
95th Queue (ft)	258	309	271	245	124	155	161	150	171	235
Link Distance (ft)		1405	1405			282	282	215	215	215
Upstream Blk Time (%)								0	0	1
Queuing Penalty (veh)								0	1	6
Storage Bay Dist (ft)	400			300	250					
Storage Blk Time (%)				0	0					
Queuing Penalty (veh)				1	0					

Movement EB WB WB NB NB NB NB NB SB SB SB SB **Directions Served** LTR TR LT Т R L Т т R L Т Т Maximum Queue (ft) 45 208 101 76 212 275 274 202 162 99 136 184 Average Queue (ft) 13 108 40 21 83 146 146 15 72 21 38 58 95th Queue (ft) 184 79 58 177 240 243 107 96 135 36 133 70 Link Distance (ft) 239 429 266 266 266 783 783 783 Upstream Blk Time (%) 0 0 Queuing Penalty (veh) 1 1 Storage Bay Dist (ft) 250 250 200 300 Storage Blk Time (%) 0 0 2 0 Queuing Penalty (veh) 0 0 3 0

Intersection: 4: MD 201 & Ivy Lane

Movement	NB	NB	NB	NB	SB	SB
Directions Served	L	L	Т	Т	Т	Т
Maximum Queue (ft)	127	157	194	75	158	198
Average Queue (ft)	55	86	7	3	58	103
95th Queue (ft)	110	135	118	76	129	174
Link Distance (ft)		783	783	783	1193	1193
Upstream Blk Time (%)						
Queuing Penalty (veh)						
Storage Bay Dist (ft)	350					
Storage Blk Time (%)						
Queuing Penalty (veh)						

Intersection: 5: MD 201 & Cherrywood Lane

Movement	FB	FB	FB	NB	NB	NB	SB	SB	SB
Directions Served	L	L	R	L	Т	Т	T	T	R
Maximum Queue (ft)	227	225	276	256	203	178	332	394	275
Average Queue (ft)	130	122	150	123	73	44	188	232	98
95th Queue (ft)	204	202	250	211	168	130	293	352	250
Link Distance (ft)		1306	1306		1193	1193	610	610	
Upstream Blk Time (%)									
Queuing Penalty (veh)									
Storage Bay Dist (ft)	250			750					250
Storage Blk Time (%)	0	0						5	0
Queuing Penalty (veh)	0	0						19	1

Queuing and Blocking Report Action Alternative PM with Mitigation 05/07/2020

Intersection: 6: MD 201 & Sunnyside Avenue

Movement	EB	EB	NB	NB	NB	B6006	SB	SB	SB
Directions Served	L	R	L	Т	TR	Т	Т	Т	R
Maximum Queue (ft)	1000	375	465	626	454	166	1664	1658	275
Average Queue (ft)	702	345	326	217	132	8	1271	1254	237
95th Queue (ft)	1243	449	515	586	350	116	2014	2023	373
Link Distance (ft)	958			941	941	501	1544	1544	
Upstream Blk Time (%)		36					0	48	45
Queuing Penalty (veh)		0					1	354	338
Storage Bay Dist (ft)		350	450						250
Storage Blk Time (%)	33	15	11	0				52	0
Queuing Penalty (veh)	204	42	63	1				121	2

Intersection: 7: MD 201 & Beaver Dam Road

Movement	WB	NB	SB	SB
Directions Served	LTR	Т	T	Т
Maximum Queue (ft)	354	2	826	825
Average Queue (ft)	123	0	273	276
95th Queue (ft)	367	2	836	849
Link Distance (ft)	615	1544	838	838
Upstream Blk Time (%)	0		7	8
Queuing Penalty (veh)	0		53	61
Storage Bay Dist (ft)				
Storage Blk Time (%)				
Queuing Penalty (veh)				

Intersection: 8: MD 201 & Powder Mill Road

Movement	EB	EB	EB	EB	WB	WB	WB	WB	NB	NB	SB	SB	SB
Directions Served	L	Т	Т	R	L	L	Т	R	L	Т	L	Т	TR
Maximum Queue (ft)	274	411	302	132	272	375	491	68	419	472	246	316	309
Average Queue (ft)	186	173	128	5	146	165	243	41	229	240	100	180	175
95th Queue (ft)	297	347	241	61	235	306	442	84	383	408	208	277	273
Link Distance (ft)		598	598				589			598		808	808
Upstream Blk Time (%)								1			0		
Queuing Penalty (veh)								6			1		
Storage Bay Dist (ft)	250			500	500	500		40	400		275		
Storage Blk Time (%)	9	1					68	2	1	1	1	0	
Queuing Penalty (veh)	18	1					375	14	5	2	3	0	

Intersection: 9: Edmonston Road & Odell Road

Movement	EB	WB	WB	NB	SB
Directions Served	LTR	LT	R	LT	LTR
Maximum Queue (ft)	99	28	26	226	10
Average Queue (ft)	31	2	2	32	0
95th Queue (ft)	83	15	14	129	9
Link Distance (ft)	509	488		419	365
Upstream Blk Time (%)					0
Queuing Penalty (veh)					0
Storage Bay Dist (ft)			50		
Storage Blk Time (%)			0		0
Queuing Penalty (veh)			0		0

Intersection: 10: Powder Mill Road & Poultry Road

Movement Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft) Link Distance (ft) Upstream Blk Time (%)	EB L 108 6 52	EB T 416 250 411 354	B69 T 54 4 31 691 2	WB T 229 96 189 1386	WB R 50 3 29	SB L 296 142 251 347	SB R 220 87 165 347 0
Queuing Penalty (veh) Storage Bay Dist (ft) Storage Blk Time (%) Queuing Penalty (veh)	200		18 12 1		200 1 0		0

Queuing and Blocking Report Action Alternative PM with Mitigation 05/07/2020

Intersection: 11: Powder Mill Road

EB	NB
TR	L
214	54
42	24
144	54
383	48
	5
	1
	EB TR 214 42 144 383

Intersection: 12: Powder Mill Road & Springfield Road

EB	EB	WB	SB
L	Т	TR	LR
59	886	128	512
11	449	45	440
42	806	98	597
	3486	151	467
		0	74
		0	0
50			
	0	37	
	0	7	
	EB L 59 11 42 50	EB EB L T 59 886 11 449 42 806 3486 50 0 0	EB EB WB L T TR 59 886 128 11 449 45 42 806 98 3486 151 0 0 50 0 50 37 0 7

Intersection: 13: Powder Mill Road & B-W Parkway SB Off-Ramp

Movement	EB	EB	WB	WB	SB	SB
Directions Served	Т	R	L	Т	L	TR
Maximum Queue (ft)	164	122	143	149	314	235
Average Queue (ft)	156	56	71	44	194	55
95th Queue (ft)	178	104	128	107	297	196
Link Distance (ft)	151	151		550		850
Upstream Blk Time (%)		20	0			
Queuing Penalty (veh)		124	0			
Storage Bay Dist (ft)			225		300	
Storage Blk Time (%)				0	0	2
Queuing Penalty (veh)				0	0	4

Intersection: 14: B-W Parkway NB Off-Ramp & Powder Mill Road

Movement	EB	EB	WB	WB	NB	NB
Directions Served	L	Т	Т	R	L	TR
Maximum Queue (ft)	239	219	153	140	145	72
Average Queue (ft)	118	101	41	64	62	25
95th Queue (ft)	207	196	108	124	123	55
Link Distance (ft)		550	264			857
Upstream Blk Time (%)			0	0		
Queuing Penalty (veh)			0	0		
Storage Bay Dist (ft)	250			100	300	
Storage Blk Time (%)		0		0	1	
Queuing Penalty (veh)		2		3	5	

Intersection: 15: Soil Conservation Road & Powder Mill Road

Movement	EB	EB	WB	WB	NB
Directions Served	Т	R	L	Т	L
Maximum Queue (ft)	370	218	78	248	406
Average Queue (ft)	187	29	27	122	226
95th Queue (ft)	312	137	64	217	352
Link Distance (ft)	546			792	892
Upstream Blk Time (%)		0			
Queuing Penalty (veh)		0			
Storage Bay Dist (ft)	260	300			
Storage Blk Time (%)	2	0		0	0
Queuing Penalty (veh)	7	0		0	0

9 ATTACHMENT D (TRANSMODELER™ REPORTS)

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -Overview

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD						NODE: 5
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
EB L on Po	owder Mill Road - La	ane ID 24				
1	120.0	13.1	0.6	58.1	3.0	0.0%
2	120.0	12.3	0.6	50.9	2.0	0.0%
3	120.0	14.3	0.7	68.0	3.0	0.0%
4	120.0	11.8	0.6	43.8	2.0	0.0%
5	120.0	13.9	0.7	64.0	3.0	0.0%
6	120.0	12.0	0.6	50.0	2.0	0.0%
7	120.0	13.3	0.7	61.6	3.0	0.0%
8	120.0	16.3	0.8	61.9	3.0	0.0%
9	120.0	12.1	0.6	51.5	2.0	0.0%
10	120.0	10.8	0.6	45.7	2.0	0.0%
Average:	120.0	13.0	0.7	55.6	2.5	0.0%
EB T on Po	owder Mill Road - L	ane ID 25				
1	120.0	15.1	0.6	103.7	4.0	0.0%
2	120.0	16.7	0.7	112.2	5.0	0.0%
3	120.0	15.2	0.7	121.5	5.0	0.0%
4	120.0	15.4	0.6	111.2	5.0	0.0%
5	120.0	14.9	0.7	112.1	5.0	0.0%
6	120.0	15.4	0.7	104.0	4.0	0.0%
7	120.0	17.6	0.7	108.0	5.0	0.0%
8	120.0	18.1	0.8	121.9	5.0	0.0%
9	120.0	13.8	0.6	119.0	5.0	0.0%
10	120.0	19.5	0.9	111.1	5.0	0.0%
Average:	120.0	16.2	0.7	112.5	4.8	0.0%
NB L on B	W Parkway NB Off-	Ramp - Lane ID 36				
1	120.0	50.4	2.3	208.3	9.0	0.0%
2	120.0	47.3	2.1	201.2	8.0	0.0%
3	120.0	43.1	1.9	174.4	8.0	0.0%
4	120.0	44.8	2.0	205.8	9.0	0.0%
5	120.0	47.0	2.1	199.3	8.0	0.0%
6	120.0	47.3	2.1	197.0	8.0	0.0%
7	120.0	52.2	2.3	233.8	10.0	0.0%
8	120.0	97.9	4.1	394.2	17.0	0.0%
9	120.0	49.3	2.2	199.5	9.0	0.0%
10	120.0	46.8	2.1	214.5	9.0	0.0%
Average:	120.0	52.6	2.3	222.8	9.5	0.0%

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD	

ROAD						NODE: 5
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
NB TR on	BW Parkway NB Of	f-Ramp - Lane ID 3	7			
1	120.0	2.4	0.1	17.5	1.0	0.0%
2	120.0	0.9	0.1	0.8	0.0	0.0%
3	120.0	3.7	0.2	24.7	1.0	0.0%
4	120.0	2.3	0.1	17.1	1.0	0.0%
5	120.0	2.5	0.1	18.8	1.0	0.0%
6	120.0	1.7	0.1	15.8	1.0	0.0%
7	120.0	1.6	0.1	15.8	1.0	0.0%
8	120.0	4.8	0.2	40.4	2.0	0.0%
9	120.0	2.6	0.1	16.9	1.0	0.0%
10	120.0	2.2	0.1	17.3	1.0	0.0%
Average:	120.0	2.5	0.1	18.5	1.0	0.0%
WB R on	Powder Mill Road -	Lane ID 207				
1	120.0	2.5	0.1	19.9	1.0	0.0%
2	120.0	1.7	0.1	15.6	1.0	0.0%
3	120.0	0.9	0.1	0.7	0.0	0.0%
4	120.0	2.7	0.1	18.6	1.0	0.0%
5	120.0	1.5	0.1	16.2	1.0	0.0%
6	120.0	1.0	0.1	0.0	0.0	0.0%
7	120.0	2.1	0.1	21.3	1.0	0.0%
8	120.0	0.7	0.0	0.0	0.0	0.0%
9	120.0	2.5	0.1	20.5	1.0	0.0%
10	120.0	1.4	0.1	16.0	1.0	0.0%
Average:	120.0	1.7	0.1	12.9	0.7	0.0%
WB T on I	Powder Mill Road -	Lane ID 5				
1	120.0	22.9	1.0	139.2	6.0	0.0%
2	120.0	29.2	1.3	116.8	5.0	0.0%
3	120.0	27.0	1.2	159.6	7.0	0.0%
4	120.0	19.8	0.9	127.9	5.0	0.0%
5	120.0	26.2	1.1	135.3	6.0	0.0%
6	120.0	24.5	1.0	123.7	5.0	0.0%
7	120.0	29.2	1.2	149.1	6.0	0.0%
8	120.0	28.2	1.2	142.4	6.0	0.0%
9	120.0	23.8	1.0	150.3	6.0	0.0%
10	120.0	24.5	1.0	136.2	6.0	0.0%
Average:	120.0	25.5	1.1	138.1	5.8	0.0%

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD						NODE: 8
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
EB R on Po	wder Mill Road - I	ane ID 206				
1	120.0	1.7	0.1	15.0	1.0	0.0%
2	120.0	0.8	0.0	0.0	0.0	0.0%
3	120.0	1.8	0.1	19.2	1.0	0.0%
4	120.0	0.7	0.0	0.0	0.0	0.0%
5	120.0	0.7	0.0	0.0	0.0	0.0%
6	120.0	1.1	0.1	15.9	1.0	0.0%
7	120.0	0.8	0.0	0.0	0.0	0.0%
8	120.0	0.9	0.1	0.7	0.0	0.0%
9	120.0	2.2	0.1	18.8	1.0	0.0%
10	120.0	0.5	0.0	0.0	0.0	0.0%
Average:	120.0	1.1	0.1	7.0	0.4	0.0%
EB T on Po	wder Mill Road - L	ane ID 31				
1	120.0	20.9	0.9	104.7	4.0	10.0%
2	120.0	21.7	1.0	111.0	5.0	9.2%
3	120.0	17.9	0.8	88.8	4.0	5.0%
4	120.0	18.1	0.8	94.6	4.0	5.8%
5	120.0	15.4	0.7	92.5	4.0	4.2%
6	120.0	24.0	1.1	110.6	5.0	8.3%
7	120.0	22.3	0.9	112.1	5.0	8.3%
8	120.0	16.7	0.7	109.2	5.0	7.5%
9	120.0	15.9	0.7	109.4	5.0	5.8%
10	120.0	18.5	0.8	96.7	4.0	6.7%
Average:	120.0	19.1	0.8	103.0	4.5	7.1%
SWB L on	BW Parkway SB Of	ff-Ramp - Lane ID 27	7			
1	120.0	54.7	2.4	192.3	7.0	0.0%
2	120.0	52.6	2.3	149.1	6.0	0.0%
3	120.0	59.2	2.6	146.2	6.0	0.0%
4	120.0	67.2	2.8	217.1	9.0	0.0%
5	120.0	58.0	2.5	168.0	8.0	0.0%
6	120.0	67.2	2.8	299.2	12.0	0.0%
7	120.0	52.0	2.3	164.0	6.0	0.0%
8	120.0	59.4	2.6	179.5	8.0	0.0%
9	120.0	92.9	3.8	505.0	19.1	0.0%
10	120.0	56.3	2.5	138.2	6.0	0.0%
Average:	120.0	62.0	2.7	215.9	8.7	0.0%
SWB TR or	n BW Parkway SB (Off-Ramp - Lane ID	28			
1	120.0	249.3	10.0	1,240.1	49.0	3.3%
2	120.0	194.7	7.9	787.6	32.0	0.0%
3	120.0	225.7	8.9	1,062.4	40.1	0.8%
4	120.0	262.4	10.6	1,021.9	42.0	2.5%

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

_	_	_	_	
R	n	Δ	n	
••	S	~	–	

ROAD						NODE: 8
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SWB TR or	n BW Parkway SB C	Off-Ramp - Lane ID	28			
5	120.0	280.6	11.3	1,026.1	40.1	0.8%
6	120.0	294.1	11.8	1,178.2	47.0	1.7%
7	120.0	204.8	8.3	821.6	33.1	0.8%
8	120.0	167.8	6.9	589.1	23.1	0.0%
9	120.0	255.9	10.3	1,226.0	50.1	4.2%
10	120.0	192.6	7.8	805.3	32.0	0.8%
Average:	120.0	232.8	9.4	975.8	38.9	1.5%
WB L on P	owder Mill Road - I	Lane ID 26				
1	120.0	2.5	0.1	17.8	1.0	0.0%
2	120.0	2.3	0.1	18.1	1.0	0.0%
3	120.0	3.3	0.2	17.9	1.0	0.0%
4	120.0	3.9	0.2	19.5	1.0	0.0%
5	120.0	2.3	0.1	17.6	1.0	0.0%
6	120.0	1.7	0.1	15.7	1.0	0.0%
7	120.0	2.0	0.1	17.9	1.0	0.0%
8	120.0	2.2	0.1	16.3	1.0	0.0%
9	120.0	3.4	0.2	20.7	1.0	0.0%
10	120.0	2.6	0.1	17.0	1.0	0.0%
Average:	120.0	2.6	0.1	17.9	1.0	0.0%
WB T on P	owder Mill Road -	Lane ID 8				
1	120.0	7.6	0.4	46.7	2.0	0.0%
2	120.0	5.2	0.2	44.7	2.0	0.0%
3	120.0	8.4	0.4	68.3	3.0	0.0%
4	120.0	11.7	0.5	59.4	3.0	0.0%
5	120.0	7.3	0.3	46.7	2.0	0.0%
6	120.0	9.6	0.5	50.3	2.0	0.0%
7	120.0	10.7	0.4	47.3	2.0	0.0%
8	120.0	14.5	0.6	77.9	3.0	0.0%
9	120.0	7.5	0.4	39.5	2.0	0.0%
10	120.0	5.4	0.3	34.9	1.0	0.0%
Average:	120.0	8.8	0.4	51.6	2.2	0.0%

EDMONSTON ROAD & SUNNYSIDE AVENUE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
EB L on Sunnyside Avenue - Lane ID 117							
1	120.0	143.2	6.0	350.3	15.0	0.0%	
2	120.0	58.2	2.5	162.8	6.0	0.0%	
3	120.0	61.4	2.7	184.6	8.0	0.0%	
4	120.0	56.4	2.5	169.4	7.0	0.0%	
5	120.0	117.4	4.9	326.4	13.0	0.0%	

EDMONISTON BOAD & SUNNVSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE NODE: 32							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
EB L on Su	nnyside Avenue - I	Lane ID 117					
6	120.0	48.1	2.2	140.1	6.0	0.0%	
7	120.0	50.5	2.3	132.1	6.0	0.0%	
8	120.0	59.0	2.6	175.3	7.0	0.0%	
9	120.0	60.6	2.6	194.7	8.0	0.0%	
10	120.0	41.4	1.9	105.8	5.0	0.0%	
Average:	120.0	69.6	3.0	194.2	8.1	0.0%	
50 D							
EB R on Su	innyside Avenue -	Lane ID 118	0.0	01 0	4.0	0.0%	
1	120.0	19.1	0.9	04.5	4.0	0.0%	
2	120.0	10.1	0.7	75.7	4.0	0.0%	
3	120.0	18.1	0.8	78.3	3.0	0.0%	
4	120.0	14.9	0.7	52.1	3.0	0.0%	
5	120.0	16.1	0.7	70.8	3.0	0.0%	
5	120.0	19.2	0.9	/1.1	3.0	0.0%	
/	120.0	17.6	0.8	64.3	3.0	0.0%	
8	120.0	16.9	0.8	75.4	3.0	0.0%	
9	120.0	13.0	0.6	69.4	3.0	0.0%	
10	120.0	18.1	0.8	81.5	3.0	0.0%	
Average:	120.0	16.8	0.8	73.3	3.2	0.0%	
NB L on Ec	monston Road - La	ane ID 114					
1	120.0	100.9	4.2	347.8	13.1	0.0%	
2	120.0	88.0	3.6	247.7	10.0	0.0%	
3	120.0	82.5	3.4	306.0	13.0	0.0%	
4	120.0	86.9	3.5	273.2	11.0	0.0%	
5	120.0	63.7	2.7	238.3	10.0	0.0%	
6	120.0	92.2	3.9	278.8	12.0	0.0%	
7	120.0	63.9	2.7	210.5	9.0	0.0%	
8	120.0	85.1	3.6	246.3	10.0	0.0%	
9	120.0	72.3	3.0	251.2	10.0	0.0%	
10	120.0	94.4	3.9	360.4	14.0	0.0%	
Average:	120.0	83.0	3.5	276.0	11.2	0.0%	
NB T on Ec	dmonston Road - L	ane ID 126					
1	120.0	5.6	0.3	45.6	2.0	0.0%	
2	120.0	4.4	0.2	41.1	2.0	0.0%	
3	120.0	8.6	0.4	62.9	3.0	0.0%	
4	120.0	3.5	0.2	22.5	1.0	0.0%	
5	120.0	7.1	0.3	62.0	3.0	0.0%	
6	120.0	7.5	0.3	66.5	3.0	0.0%	
7	120.0	6.1	0.3	46.8	2.0	0.0%	
8	120.0	7.9	0.4	56.3	3.0	0.0%	
9	120.0	5.5	0.2	43.0	2.0	0.0%	
10	120.0	5.2	0.2	39.7	2.0	0.0%	

EDMONSTON ROAD & SUNNYSIDE AVENUE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)				
NB T on Edn	nonston Road - La	ane ID 126								
Average:	120.0	6.1	0.3	48.6	2.3	0.0%				
NB T on Edn	NB T on Edmonston Road - Lane ID 167									
1	120.0	5.5	0.2	47.9	2.0	0.0%				
2	120.0	3.9	0.2	22.6	1.0	0.0%				
3	120.0	4.7	0.2	39.4	2.0	0.0%				
4	120.0	4.5	0.2	38.8	2.0	0.0%				
5	120.0	7.5	0.3	51.4	2.0	0.0%				
6	120.0	5.8	0.3	47.8	2.0	0.0%				
7	120.0	2.0	0.1	18.7	1.0	0.0%				
8	120.0	5.8	0.3	49.9	2.0	0.0%				
9	120.0	5.4	0.2	46.8	2.0	0.0%				
10	120.0	6.4	0.3	53.6	2.0	0.0%				
Average:	120.0	5.2	0.2	41.7	1.8	0.0%				
SP P on Edm	onston Road La	no ID 171								
1	120.0	7.0	0.3	44.9	2.0	0.0%				
2	120.0	5.8	0.3	43.9	2.0	0.0%				
3	120.0	5.2	0.3	30.5	2.0	0.0%				
4	120.0	5.3	0.3	27.9	1.0	0.0%				
5	120.0	7.6	0.4	44.0	2.0	0.0%				
6	120.0	6.6	0.3	53.3	2.0	0.0%				
7	120.0	10.4	0.5	55.6	2.0	0.0%				
8	120.0	5.6	0.3	38.4	2.0	0.0%				
9	120.0	7.9	0.4	52.5	2.0	0.0%				
10	120.0	5.7	0.3	45.9	2.0	0.0%				
Average:	120.0	6.7	0.3	43.7	1.9	0.0%				
	onstan Dood Ja	D 130								
	120.0	41 5	1.8	193.8	8.0	0.0%				
2	120.0	35.7	1.5	154.8	7.0	0.0%				
3	120.0	50.9	2.1	188 1	8.0	0.0%				
4	120.0	42.3	1.9	175.7	7.0	0.0%				
5	120.0	54.0	2.3	207.2	8.0	0.0%				
6	120.0	40.8	1.7	169.1	7.0	0.0%				
7	120.0	42.5	1.8	184.5	7.0	0.0%				
8	120.0	40.8	1.7	163.4	7.0	0.0%				
9	120.0	40.3	1.7	172.5	8.0	0.0%				
10	120.0	39.8	1.7	185.2	8.0	0.0%				
Average:	120.0	42.9	1.8	179.4	7.5	0.0%				
5										
SB T on Edm	onston Road - La	ane ID 121								
1	120.0	56.6	2.4	224.8	10.0	0.0%				
2	120.0	48.2	2.1	188.5	7.0	0.0%				

EDMONSTON ROAD & SUNNYSIDE AVENUE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SB T on Ec	dmonston Road - La	ne ID 121				
3	120.0	59.8	2.6	215.2	9.0	0.0%
4	120.0	55.4	2.4	216.7	9.0	0.0%
5	120.0	67.1	2.8	218.6	9.0	0.0%
6	120.0	51.9	2.2	184.8	8.0	0.0%
7	120.0	51.6	2.2	208.5	9.0	0.0%
8	120.0	52.5	2.3	207.3	8.0	0.0%
9	120.0	52.4	2.2	190.5	8.0	0.0%
10	120.0	51.4	2.1	199.2	9.0	0.0%
Average:	120.0	54.7	2.3	205.4	8.6	0.0%

I-95/495 NB OFF-RAMP & MD 201

Avg Vehicles 95th Percentile 95th Percentile Spillback Avg Queue Run **Observations** Length (ft) Queued Length (ft) Num Queued Rate (%) NEB T on MD 201 - Lane ID 318 0.0% 1 120.0 10.7 0.5 47.8 2.0 2 120.0 11.5 0.5 50.2 2.0 0.0% 120.0 3 8.4 0.4 45.4 2.0 0.0% 4 120.0 12.6 0.6 65.8 3.0 0.0% 5 120.0 8.2 0.4 42.1 2.0 0.0% 6 120.0 10.3 0.5 47.0 2.0 0.0% 7 120.0 11.6 0.6 46.0 2.0 0.0% 8 120.0 8.5 0.4 43.8 2.0 0.0% 9 120.0 10.3 0.5 51.9 2.0 0.0% 10 120.0 45.8 0.0% 11.0 0.5 2.0 120.0 10.3 0.5 48.6 2.1 0.0% Average: NEB T on MD 201 - Lane ID 319 120.0 0.6 0.0% 1 12.7 48.0 2.0 2 120.0 13.2 0.6 55.4 3.0 0.0% 3 120.0 14.2 0.6 57.4 2.0 0.0% 4 120.0 12.9 0.6 56.6 2.0 0.0% 5 120.0 9.8 0.5 45.7 2.0 0.0% 6 120.0 10.6 0.5 47.3 2.0 0.0% 7 0.0% 120.0 13.3 0.6 58.3 2.0 8 120.0 10.3 0.5 44.5 2.0 0.0% 9 0.0% 120.0 12.7 0.6 55.8 2.0 10 120.0 12.5 0.6 50.9 2.0 0.0% 120.0 12.2 0.6 2.1 0.0% Average: 52.0 NEB T on MD 201 - Lane ID 320 120.0 16.7 0.8 67.6 3.0 0.0% 1 2 120.0 15.6 0.8 71.2 3.0 0.0% 120.0 0.7 64.1 0.0% 3 16.1 3.0 4 120.0 0.8 69.2 3.0 0.0% 16.7

NODF: 32

I OF /AOF NIR OFE PANAD 8. MAD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
NEB T on M	VID 201 - Lane ID 32	20					
5	120.0	16.0	0.7	68.1	3.0	0.0%	
6	120.0	15.6	0.8	75.3	3.0	0.0%	
7	120.0	16.1	0.7	67.6	3.0	0.0%	
8	120.0	14.8	0.7	67.6	3.0	0.0%	
9	120.0	16.6	0.8	75.0	3.0	0.0%	
10	120.0	15.2	0.7	66.9	3.0	0.0%	
Average:	120.0	15.9	0.8	69.3	3.0	0.0%	
NWB L on	I-95/495 NB off-rai	mp - Lane ID 321					
1	120.0	15.4	0.7	68.6	3.0	0.0%	
2	120.0	17.4	0.8	72.5	3.0	0.0%	
3	120.0	19.8	0.9	97.2	4.0	0.0%	
4	120.0	19.1	0.9	76.8	4.0	0.0%	
5	120.0	14.9	0.7	65.8	3.0	0.0%	
6	120.0	15.9	0.7	72.4	3.0	0.0%	
7	120.0	17.5	0.8	74.4	3.0	0.0%	
8	120.0	14.5	0.7	67.6	3.0	0.0%	
9	120.0	18.3	0.8	66.9	3.0	0.0%	
10	120.0	18.5	0.8	77.8	3.0	0.0%	
Average:	120.0	17.1	0.8	74.0	3.2	0.0%	
NWB L on	I-95/495 NB off-rai	mp - Lane ID 322					
1	120.0	27.7	1.2	109.1	5.0	0.0%	
2	120.0	25.9	1.2	90.0	4.0	0.0%	
3	120.0	28.2	1.2	105.5	4.0	0.0%	
4	120.0	36.6	1.6	112.9	5.0	0.0%	
5	120.0	28.6	1.3	109.6	5.0	0.0%	
6	120.0	28.3	1.2	110.1	5.0	0.0%	
7	120.0	27.7	1.2	115.4	5.0	0.0%	
8	120.0	27.1	1.2	93.5	4.0	0.0%	
9	120.0	28.0	1.3	102.9	4.0	0.0%	
10	120.0	31.8	1.4	104.2	5.0	0.0%	
Average:	120.0	29.0	1.3	105.3	4.6	0.0%	
NWB R on	I-95/495 NB off-ra	mp - Lane ID 323					
1	120.0	51.7	2.2	211.6	9.0	0.0%	
2	120.0	53.6	2.3	175.5	7.0	0.0%	
3	120.0	76.7	3.2	308.6	12.1	2.5%	
4	120.0	61.1	2.6	194.1	8.0	0.0%	
5	120.0	53.5	2.2	195.5	8.0	0.8%	
6	120.0	48.9	2.1	194.6	8.0	0.0%	
7	120.0	51.0	2.2	197.9	9.0	0.0%	
8	120.0	73.9	3.1	256.2	11.0	3.3%	
9	120.0	72.3	3.0	275.9	11.1	0.8%	

I OF /AOF NIR OFE PANAD 8. MAD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57								
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback		
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)		
NWB R on	I-95/495 NB off-ra	mp - Lane ID 323						
10	120.0	60.4	2.6	211.1	9.0	0.0%		
Average:	120.0	60.3	2.6	222.1	9.2	0.7%		
NWB R on	I-95/495 NB off-ra	mp - Lane ID 324						
1	120.0	50.8	2.1	203.7	8.0	0.0%		
2	120.0	50.2	2.2	169.1	7.0	0.0%		
3	120.0	79.5	3.2	464.3	17.0	5.0%		
4	120.0	58.6	2.5	224.3	9.0	0.0%		
5	120.0	49.9	2.1	179.6	7.0	0.0%		
6	120.0	49.8	2.1	191.4	8.0	0.0%		
7	120.0	50.2	2.1	185.1	8.0	0.0%		
8	120.0	75.1	3.1	372.4	13.0	2.5%		
9	120.0	78.1	3.2	292.5	12.0	2.5%		
10	120.0	63.3	2.7	226.4	9.0	0.0%		
Average:	120.0	60.6	2.5	250.9	9.8	1.0%		
SWB T on	MD 201 - Lane ID 3	326						
1	120.0	15.7	0.8	61.7	3.0	0.0%		
2	120.0	16.2	0.7	67.4	3.0	0.0%		
3	120.0	13.5	0.7	50.1	2.0	0.0%		
4	120.0	14.7	0.7	62.5	3.0	0.0%		
5	120.0	14.1	0.7	56.4	2.0	0.0%		
6	120.0	15.5	0.8	58.0	3.0	0.0%		
7	120.0	15.9	0.7	73.0	3.0	0.0%		
8	120.0	14.6	0.7	65.4	3.0	0.0%		
9	120.0	15.3	0.7	59.2	3.0	0.0%		
10	120.0	14.4	0.7	57.1	3.0	0.0%		
Average:	120.0	15.0	0.7	61.1	2.8	0.0%		
SWB T on	MD 201 - Lane ID 3	27						
1	120.0	11.2	0.6	43.5	2.0	0.0%		
2	120.0	13.1	0.6	63.1	3.0	0.0%		
3	120.0	12.4	0.6	63.1	3.0	0.0%		
4	120.0	11.8	0.6	55.5	2.0	0.0%		
5	120.0	10.7	0.5	63.9	3.0	0.0%		
6	120.0	9.5	0.4	46.3	2.0	0.0%		
7	120.0	13.1	0.6	64.2	3.0	0.0%		
8	120.0	10.2	0.5	45.7	2.0	0.0%		
9	120.0	11.2	0.5	49.5	2.0	0.0%		
10	120.0	12.6	0.6	58.3	3.0	0.0%		
Average:	120.0	11.6	0.6	55.3	2.5	0.0%		
SWB T on	MD 201 - Lane ID 3	328						
1	120.0	20.4	1.0	87.9	4.0	0.0%		

I-95/495 NB OFF-RAMP & MD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
SWB T on MD 201 - Lane ID 328								
2	120.0	17.2	0.8	72.6	3.0	0.0%		
3	120.0	16.2	0.8	71.8	3.0	0.0%		
4	120.0	17.0	0.8	76.9	3.0	0.0%		
5	120.0	17.9	0.8	78.2	3.0	0.0%		
6	120.0	16.7	0.8	68.6	3.0	0.0%		
7	120.0	21.1	1.0	96.8	4.0	0.0%		
8	120.0	12.9	0.6	62.0	3.0	0.0%		
9	120.0	17.8	0.9	71.6	3.0	0.0%		
10	120.0	18.8	0.9	76.1	3.0	0.0%		
Average:	120.0	17.6	0.8	76.3	3.2	0.0%		

I-95/495 SB OFF-RAMP & MD 201

Avg Queue Avg Vehicles 95th Percentile 95th Percentile Spillback Queued Rate (%) Run **Observations** Length (ft) Length (ft) Num Queued NEB T on MD 201 - Lane ID 374 120.0 2.0 0.1 17.9 1.0 0.0% 1 120.0 2.8 0.1 0.0% 2 18.6 1.0 3 120.0 3.3 0.2 20.5 1.0 0.0% 4 120.0 2.3 0.1 17.7 1.0 0.0% 5 120.0 3.5 0.2 38.6 2.0 0.0% 0.0% 6 120.0 3.6 0.2 19.7 1.0 7 120.0 2.6 0.1 17.9 1.0 0.0% 120.0 0.1 0.0% 8 2.2 16.7 1.0 9 120.0 2.3 0.1 17.9 1.0 0.0% 10 120.0 3.4 0.2 25.3 1.0 0.0% Average: 120.0 2.8 0.1 21.1 1.1 0.0% NEB T on MD 201 - Lane ID 375 1 120.0 4.4 0.2 23.7 1.0 0.0% 19.7 0.0% 120.0 2 3.1 0.1 1.0 3 120.0 3.0 0.1 18.0 1.0 0.0% 4 120.0 3.2 0.1 21.0 1.0 0.0% 5 120.0 3.4 0.2 20.1 1.0 0.0% 0.0% 6 120.0 4.2 0.2 27.2 1.0 7 120.0 3.5 0.1 28.5 1.0 0.0% 8 120.0 1.8 0.1 15.8 1.0 0.0% 9 120.0 2.2 0.1 18.5 1.0 0.0% 120.0 0.2 2.0 0.0% 10 5.4 43.8 Average: 120.0 3.4 0.1 23.6 1.1 0.0%

NEB T on	MD 201 - Lane ID 37	76				
1	120.0	5.5	0.3	40.0	2.0	0.0%
2	120.0	5.1	0.2	45.5	2.0	0.0%
3	120.0	6.6	0.3	46.4	2.0	0.0%

TransModeler Transportation Impact Study

1-95/495 SB OFF-RAMP & MD 201

I-95/495 SB OFF-RAMP & MD 201 NODE: 67								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NEB T on M	VD 201 - Lane ID 37	6						
4	120.0	6.3	0.3	44.4	2.0	0.0%		
5	120.0	4.9	0.2	40.0	2.0	0.0%		
6	120.0	6.8	0.3	57.7	3.0	0.0%		
7	120.0	5.5	0.2	45.3	2.0	0.0%		
8	120.0	6.1	0.3	44.8	2.0	0.0%		
9	120.0	7.0	0.3	62.9	3.0	0.0%		
10	120.0	6.8	0.3	58.9	2.0	0.0%		
Average:	120.0	6.1	0.3	48.6	2.2	0.0%		
SEB L on [l	Unnamed Street] - L	ane ID 392						
1	120.0	16.2	0.8	69.2	3.0	0.0%		
2	120.0	16.6	0.8	69.0	3.0	0.0%		
3	120.0	15.6	0.7	69.9	3.0	0.0%		
4	120.0	17.9	0.9	69.3	3.0	0.0%		
5	120.0	22.6	1.1	80.0	4.0	0.0%		
6	120.0	16.2	0.8	68.9	3.0	0.0%		
7	120.0	19.3	0.9	71.8	3.0	0.0%		
8	120.0	19.6	1.0	72.5	3.0	0.0%		
9	120.0	16.7	0.8	60.0	3.0	0.0%		
10	120.0	15.9	0.8	68.9	3.0	0.0%		
Average:	120.0	17.7	0.9	70.0	3.1	0.0%		
SEB L on [l	Unnamed Street] - L	ane ID 393						
1	120.0	32.2	1.5	108.3	5.0	0.0%		
2	120.0	31.5	1.5	83.1	4.0	0.0%		
3	120.0	32.6	1.5	90.7	4.0	0.0%		
4	120.0	30.8	1.4	96.2	4.0	0.0%		
5	120.0	32.6	1.5	104.9	5.0	0.0%		
6	120.0	30.7	1.5	93.8	4.0	0.0%		
7	120.0	31.1	1.5	100.0	4.0	0.0%		
8	120.0	31.1	1.4	94.2	4.0	0.0%		
9	120.0	30.5	1.4	100.3	4.0	0.0%		
10	120.0	28.3	1.4	86.4	4.0	0.0%		
Average:	120.0	31.1	1.5	95.8	4.2	0.0%		
SWB T on	MD 201 - Lane ID 38	81						
1	120.0	1.9	0.1	17.4	1.0	0.0%		
2	120.0	2.0	0.1	17.3	1.0	0.0%		
3	120.0	6.0	0.3	43.3	2.0	0.0%		
4	120.0	3.4	0.2	36.0	2.0	0.0%		
5	120.0	2.2	0.1	16.1	1.0	0.0%		
6	120.0	2.3	0.1	18.5	1.0	0.0%		
7	120.0	1.4	0.1	0.8	0.0	0.0%		
8	120.0	2.4	0.1	16.0	1.0	0.0%		

I-95/495 SB OFF-RAMP & MD 201

1-95/495	-95/495 SB OFF-RAMP & MD 201 NODE: 67								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)			
SWB T on	MD 201 - Lane ID 3	81							
9	120.0	1.4	0.1	17.6	1.0	0.0%			
10	120.0	3.8	0.2	39.0	2.0	0.0%			
Average:	120.0	2.7	0.1	22.2	1.2	0.0%			
SWB T on	MD 201 - Lane ID 3	82							
1	120.0	2.9	0.1	16.1	1.0	0.0%			
2	120.0	3.6	0.2	18.3	1.0	0.0%			
3	120.0	3.2	0.2	18.9	1.0	0.0%			
4	120.0	3.0	0.1	18.7	1.0	0.0%			
5	120.0	2.5	0.1	15.6	1.0	0.0%			
6	120.0	2.9	0.1	19.8	1.0	0.0%			
7	120.0	2.3	0.1	19.1	1.0	0.0%			
8	120.0	3.3	0.2	36.7	2.0	0.0%			
9	120.0	2.4	0.1	17.5	1.0	0.0%			
10	120.0	4.3	0.2	42.1	2.0	0.0%			
Average:	120.0	3.0	0.1	22.3	1.2	0.0%			

MD 201 & CHERRYWOOD LANE

Run	Observations	Avg Queue Length (ft <u>)</u>	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NEB L on Cherrywood Lane - Lane ID 237								
1	120.0	41.8	1.8	108.1	5.0	0.0%		
2	120.0	40.5	1.9	96.9	5.0	0.0%		
3	120.0	40.6	1.8	104.6	4.0	0.0%		
4	120.0	38.7	1.8	103.1	4.0	0.0%		
5	120.0	39.8	1.7	107.2	4.0	0.0%		
6	120.0	37.5	1.7	101.4	4.0	0.0%		
7	120.0	44.0	2.0	114.9	5.0	0.0%		
8	120.0	35.8	1.6	91.6	4.0	0.0%		
9	120.0	38.7	1.8	93.8	4.0	0.0%		
10	120.0	43.0	2.0	105.2	5.0	0.0%		
Average:	120.0	40.0	1.8	102.7	4.4	0.0%		
NEB L on (Cherrywood Lane -	Lane ID 238						
1	120.0	37.1	1.7	95.0	4.0	0.0%		
2	120.0	36.7	1.7	97.4	4.0	0.0%		
3	120.0	41.1	1.9	110.1	5.0	0.0%		
4	120.0	35.8	1.6	97.6	4.0	0.0%		
5	120.0	40.1	1.9	101.1	4.0	0.0%		
6	120.0	37.7	1.7	96.5	4.0	0.0%		
7	120.0	37.1	1.7	95.2	4.0	0.0%		
8	120.0	36.5	1.7	95.2	4.0	0.0%		

120.0

120.0

33.4

40.0

9

10

91.0

98.5

1.6

1.8

0.0%

0.0%

4.0

4.0

MD 201 & CHERRYWOOD LANE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)			
NEB L on Cherrywood Lane - Lane ID 238									
Average:	120.0	37.6	1.7	97.8	4.1	0.0%			
NEB R on C	herrywood Lane -	Lane ID 239	0.0	0.0	0.0	0.0%			
1	120.0	0.3	0.0	0.0	0.0	0.0%			
2	120.0	0.8	0.0	0.0	0.0	0.0%			
5	120.0	0.4	0.0	0.0	0.0	0.0%			
4	120.0	0.2	0.0	0.0	0.0	0.0%			
5	120.0	0.8	0.0	0.0	0.0	0.0%			
0	120.0	0.7	0.0	0.0	0.0	0.0%			
/	120.0	0.6	0.0	0.0	0.0	0.0%			
8	120.0	0.3	0.0	0.0	0.0	0.0%			
9	120.0	0.6	0.0	0.0	0.0	0.0%			
10	120.0	0.8	0.0	0.0	0.0	0.0%			
Average:	120.0	0.6	0.0	0.0	0.0	0.0%			
NWB L on I	MD 201 - Lane ID 3	230							
1	120.0	59.2	2.6	139.8	6.0	0.0%			
2	120.0	60.0	2.6	147.1	6.0	0.0%			
3	120.0	54.9	2.5	141.0	6.0	0.0%			
4	120.0	64.9	2.8	161.2	7.0	0.0%			
5	120.0	49.8	2.2	128.4	5.0	0.0%			
6	120.0	69.9	3.1	199.7	9.0	0.0%			
7	120.0	56.4	2.5	136.1	6.0	0.0%			
8	120.0	54.0	2.4	127.4	5.0	0.0%			
9	120.0	62.7	2.7	193.8	8.0	0.0%			
10	120.0	71.9	3.1	172.3	7.0	0.0%			
Average:	120.0	60.4	2.7	154.7	6.5	0.0%			
NWB T on I	MD 201 - Lane ID	231							
1	120.0	20.4	0.9	121.8	5.2	0.0%			
2	120.0	72.6	2.8	524.3	19.0	0.0%			
3	120.0	46.7	1.8	382.6	15.0	0.0%			
4	120.0	48.0	1.9	443.0	16.0	0.0%			
5	120.0	53.3	2.1	433.9	17.0	0.0%			
6	120.0	66.3	2.6	444.9	17.1	0.0%			
7	120.0	39.6	1.6	348.7	13.0	0.0%			
8	120.0	28.8	1.1	251.5	9.1	0.0%			
9	120.0	39.2	1.5	369.1	14.1	0.0%			
10	120.0	35.9	1.5	254.3	11.1	0.0%			
Average:	120.0	45.1	1.8	357.4	13.7	0.0%			
NWB T on I	MD 201 - Lane ID	232	1.2	204.0	0.4	0.0%			
1	120.0	29.0	1.2	204.0	δ.1 21.0	0.0%			
2	120.0	10.9	5.0	200.0	ZT.0	0.070			

MD 201 & CHERRYWOOD LANE

MD 201 & CHERRYWOOD LANE NODE: 4							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
NWB T on	MD 201 - Lane ID 2	232					
3	120.0	35.0	1.5	259.0	11.0	0.0%	
4	120.0	52.6	2.1	454.2	16.1	0.0%	
5	120.0	48.4	1.9	438.8	17.0	0.0%	
6	120.0	66.4	2.5	424.8	16.0	0.8%	
7	120.0	44.3	1.8	416.5	16.0	0.0%	
8	120.0	26.0	1.0	110.9	5.3	0.0%	
9	120.0	44.1	1.8	368.4	14.0	0.0%	
10	120.0	55.1	2.1	354.3	14.1	0.0%	
Average:	120.0	47.8	1.9	362.0	13.9	0.1%	
SEB R on N	/ID 201 - Lane ID 25	50					
1	120.0	7.7	0.4	50.6	2.0	0.0%	
2	120.0	8.1	0.4	45.9	2.0	0.0%	
3	120.0	5.4	0.3	42.6	2.0	0.0%	
4	120.0	9.5	0.5	68.2	3.0	0.0%	
5	120.0	12.0	0.5	78.0	3.0	0.0%	
6	120.0	6.2	0.3	41.9	2.0	0.0%	
7	120.0	4.5	0.2	24.4	1.0	0.0%	
8	120.0	8.4	0.4	57.4	3.0	0.0%	
9	120.0	8.6	0.4	56.5	2.0	0.0%	
10	120.0	6.0	0.3	46.9	2.0	0.0%	
Average:	120.0	7.6	0.4	51.2	2.2	0.0%	
SEB T on N	1D 201 - Lane ID 23	85					
1	120.0	41.5	1.7	183.9	8.0	0.0%	
2	120.0	47.2	2.0	215.8	8.0	0.0%	
3	120.0	37.8	1.6	181.7	7.0	0.0%	
4	120.0	45.7	2.0	183.3	8.0	0.0%	
5	120.0	41.2	1.7	214.0	8.0	0.0%	
6	120.0	36.6	1.5	180.3	7.0	0.0%	
7	120.0	35.6	1.5	177.1	7.0	0.0%	
8	120.0	39.0	1.6	179.2	7.0	0.0%	
9	120.0	54.8	2.3	231.2	9.0	0.0%	
10	120.0	37.7	1.6	181.0	7.0	0.0%	
Average:	120.0	41.7	1.8	192.8	7.6	0.0%	
SEB T on N	1D 201 - Lane ID 23	86					
1	120.0	39.8	1.7	172.4	7.0	0.0%	
2	120.0	46.2	1.9	183.3	7.0	0.0%	
3	120.0	41.2	1.7	190.2	8.0	0.0%	
4	120.0	50.6	2.1	193.2	8.0	0.0%	
5	120.0	44.4	1.8	184.2	7.0	0.0%	
6	120.0	36.1	1.5	172.1	6.1	0.0%	
7	120.0	37.8	1.6	188.6	8.0	0.0%	

MD 201 & CHERRYWOOD LANE

MD 201 & CHERRYWOOD LANE NODE: 45							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
SEB T on N	/ID 201 - Lane ID 23	86					
8	120.0	48.6	2.0	225.1	9.0	0.0%	
9	120.0	48.5	2.1	213.0	8.0	0.0%	
10	120.0	38.4	1.6	168.8	7.0	0.0%	
Average:	120.0	43.2	1.8	189.1	7.5	0.0%	

MD 201 & IVY LANE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft <u>)</u>	95th Percentile Num Queued	Spillback Rate (%)
SB T on M	D 201 - Lane ID 251					
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.1	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.1	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%
SB T on M	D 201 - Lane ID 252					
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.1	0.0	0.0	0.0	0.0%
4	120.0	0.3	0.0	0.0	0.0	0.0%
5	120.0	0.6	0.0	0.0	0.0	0.0%
6	120.0	0.3	0.0	0.0	0.0	0.0%
7	120.0	0.1	0.0	0.0	0.0	0.0%
8	120.0	0.3	0.0	0.0	0.0	0.0%
9	120.0	0.7	0.0	0.0	0.0	0.0%
10	120.0	0.5	0.0	0.0	0.0	0.0%
Average:	120.0	0.3	0.0	0.0	0.0	0.0%

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NEB L on MD 201 - Lane ID 311								
1	120.0	12.8	0.6	45.7	2.0	0.0%		
2	120.0	10.9	0.5	42.3	2.0	0.0%		
3	120.0	12.1	0.6	51.6	3.0	0.0%		
4	120.0	11.2	0.6	41.8	2.0	0.0%		
5	120.0	12.9	0.6	40.5	2.0	0.0%		
6	120.0	12.3	0.7	49.7	2.0	0.0%		

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET						NODE: 52	
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
NEB L on I	MD 201 - Lane ID 31	.1					
7	120.0	12.0	0.6	42.0	2.0	0.0%	
8	120.0	10.5	0.5	38.3	2.0	0.0%	
9	120.0	12.4	0.6	43.6	2.0	0.0%	
10	120.0	11.2	0.6	37.6	2.0	0.0%	
Average:	120.0	11.8	0.6	43.3	2.1	0.0%	
NFB R on	MD 201 - Lane ID 33	22					
1	120.0	0.0	0.0	0.0	0.0	0.0%	
2	120.0	0.0	0.0	0.0	0.0	0.0%	
3	120.0	0.0	0.0	0.0	0.0	0.0%	
4	120.0	0.0	0.0	0.0	0.0	0.0%	
5	120.0	0.0	0.0	0.0	0.0	0.0%	
6	120.0	0.0	0.0	0.0	0.0	0.0%	
7	120.0	0.0	0.0	0.0	0.0	0.0%	
8	120.0	0.0	0.0	0.0	0.0	0.0%	
9	120.0	0.0	0.0	0.0	0.0	0.0%	
10	120.0	0.0	0.0	0.0	0.0	0.0%	
Average:	120.0	0.0	0.0	0.0	0.0	0.0%	
Average.	120.0	0.0	0.0	0.0	0.0	0.070	
	MD 201 Jana ID 20	7					
	120.0	10	0 1	0.8	0.0	0.0%	
2	120.0	1.0	0.0	0.0	0.0	0.0%	
2	120.0	0.7	0.0	0.0	0.0	0.0%	
3	120.0	1.2	0.0	0.0	0.0	0.0%	
4	120.0	1.5	0.1	17.1	1.0	0.0%	
5	120.0	2.3	0.1	17.1	1.0	0.0%	
7	120.0	1.0	0.1	0.0	0.0	0.0%	
7	120.0	1.5	0.1	17.1	1.0	0.0%	
0	120.0	1.0	0.1	17.6	1.0	0.0%	
9	120.0	0.8	0.0	0.0	0.0	0.0%	
10	120.0	1.3	0.1	12.2	1.0	0.0%	
Average:	120.0	1.3	0.1	6.6	0.4	0.0%	
		-					
NEB T on	MD 201 - Lane ID 29	10.6	0.5		2.0	0.00/	
1	120.0	10.6	0.5	44.3	2.0	0.0%	
2	120.0	12.4	0.6	50.9	2.1	0.0%	
3	120.0	12.5	0.6	82.6	3.0	0.0%	
4	120.0	12.8	0.5	95.5	4.0	0.0%	
5	120.0	11.4	0.5	51.2	2.0	0.0%	
6	120.0	11.3	0.5	60.6	3.0	0.0%	
7	120.0	7.0	0.3	47.0	2.0	0.0%	
8	120.0	14.2	0.6	97.8	4.0	0.0%	
9	120.0	8.7	0.4	63.5	2.0	0.0%	
10	120.0	12.2	0.5	92.3	4.0	0.0%	
Average:	120.0	11.3	0.5	68.6	2.8	0.0%	

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201	MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET						
Dura	Ohaamatiana	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Kun	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
NED I UN	IVID 201 - Lane ID 25	70					
NEB T on	MD 201 - Lane ID 29	99					
1	120.0	13.5	0.6	123.8	5.0	0.0%	
2	120.0	10.0	0.5	56.6	2.0	0.0%	
3	120.0	9.9	0.5	59.0	3.0	0.0%	
4	120.0	10.8	0.4	94.0	4.0	0.0%	
5	120.0	13.2	0.6	83.2	4.0	0.0%	
6	120.0	11.7	0.5	77.6	3.0	0.0%	
7	120.0	7.0	0.3	47.6	2.0	0.0%	
8	120.0	10.7	0.5	46.1	2.1	0.0%	
9	120.0	9.1	0.4	61.8	3.0	0.0%	
10	120.0	14.5	0.6	98.7	4.0	0.0%	
Average:	120.0	11.0	0.5	74.8	3.2	0.0%	
NWB LT o	n Crescent Street - I	Lane ID 283					
1	120.0	10.4	0.6	20.9	1.0	57.5%	
2	120.0	12.1	0.6	30.7	1.0	62.5%	
3	120.0	12.9	0.7	33.9	2.0	64.2%	
4	120.0	12.9	0.7	28.1	1.0	67.5%	
5	120.0	12.1	0.7	29.1	1.0	63.3%	
6	120.0	10.2	0.6	23.2	1.0	55.0%	
7	120.0	12.3	0.7	34.1	1.0	60.8%	
8	120.0	12.9	0.7	32.7	1.0	63.3%	
9	120.0	11.2	0.6	27.0	1.0	59.2%	
10	120.0	12.0	0.7	33.2	2.0	60.8%	
Average:	120.0	11.9	0.7	29.3	1.2	61.4%	
NWB R or	n Crescent Street - L	ane ID 284		10.0			
1	120.0	3.3	0.2	18.0	1.0	18.3%	
2	120.0	3.2	0.2	18.2	1.0	16.7%	
3	120.0	3.7	0.2	19.1	1.0	20.0%	
4	120.0	4.0	0.2	19.2	1.0	22.5%	
5	120.0	3.7	0.2	19.6	1.0	20.0%	
6	120.0	3.3	0.2	25.3	1.0	15.0%	
7	120.0	3.6	0.2	18.4	1.0	20.0%	
8	120.0	3.6	0.2	18.2	1.0	20.8%	
9	120.0	3.7	0.2	19.3	1.0	19.2%	
10	120.0	3.2	0.2	17.2	1.0	18.3%	
Average:	120.0	3.5	0.2	19.3	1.0	19.1%	
SEB LTR o	n Marvland SHA Dri	iveway - Lane ID 29	31				
1	120.0	0.3	0.0	0.0	0.0	0.0%	
2	120.0	0.0	0.0	0.0	0.0	0.0%	
3	120.0	0.5	0.0	0.0	0.0	0.0%	
4	120.0	0.3	0.0	0.0	0.0	0.0%	

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET NODE:						
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SEB LTR or	Maryland SHA Dr	iveway - Lane ID 28	1			
5	120.0	0.1	0.0	0.0	0.0	0.0%
6	120.0	0.4	0.0	0.0	0.0	0.0%
7	120.0	0.2	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.3	0.0	0.0	0.0	0.0%
10	120.0	1.1	0.1	16.2	1.0	0.0%
Average:	120.0	0.3	0.0	1.6	0.1	0.0%
SWB L on I	MD 201 - Lane ID 3	42				
1	120.0	8.4	0.4	40.6	2.0	0.0%
2	120.0	9.5	0.5	39.0	2.0	0.0%
3	120.0	8.0	0.4	38.9	2.0	0.0%
4	120.0	8.1	0.4	35.9	2.0	0.0%
5	120.0	8.1	0.4	41.2	2.0	0.0%
6	120.0	9.9	0.5	41.3	2.0	0.0%
7	120.0	7.5	0.4	38.9	2.0	0.0%
8	120.0	8.9	0.5	42.8	2.0	0.0%
9	120.0	8.7	0.5	39.4	2.0	0.0%
10	120.0	9.8	0.5	49.1	2.0	0.0%
Average:	120.0	8.7	0.5	40.7	2.0	0.0%
SWB T on I	MD 201 - Lane ID 3	43				
1	120.0	0.3	0.0	0.0	0.0	0.0%
2	120.0	0.3	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.7	0.0	0.0	0.0	0.0%
6	120.0	0.3	0.0	0.0	0.0	0.0%
7	120.0	0.3	0.0	0.0	0.0	0.0%
8	120.0	0.5	0.0	0.0	0.0	0.0%
9	120.0	0.1	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.3	0.0	0.0	0.0	0.0%
SW/B T on I	MD 201 - Lane ID 3	200				
1	120.0	1.1	0.1	15.7	1.0	0.0%
2	120.0	1.5	0.1	17.9	1.0	0.0%
3	120.0	0.9	0.1	0.9	0.0	0.0%
4	120.0	1.9	0.1	18.1	1.0	0.0%
5	120.0	1.4	0.1	16.3	1.0	0.0%
6	120.0	1.1	0.1	0.8	0.0	0.0%
7	120.0	1.6	0.1	16.6	1.0	0.0%
8	120.0	2.4	0.1	17.9	1.0	0.0%
9	120.0	1.6	0.1	13.4	1.0	0.0%

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET						
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SWB T on	MD 201 - Lane ID 3	44				
10	120.0	2.0	0.1	16.8	1.0	0.0%
Average:	120.0	1.6	0.1	13.4	0.8	0.0%
SWB TR o	n MD 201 - Lane ID	345				
1	120.0	2.4	0.1	18.5	1.0	0.0%
2	120.0	3.4	0.2	20.3	1.0	0.0%
3	120.0	4.2	0.2	24.3	1.0	0.0%
4	120.0	4.0	0.2	22.0	1.0	0.0%
5	120.0	5.0	0.2	34.5	1.0	0.0%
6	120.0	3.7	0.2	35.5	2.0	0.0%
7	120.0	3.9	0.2	22.6	1.0	0.0%
8	120.0	4.3	0.2	23.9	1.0	0.0%
9	120.0	3.1	0.1	18.7	1.0	0.0%
10	120.0	3.0	0.2	18.1	1.0	0.0%
Average:	120.0	3.7	0.2	23.8	1.1	0.0%

POULTRY ROAD

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SB T on Po	oultry Road - Lane II	D 109				
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%

120.0

0.0

Average:

0.0

0.0

0.0

0.0%

POULTRY ROAD NODE:								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
SB T on Poultry Road - Lane ID 131								
POWDER MILL ROAD & EDMONSTON ROAD								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NB T on Po	oultry Road - Lane	ID 158						
1	120.0	211.0	7.4	545.7	19.2	0.0%		
2	120.0	211.7	7.6	411.2	14.1	0.0%		
3	120.0	186.6	6.7	379.2	13.0	0.0%		
4	120.0	201.9	7.2	355.9	13.0	0.0%		
5	120.0	181.4	6.4	377.4	13.0	0.0%		
6	120.0	211.1	7.5	486.1	17.0	0.0%		
7	120.0	179.7	6.6	348.7	13.0	0.0%		
8	120.0	194.6	7.0	362.7	13.0	0.0%		
9	120.0	204.9	7.2	714.3	25.1	0.0%		
10	120.0	186.4	6.7	356.7	13.0	0.0%		
Average:	120.0	196.9	7.0	433.8	15.3	0.0%		
NB T on Po	oultry Road - Lane	ID 159						
1	120.0	217.8	7.8	394.0	14.1	0.0%		
2	120.0	214.4	7.6	371.4	13.0	0.0%		
3	120.0	204.9	7.3	377.6	14.0	0.0%		
4	120.0	214.0	7.6	385.8	14.0	0.0%		
5	120.0	210.1	7.5	387.3	15.0	0.0%		
6	120.0	260.8	9.4	645.2	22.2	0.0%		
7	120.0	182.9	6.5	372.6	14.0	0.0%		
8	120.0	208.1	7.5	383.1	14.0	0.0%		
9	120.0	200.4	7.0	434.8	15.1	0.0%		
10	120.0	221.8	7.9	462.6	15.2	0.0%		
Average:	120.0	213.5	7.6	421.4	15.1	0.0%		
NB T on Po	oultry Road - Lane	ID 212						
1	120.0	237.8	8.6	560.1	20.0	0.0%		
2	120.0	236.9	8.4	693.4	23.4	0.0%		
3	120.0	219.7	7.9	381.3	14.0	0.0%		
4	120.0	237.1	8.3	399.8	14.7	0.0%		
5	120.0	217.9	7.9	483.2	17.2	0.0%		
6	120.0	247.8	9.0	654.6	23.1	0.0%		
7	120.0	203.5	7.3	380.9	14.0	0.0%		
8	120.0	222.3	7.9	482.6	18.0	0.0%		
9	120.0	204.6	7.2	396.3	15.3	0.0%		
10	120.0	226.5	8.0	499.4	18.2	0.0%		
Average:	120.0	225.4	8.1	493.2	17.8	0.0%		
NB T on Po	oultry Road - Lane	ID 218						
1	120.0	194.9	7.0	368.7	13.0	0.0%		
DOWNDED MILL DOAD & EDMONISTON DOAD

POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
NB T on P	oultry Road - Lane	ID 218	7.4	270 7	12.0	0.0%	
2	120.0	209.0	7.4	3/8./	13.0	0.0%	
3	120.0	190.4	6.6	3/3.5	13.0	0.0%	
4	120.0	193.9	6.9	374.6	13.0	0.0%	
5	120.0	196.4	7.1	379.1	14.0	0.0%	
6	120.0	207.1	7.4	367.3	13.0	0.0%	
7	120.0	171.5	6.1	365.6	13.0	0.0%	
8	120.0	187.8	6.8	366.6	14.0	0.0%	
9	120.0	192.8	6.8	362.9	13.0	0.0%	
10	120.0	189.3	6.7	366.9	13.0	0.0%	
Average:	120.0	193.3	6.9	370.4	13.2	0.0%	
NB T on P	oultry Road - Lane	ID 350					
1	120.0	181.8	6.4	378.1	13.0	0.0%	
2	120.0	199.5	7.2	367.0	13.0	0.0%	
3	120.0	191.7	6.9	355.8	13.0	0.0%	
4	120.0	184.5	6.6	352.1	12.0	0.0%	
5	120.0	190.9	6.8	351.0	12.0	0.0%	
6	120.0	203.8	7.3	362.4	13.0	0.0%	
7	120.0	177.7	6.4	359.1	13.0	0.0%	
8	120.0	190.7	6.7	363.7	13.0	0.0%	
9	120.0	159.4	5.7	357.4	13.0	0.0%	
10	120.0	175.7	6.4	363.9	14.0	0.0%	
Average:	120.0	185.6	6.6	361.1	12.9	0.0%	
NB T on P	oultry Road - Lane	ID 355					
1	120.0	177.6	6.1	372.4	13.0	0.0%	
2	120.0	192.3	6.9	367.3	13.0	0.0%	
3	120.0	179.5	6.4	352.0	13.0	0.0%	
4	120.0	165.2	5.9	356.5	12.0	0.0%	
5	120.0	180.1	6.3	340.5	12.0	0.0%	
6	120.0	196.9	7.1	376.0	14.0	0.0%	
7	120.0	177.9	6.4	364.7	13.0	0.0%	
8	120.0	177.7	6.4	365.0	13.0	0.0%	
9	120.0	168.5	5.9	351.7	12.0	0.0%	
10	120.0	179.0	6.3	344.0	12.0	0.0%	
Average:	120.0	179.5	6.4	359.0	12.7	0.0%	
NB T on P	oultry Road - Lane	ID 406					
1	120.0	161.5	5.8	339.1	13.0	0.0%	
2	120.0	175.3	6.1	343.7	12.0	0.0%	
3	120.0	169.2	5.9	353.5	12.0	0.0%	
4	120.0	160.1	5.7	329.9	12.0	0.0%	
5	120.0	160.2	5.6	334.6	12.0	0.0%	
6	120.0	179.0	6.4	332.1	12.0	0.0%	

DOWNDED MILL DOAD & EDMONISTON DOAD

POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
NB T on Po	oultry Road - Lane	ID 406					
7	120.0	151.0	5.3	327.6	12.0	0.0%	
8	120.0	146.5	5.3	320.5	12.0	0.0%	
9	120.0	157.9	5.7	330.8	12.0	0.0%	
10	120.0	166.0	5.8	324.8	12.0	0.0%	
Average:	120.0	162.7	5.8	333.7	12.1	0.0%	
NEB L on [Unnamed Street] -	Lane ID 49					
1	120.0	25.6	1.1	79.6	3.0	34.2%	
2	120.0	23.2	1.1	76.7	3.0	31.7%	
3	120.0	22.7	1.1	75.4	3.0	30.8%	
4	120.0	27.1	1.2	83.8	4.0	36.7%	
5	120.0	32.4	1.4	83.9	3.0	43.3%	
6	120.0	27.0	1.2	83.6	4.0	35.8%	
7	120.0	26.5	1.2	83.5	4.0	34.2%	
8	120.0	30.2	1.4	86.1	4.0	41.7%	
9	120.0	23.5	1.1	81.1	4.0	30.8%	
10	120.0	26.6	1.3	81.0	4.0	39.2%	
Average:	120.0	26.5	1.2	81.5	3.6	35.8%	
NFR T on [[Unnamed Street]	- Lane ID 83					
1	120.0	10.9	0.5	75.7	3.0	15.0%	
2	120.0	11.2	0.5	70.3	3.0	14.2%	
3	120.0	12.3	0.6	70.1	3.0	17.5%	
4	120.0	12.6	0.5	70.7	3.0	16.7%	
5	120.0	14.6	0.6	74.2	3.0	20.8%	
6	120.0	15.6	0.7	80.4	3.0	22.5%	
7	120.0	12.4	0.6	74.0	3.0	18.3%	
8	120.0	15.0	0.7	82.6	3.0	19.2%	
9	120.0	10.1	0.5	62.6	3.0	11.7%	
10	120.0	16.3	0.7	75.0	3.0	23.3%	
Average:	120.0	13.1	0.6	73.6	3.0	17.9%	
SEB L on P	owder Mill Road -	Lane ID 64					
1	120.0	9.9	0.5	23.1	1.0	0.0%	
2	120.0	10.9	0.6	45.3	2.0	0.0%	
3	120.0	10.3	0.6	37.9	2.0	0.0%	
4	120.0	11.7	0.6	38.2	2.0	0.0%	
5	120.0	9.9	0.6	34.7	2.0	0.0%	
6	120.0	13.4	0.7	41.5	2.0	0.0%	
7	120.0	11.6	0.6	43.0	2.0	0.0%	
8	120.0	12.2	0.6	40.6	2.0	0.0%	
9	120.0	12.8	0.7	47.2	2.0	0.0%	
10	120.0	10.4	0.6	23.0	1.0	0.0%	
Average:	120.0	11.3	0.6	37.5	1.8	0.0%	

POWDER MILL ROAD & EDMONSTON ROAD

POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
SEB L on F	Powder Mill Road -	Lane ID 64					
SEB T on F	Powder Mill Road -	Lane ID 184					
1	120.0	13.6	0.7	48.9	2.0	0.0%	
2	120.0	15.6	0.8	63.8	3.0	0.0%	
3	120.0	13.6	0.7	59.9	2.0	0.0%	
4	120.0	11.9	0.6	44.9	2.0	0.0%	
5	120.0	15.8	0.8	51.2	2.0	0.0%	
6	120.0	12.7	0.7	46.6	2.0	0.0%	
7	120.0	10.7	0.5	42.7	2.0	0.0%	
8	120.0	12.1	0.6	50.2	2.0	0.0%	
9	120.0	14.8	0.7	64.7	3.0	0.0%	
10	120.0	15.1	0.7	50.9	2.0	0.0%	
Average:	120.0	13.6	0.7	52.4	2.2	0.0%	
SEB T on F	Powder Mill Road -	Lane ID 65					
1	120.0	15.9	0.8	63.2	3.0	0.0%	
2	120.0	12.9	0.7	45.8	2.0	0.0%	
3	120.0	14.6	0.7	47.2	2.0	0.0%	
4	120.0	14.3	0.7	46.8	2.0	0.0%	
5	120.0	13.8	0.7	50.1	2.0	0.0%	
6	120.0	14.5	0.7	64.6	3.0	0.0%	
/	120.0	11.8	0.6	48.1	2.0	0.0%	
8	120.0	12.9	0.6	44.2	2.0	0.0%	
9	120.0	14.4	0.7	57.2	2.0	0.0%	
10	120.0	13.4	0.7	45.6	2.0	0.0%	
Average:	120.0	13.9	0.7	51.3	2.2	0.0%	
	Education Dood	Lana ID 109					
1	120.0	6.4	03	28.1	10	29.2%	
2	120.0	6.4	0.3	35.4	2.0	27.5%	
3	120.0	6.0	0.3	19.8	1.0	34.2%	
4	120.0	5.7	0.3	19.5	1.0	29.2%	
5	120.0	5.6	0.3	19.3	1.0	30.0%	
6	120.0	4.8	0.3	18.8	1.0	26.7%	
7	120.0	6.7	0.4	22.5	1.0	33.3%	
8	120.0	7.1	0.4	29.6	1.0	32.5%	
9	120.0	4.5	0.2	22.1	1.0	21.7%	
10	120.0	5.2	0.3	19.0	1.0	27.5%	
Average:	120.0	5.8	0.3	23.4	1.1	29.2%	
č							
SWB T on	Edmonston Road -	Lane ID 199					
1	120.0	9.5	0.5	33.9	2.0	45.0%	
2	120.0	10.5	0.6	35.5	2.0	48.3%	
3	120.0	10.7	0.6	36.7	2.0	48.3%	
4	120.0	11.5	0.6	35.9	2.0	50.0%	

DOWNER MILL ROAD & EDMONSTON ROAD

POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
SWB T on	Edmonston Road -	Lane ID 199					
5	120.0	11.3	0.6	36.3	2.0	50.0%	
6	120.0	9.2	0.5	34.7	2.0	43.3%	
7	120.0	10.3	0.6	35.6	2.0	49.2%	
8	120.0	9.7	0.5	31.3	1.0	47.5%	
9	120.0	10.4	0.6	36.7	2.0	46.7%	
10	120.0	11.1	0.6	35.6	2.0	49.2%	
Average:	120.0	10.4	0.6	35.2	1.9	47.8%	
SWB TR or	n Edmonston Road	- Lane ID 200					
1	120.0	11.1	0.6	36.0	2.0	49.2%	
2	120.0	10.7	0.6	37.4	2.0	49.2%	
3	120.0	11.5	0.6	37.4	2.0	49.2%	
4	120.0	11.6	0.6	37.3	2.0	53.3%	
5	120.0	10.6	0.6	35.4	2.0	47.5%	
6	120.0	8.5	0.5	26.1	1.0	44.2%	
7	120.0	11.0	0.6	38.7	2.0	48.3%	
8	120.0	9.1	0.5	32.4	2.0	42.5%	
9	120.0	11.0	0.6	36.6	2.0	49.2%	
10	120.0	11.2	0.6	38.1	2.0	48.3%	
Average:	120.0	10.6	0.6	35.5	1.9	48.1%	
WRLopD	oultry Bood Jono						
1	120.0	21.1	0.9	96 5	4.0	0.0%	
2	120.0	16.7	0.8	65.7	3.0	0.0%	
3	120.0	15.4	0.7	68.2	3.0	0.0%	
4	120.0	18.6	0.9	68.7	3.0	0.0%	
5	120.0	15.9	0.8	68.9	3.0	0.0%	
6	120.0	19.4	0.9	69.6	3.0	0.0%	
7	120.0	15.2	0.7	63.7	3.0	0.0%	
8	120.0	22.4	1.0	70.9	3.0	0.0%	
9	120.0	18.4	0.9	71.3	3.0	0.0%	
10	120.0	13.7	0.6	62.6	3.0	0.0%	
Average:	120.0	17.7	0.8	70.6	3.1	0.0%	
WB L on P	oultry Road - Lane	ID 82		-1.0		0.00/	
1	120.0	24.3	1.1	/1.0	3.0	0.0%	
2	120.0	25.1	1.1	98.9	3.0	0.0%	
3	120.0	21.4	1.0	63.8	3.0	0.0%	
4	120.0	24.3	1.1	95.7	4.0	0.0%	
5	120.0	23.6	1.0	88.7	3.0	0.0%	
6	120.0	24.6	1.2	79.9	4.0	0.0%	
7	120.0	18.2	0.8	66.7	3.0	0.0%	
8	120.0	24.7	1.2	79.6	3.0	0.0%	
9	120.0	16.7	0.8	56.8	3.0	0.0%	

POWDER MILL ROAD & EDMONSTON ROAD

POWDER	POWDER MILL ROAD & EDMONSTON ROADNODE: 19								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)			
WB L on Po	oultry Road - Lane	ID 82							
10	120.0	21.8	1.0	92.1	3.0	0.0%			
Average:	120.0	22.5	1.0	79.3	3.2	0.0%			
WB T on P	WB T on Poultry Road - Lane ID 196								
1	120.0	24.7	1.1	103.3	5.0	0.0%			
2	120.0	25.7	1.2	98.7	4.0	0.0%			
3	120.0	26.0	1.1	107.9	4.0	0.0%			
4	120.0	21.8	1.0	114.2	4.0	0.0%			
5	120.0	29.3	1.3	133.7	5.0	0.0%			
6	120.0	18.4	0.9	61.8	3.0	0.0%			
7	120.0	23.3	1.0	112.1	5.0	0.0%			
8	120.0	26.1	1.2	115.3	5.0	0.0%			
9	120.0	22.1	1.0	110.9	5.0	0.0%			
10	120.0	27.0	1.2	98.9	4.0	0.0%			
Average:	120.0	24.4	1.1	105.7	4.4	0.0%			

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Run	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile Num Queued	Spillback Bate (%)
EB T on Po	wder Mill Road - L	ane ID 17	Queueu	Length (re)	Hum Quedeu	
1	120.0	23.2	1.0	99.5	4.0	2.5%
2	120.0	19.7	0.9	88.1	4.0	1.7%
3	120.0	21.0	1.0	94.4	4.0	0.0%
4	120.0	20.4	0.9	96.5	4.0	0.8%
5	120.0	22.1	1.0	97.5	4.0	1.7%
6	120.0	18.7	0.9	98.4	4.0	2.5%
7	120.0	21.8	1.0	86.2	4.0	3.3%
8	120.0	25.3	1.1	100.8	5.0	4.2%
9	120.0	20.9	0.9	90.8	4.0	1.7%
10	120.0	22.8	1.0	120.8	5.0	6.7%
Average:	120.0	21.6	1.0	97.3	4.2	2.5%
NB L on Sc	bil Conservation Ro	ad - Lane ID 13	12	120.4	5.0	0.0%
1	120.0	25.7	1.2	130.4	5.0	0.0%
2	120.0	26.7	1.2	119.6	5.0	0.0%
3	120.0	20.9	0.9	94.4	4.0	0.0%
4	120.0	25.4	1.1	114.2	4.0	0.0%
5	120.0	28.9	1.3	114.0	4.0	0.0%
6	120.0	28.4	1.3	108.7	5.0	0.0%
7	120.0	26.5	1.2	120.8	5.0	1.7%
8	120.0	25.8	1.1	114.3	5.0	0.8%
9	120.0	31.0	1.4	114.7	5.0	0.0%
10	120.0	28.3	1.3	125.2	5.0	0.8%
Average:	120.0	26.8	1.2	115.6	4.7	0.3%

SOIL CONSERVATION ROAD & POWDER MILL ROAD

SOIL CONSERVATION ROAD & POWDER MILL ROAD NODE: 2								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NB L on S	oil Conservation Ro	ad - Lane ID 13						
WB L on F	Powder Mill Road - I	Lane ID 11						
1	120.0	8.7	0.5	30.7	1.0	0.0%		
2	120.0	9.0	0.5	20.7	1.0	0.0%		
3	120.0	10.5	0.6	31.7	2.0	0.0%		
4	120.0	8.8	0.5	35.1	2.0	0.0%		
5	120.0	7.8	0.4	20.6	1.0	0.0%		
6	120.0	7.3	0.4	25.4	1.0	0.0%		
7	120.0	8.7	0.5	24.2	1.0	0.0%		
8	120.0	8.6	0.5	27.6	1.0	0.0%		
9	120.0	8.1	0.4	30.0	1.0	0.0%		
10	120.0	9.9	0.5	42.1	2.0	0.0%		
Average:	120.0	8.7	0.5	28.8	1.3	0.0%		
WB T on I	Powder Mill Road -	Lane ID 42						
1	120.0	24.6	1.1	105.2	4.0	1.7%		
2	120.0	28.5	1.3	114.5	5.0	1.7%		
3	120.0	27.5	1.2	116.4	5.0	0.8%		
4	120.0	30.3	1.3	117.6	5.0	0.0%		
5	120.0	25.2	1.1	100.1	4.0	0.0%		
6	120.0	22.9	1.0	106.8	4.0	0.0%		
7	120.0	26.2	1.1	116.4	5.0	0.8%		
8	120.0	26.9	1.2	108.0	5.0	0.0%		
9	120.0	23.0	1.0	106.6	4.0	0.0%		
10	120.0	20.6	0.9	72.6	3.0	0.8%		
Average:	120.0	25.6	1.1	106.4	4.4	0.6%		

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection - Avg Queue

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	52.6	16.1	43.1	97.9	10
NB TR	37	BW Parkway NB Off-Ramp	2.5	1.1	0.9	4.8	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	25.5	3.0	19.8	29.2	10
EB L	24	Powder Mill Road	13.0	1.6	10.8	16.3	10
EB T	25	Powder Mill Road	16.2	1.8	13.8	19.5	10
WB R	207	Powder Mill Road	1.7	0.7	0.7	2.7	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD						NODE: 8	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	62.0	12.1	52.0	92.9	10
SWB TR	28	BW Parkway SB Off-Ramp	232.8	42.0	167.8	294.1	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	8.8	2.9	5.2	14.5	10
WB L	26	Powder Mill Road	2.6	0.7	1.7	3.9	10
EB T	31	Powder Mill Road	19.1	2.9	15.4	24.0	10
EB R	206	Powder Mill Road	1.1	0.6	0.5	2.2	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONST	EDMONSTON ROAD & SUNNYSIDE AVENUE								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
NB L	114	Edmonston Road	83.0	12.6	63.7	100.9	10		
SB T	120	Edmonston Road	42.9	5.4	35.7	54.0	10		
SB T	121	Edmonston Road	54.7	5.4	48.2	67.1	10		
NB T	126	Edmonston Road	6.1	1.6	3.5	8.6	10		
NB T	167	Edmonston Road	5.2	1.5	2.0	7.5	10		
SB R	171	Edmonston Road	6.7	1.6	5.2	10.4	10		

EDMONSTON ROAD & SUNNYSIDE AVENUE							NODE: 32
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	69.6	33.1	41.4	143.2	10
EB R	118	Sunnyside Avenue	16.8	2.0	13.0	19.2	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	17.1	1.9	14.5	19.8	10
NWB L	322	I-95/495 NB off-ramp	29.0	3.1	25.9	36.6	10
NWB R	323	I-95/495 NB off-ramp	60.3	10.4	48.9	76.7	10
NWB R	324	I-95/495 NB off-ramp	60.6	12.6	49.8	79.5	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	10.3	1.5	8.2	12.6	10
NEB T	319	MD 201	12.2	1.5	9.8	14.2	10
NEB T	320	MD 201	15.9	0.6	14.8	16.7	10
SWB T	326	MD 201	15.0	0.9	13.5	16.2	10
SWB T	327	MD 201	11.6	1.2	9.5	13.1	10
SWB T	328	MD 201	17.6	2.3	12.9	21.1	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 17.7 2.2 15.6 22.6 10 [Unnamed Street]

31.1

I-95/495 SB OFF-RAMP & MD 201

[Unnamed Street]

393

SEB L

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	2.8	0.6	2.0	3.6	10
NEB T	375	MD 201	3.4	1.1	1.8	5.4	10
NEB T	376	MD 201	6.1	0.8	4.9	7.0	10
SWB T	381	MD 201	2.7	1.4	1.4	6.0	10
SWB T	382	MD 201	3.0	0.6	2.3	4.3	10

1.3

28.3

32.6

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	40.0	2.5	35.8	44.0	10
NEB L	238	Cherrywood Lane	37.6	2.3	33.4	41.1	10
NEB R	239	Cherrywood Lane	0.6	0.2	0.2	0.8	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	60.4	7.1	49.8	71.9	10
NWB T	231	MD 201	45.1	16.0	20.4	72.6	10
NWB T	232	MD 201	47.8	15.9	26.0	76.9	10
SEB T	235	MD 201	41.7	6.0	35.6	54.8	10

NODE: 57

NODE: 32

NODE: 57

NODE: 67

10

NODE: 45

NODE: 45

TransModeler Traffic Simulation Software

Transportation Impact Study

MD 201 &	MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SEB T	236	MD 201	43.2	5.2	36.1	50.6	10	
SEB R	250	MD 201	7.6	2.2	4.5	12.0	10	

MD 201 &	MD 201 & IVY LANE						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.1	10
SB T	252	MD 201	0.3	0.2	0.0	0.7	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	11.9	1.0	10.2	12.9	10
NWB R	284	Crescent Street	3.5	0.3	3.2	4.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.3	0.3	0.0	1.1	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	1.3	0.5	0.6	2.3	10
NEB T	298	MD 201	11.3	2.1	7.0	14.2	10
NEB T	299	MD 201	11.0	2.3	7.0	14.5	10
NEB L	311	MD 201	11.8	0.8	10.5	12.9	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	8.7	0.8	7.5	9.9	10
SWB T	343	MD 201	0.3	0.2	0.0	0.7	10
SWB T	344	MD 201	1.6	0.5	0.9	2.4	10
SWB TR	345	MD 201	3.7	0.7	2.4	5.0	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	26.5	3.1	22.7	32.4	10
NEB T	83	[Unnamed Street]	13.1	2.1	10.1	16.3	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	5.8	0.8	4.5	7.1	10
SWB T	199	Edmonston Road	10.4	0.8	9.2	11.5	10
SWB TR	200	Edmonston Road	10.6	1.0	8.5	11.6	10

NODE: 52

POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
WB L	51	Poultry Road	17.7	2.8	13.7	22.4	10	
WB L	82	Poultry Road	22.5	2.9	16.7	25.1	10	
NB T	158	Poultry Road	196.9	12.8	179.7	211.7	10	
NB T	159	Poultry Road	213.5	19.9	182.9	260.8	10	
WB T	196	Poultry Road	24.4	3.1	18.4	29.3	10	
NB T	212	Poultry Road	225.4	14.7	203.5	247.8	10	
NB T	218	Poultry Road	193.3	10.4	171.5	209.0	10	
NB T	350	Poultry Road	185.6	12.8	159.4	203.8	10	
NB T	355	Poultry Road	179.5	9.4	165.2	196.9	10	
NB T	406	Poultry Road	162.7	10.1	146.5	179.0	10	

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	11.3	1.2	9.9	13.4	10
SEB T	65	Powder Mill Road	13.9	1.2	11.8	15.9	10
SEB T	184	Powder Mill Road	13.6	1.7	10.7	15.8	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	8.7	0.9	7.3	10.5	10
EB T	17	Powder Mill Road	21.6	1.9	18.7	25.3	10
WB T	42	Powder Mill Road	25.6	2.9	20.6	30.3	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	26.8	2.7	20.9	31.0	10

NODE: 2

NODE: 19

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection - Avg Num Queued

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
NB L	36	BW Parkway NB Off-Ramp	2.3	0.6	1.9	4.1	10	
NB TR	37	BW Parkway NB Off-Ramp	0.1	0.0	0.1	0.2	10	

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
WB T	5	Powder Mill Road	1.1	0.1	0.9	1.3	10	
EB L	24	Powder Mill Road	0.7	0.1	0.6	0.8	10	
EB T	25	Powder Mill Road	0.7	0.1	0.6	0.9	10	
WB R	207	Powder Mill Road	0.1	0.0	0.0	0.1	10	

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD				NODE: 8	NODE: 8			
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SWB L	27	BW Parkway SB Off-Ramp	2.7	0.4	2.3	3.8	10	
SWB TR	28	BW Parkway SB Off-Ramp	9.4	1.6	6.9	11.8	10	

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	0.4	0.1	0.2	0.6	10
WB L	26	Powder Mill Road	0.1	0.0	0.1	0.2	10
EB T	31	Powder Mill Road	0.8	0.1	0.7	1.1	10
EB R	206	Powder Mill Road	0.1	0.1	0.0	0.1	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	3.5	0.5	2.7	4.2	10
SB T	120	Edmonston Road	1.8	0.2	1.5	2.3	10
SB T	121	Edmonston Road	2.3	0.2	2.1	2.8	10
NB T	126	Edmonston Road	0.3	0.1	0.2	0.4	10
NB T	167	Edmonston Road	0.2	0.1	0.1	0.3	10
SB R	171	Edmonston Road	0.3	0.1	0.3	0.5	10

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	3.0	1.3	1.9	6.0	10
EB R	118	Sunnyside Avenue	0.8	0.1	0.6	0.9	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	0.8	0.1	0.7	0.9	10
NWB L	322	I-95/495 NB off-ramp	1.3	0.1	1.2	1.6	10
NWB R	323	I-95/495 NB off-ramp	2.6	0.4	2.1	3.2	10
NWB R	324	I-95/495 NB off-ramp	2.5	0.5	2.1	3.2	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	0.5	0.1	0.4	0.6	10
NEB T	319	MD 201	0.6	0.0	0.5	0.6	10
NEB T	320	MD 201	0.8	0.1	0.7	0.8	10
SWB T	326	MD 201	0.7	0.0	0.7	0.8	10
SWB T	327	MD 201	0.6	0.1	0.4	0.6	10
SWB T	328	MD 201	0.8	0.1	0.6	1.0	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 0.9 0.1 0.7 1.1 10 [Unnamed Street] 1.5 SEB L 393 1.5 0.1 1.4 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201

	-						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	0.1	0.1	0.1	0.2	10
NEB T	375	MD 201	0.1	0.1	0.1	0.2	10
NEB T	376	MD 201	0.3	0.0	0.2	0.3	10
SWB T	381	MD 201	0.1	0.1	0.1	0.3	10
SWB T	382	MD 201	0.1	0.1	0.1	0.2	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	1.8	0.1	1.6	2.0	10
NEB L	238	Cherrywood Lane	1.7	0.1	1.6	1.9	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	2.7	0.3	2.2	3.1	10
NWB T	231	MD 201	1.8	0.6	0.9	2.8	10
NWB T	232	MD 201	1.9	0.6	1.0	3.0	10
SEB T	235	MD 201	1.8	0.3	1.5	2.3	10

NODE: 67

NODE: 45

NODE: 45

TransModeler

Simulation Software Transportation Impact Study

NODE: 32

NODE: 57

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	1.8	0.2	1.5	2.1	10
SEB R	250	MD 201	0.4	0.1	0.2	0.5	10

MD 201 & IVY LANE							NODE: 50
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET								
Movements Lane ID Street Name Average Std Deviation Minimum Maximum #								
NWB LT	283	Crescent Street	0.7	0.1	0.6	0.7	10	
NWB R	284	Crescent Street	0.2	0.0	0.2	0.2	10	

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.1	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.1	0.0	0.0	0.1	10
NEB T	298	MD 201	0.5	0.1	0.3	0.6	10
NEB T	299	MD 201	0.5	0.1	0.3	0.6	10
NEB L	311	MD 201	0.6	0.1	0.5	0.7	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	0.5	0.1	0.4	0.5	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.1	0.0	0.1	0.1	10
SWB TR	345	MD 201	0.2	0.0	0.1	0.2	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	1.2	0.1	1.1	1.4	10
NEB T	83	[Unnamed Street]	0.6	0.1	0.5	0.7	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	0.3	0.1	0.2	0.4	10
SWB T	199	Edmonston Road	0.6	0.0	0.5	0.6	10
SWB TR	200	Edmonston Road	0.6	0.0	0.5	0.6	10

NODE: 52

POWDER	MILL RO	AD & EDMONST	ON ROAD				NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
POWDER	MILL RO	AD & EDMONST	ON ROAD				NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	51	Poultry Road	0.8	0.1	0.6	1.0	10
WB L	82	Poultry Road	1.0	0.1	0.8	1.2	10
NB T	158	Poultry Road	7.0	0.4	6.4	7.6	10
NB T	159	Poultry Road	7.6	0.7	6.5	9.4	10
WB T	196	Poultry Road	1.1	0.1	0.9	1.3	10
NB T	212	Poultry Road	8.1	0.6	7.2	9.0	10
NB T	218	Poultry Road	6.9	0.4	6.1	7.4	10
NB T	350	Poultry Road	6.6	0.5	5.7	7.3	10
NB T	355	Poultry Road	6.4	0.4	5.9	7.1	10
NB T	406	Poultry Road	5.8	0.3	5.3	6.4	10

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	0.6	0.1	0.5	0.7	10
SEB T	65	Powder Mill Road	0.7	0.1	0.6	0.8	10
SEB T	184	Powder Mill Road	0.7	0.1	0.5	0.8	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	0.5	0.1	0.4	0.6	10
EB T	17	Powder Mill Road	1.0	0.1	0.9	1.1	10
WB T	42	Powder Mill Road	1.1	0.1	0.9	1.3	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	1.2	0.1	0.9	1.4	10

NODE: 2

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -**Percentile Queue**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	222.8	62.0	174.4	394.2	10
NB TR	37	BW Parkway NB Off-Ramp	18.5	9.7	0.8	40.4	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	138.1	13.0	116.8	159.6	10
EB L	24	Powder Mill Road	55.6	8.3	43.8	68.0	10
EB T	25	Powder Mill Road	112.5	6.5	103.7	121.9	10
WB R	207	Powder Mill Road	12.9	8.9	0.0	21.3	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	215.9	111.9	138.2	505.0	10
SWB TR	28	BW Parkway SB Off-Ramp	975.8	216.9	589.1	1,240.1	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	51.6	13.2	34.9	77.9	10
WB L	26	Powder Mill Road	17.9	1.4	15.7	20.7	10
EB T	31	Powder Mill Road	103.0	8.9	88.8	112.1	10
EB R	206	Powder Mill Road	7.0	8.9	0.0	19.2	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	276.0	48.5	210.5	360.4	10
SB T	120	Edmonston Road	179.4	15.4	154.8	207.2	10
SB T	121	Edmonston Road	205.4	14.0	184.8	224.8	10
NB T	126	Edmonston Road	48.6	13.4	22.5	66.5	10
NB T	167	Edmonston Road	41.7	12.1	18.7	53.6	10
SB R	171	Edmonston Road	43.7	9.2	27.9	55.6	10

EDMONSTON ROAD & SUNNYSIDE AVENUE							NODE: 32
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	194.2	80.6	105.8	350.3	10
EB R	118	Sunnyside Avenue	73.3	7.1	62.1	84.3	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	74.0	9.1	65.8	97.2	10
NWB L	322	I-95/495 NB off-ramp	105.3	8.1	90.0	115.4	10
NWB R	323	I-95/495 NB off-ramp	222.1	43.2	175.5	308.6	10
NWB R	324	I-95/495 NB off-ramp	250.9	97.3	169.1	464.3	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	48.6	6.7	42.1	65.8	10
NEB T	319	MD 201	52.0	5.3	44.5	58.3	10
NEB T	320	MD 201	69.3	3.6	64.1	75.3	10
SWB T	326	MD 201	61.1	6.4	50.1	73.0	10
SWB T	327	MD 201	55.3	8.4	43.5	64.2	10
SWB T	328	MD 201	76.3	9.9	62.0	96.8	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 70.0 4.9 60.0 80.0 10 [Unnamed Street] SEB L 393 95.8 7.9 83.1 108.3 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201

	-						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	21.1	6.6	16.7	38.6	10
NEB T	375	MD 201	23.6	8.1	15.8	43.8	10
NEB T	376	MD 201	48.6	8.2	40.0	62.9	10
SWB T	381	MD 201	22.2	13.1	0.8	43.3	10
SWB T	382	MD 201	22.3	9.2	15.6	42.1	10
SWB T SWB T	376 381 382	MD 201 MD 201 MD 201	48.6 22.2 22.3	8.2 13.1 9.2	40.0 0.8 15.6	43.3 42.1	10 10 10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	102.7	7.0	91.6	114.9	10
NEB L	238	Cherrywood Lane	97.8	5.1	91.0	110.1	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	154.7	26.2	127.4	199.7	10
NWB T	231	MD 201	357.4	118.7	121.8	524.3	10
NWB T	232	MD 201	362.0	138.0	110.9	588.8	10
SEB T	235	MD 201	192.8	19.6	177.1	231.2	10

Page 36 of 46

NODE: 32

NODE: 57

NODE: 57

NODE: 67

NODE: 45

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	189.1	18.0	168.8	225.1	10
SEB R	250	MD 201	51.2	14.9	24.4	78.0	10

MD 201 & IVY LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							NODE: 52
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	29.3	4.6	20.9	34.1	10
NWB R	284	Crescent Street	19.3	2.2	17.2	25.3	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	1.6	5.1	0.0	16.2	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	6.6	8.2	0.0	17.6	10
NEB T	298	MD 201	68.6	21.3	44.3	97.8	10
NEB T	299	MD 201	74.8	25.2	46.1	123.8	10
NEB L	311	MD 201	43.3	4.5	37.6	51.6	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	40.7	3.5	35.9	49.1	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	13.4	6.8	0.8	18.1	10
SWB TR	345	MD 201	23.8	6.3	18.1	35.5	10

POULTRY ROAD							NODE: 40
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	81.5	3.4	75.4	86.1	10
NEB T	83	[Unnamed Street]	73.6	5.6	62.6	82.6	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	23.4	5.7	18.8	35.4	10
SWB T	199	Edmonston Road	35.2	1.6	31.3	36.7	10
SWB TR	200	Edmonston Road	35.5	3.8	26.1	38.7	10

NODE: 52

POWDER	POWDER MILL ROAD & EDMONSTON ROAD									
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples			
POWDER	POWDER MILL ROAD & EDMONSTON ROAD									
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples			
WB L	51	Poultry Road	70.6	9.5	62.6	96.5	10			
WB L	82	Poultry Road	79.3	14.5	56.8	98.9	10			
NB T	158	Poultry Road	433.8	117.8	348.7	714.3	10			
NB T	159	Poultry Road	421.4	83.9	371.4	645.2	10			
WB T	196	Poultry Road	105.7	18.4	61.8	133.7	10			
NB T	212	Poultry Road	493.2	112.6	380.9	693.4	10			
NB T	218	Poultry Road	370.4	5.7	362.9	379.1	10			
NB T	350	Poultry Road	361.1	8.0	351.0	378.1	10			
NB T	355	Poultry Road	359.0	11.9	340.5	376.0	10			
NB T	406	Poultry Road	333.7	9.6	320.5	353.5	10			

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	37.5	8.4	23.0	47.2	10
SEB T	65	Powder Mill Road	51.3	7.6	44.2	64.6	10
SEB T	184	Powder Mill Road	52.4	7.8	42.7	64.7	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	28.8	6.6	20.6	42.1	10
EB T	17	Powder Mill Road	97.3	9.6	86.2	120.8	10
WB T	42	Powder Mill Road	106.4	13.2	72.6	117.6	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	115.6	9.8	94.4	130.4	10

TransModeler Traffic Simulation Software Transportation Impact Study

NODE: 19

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -**Percentile Num Queued**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	9.5	2.7	8.0	17.0	10
NB TR	37	BW Parkway NB Off-Ramp	1.0	0.5	0.0	2.0	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	5.8	0.6	5.0	7.0	10
EB L	24	Powder Mill Road	2.5	0.5	2.0	3.0	10
EB T	25	Powder Mill Road	4.8	0.4	4.0	5.0	10
WB R	207	Powder Mill Road	0.7	0.5	0.0	1.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SWB L	27	BW Parkway SB Off-Ramp	8.7	4.1	6.0	19.1	10	
SWB TR	28	BW Parkway SB Off-Ramp	38.9	8.7	23.1	50.1	10	

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	2.2	0.6	1.0	3.0	10
WB L	26	Powder Mill Road	1.0	0.0	1.0	1.0	10
EB T	31	Powder Mill Road	4.5	0.5	4.0	5.0	10
EB R	206	Powder Mill Road	0.4	0.5	0.0	1.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONST	EDMONSTON ROAD & SUNNYSIDE AVENUE								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
NB L	114	Edmonston Road	11.2	1.7	9.0	14.0	10		
SB T	120	Edmonston Road	7.5	0.5	7.0	8.0	10		
SB T	121	Edmonston Road	8.6	0.8	7.0	10.0	10		
NB T	126	Edmonston Road	2.3	0.7	1.0	3.0	10		
NB T	167	Edmonston Road	1.8	0.4	1.0	2.0	10		
SB R	171	Edmonston Road	1.9	0.3	1.0	2.0	10		

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	8.1	3.3	5.0	15.0	10
EB R	118	Sunnyside Avenue	3.2	0.4	3.0	4.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	3.2	0.4	3.0	4.0	10
NWB L	322	I-95/495 NB off-ramp	4.6	0.5	4.0	5.0	10
NWB R	323	I-95/495 NB off-ramp	9.2	1.7	7.0	12.1	10
NWB R	324	I-95/495 NB off-ramp	9.8	3.2	7.0	17.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	2.1	0.3	2.0	3.0	10
NEB T	319	MD 201	2.1	0.3	2.0	3.0	10
NEB T	320	MD 201	3.0	0.0	3.0	3.0	10
SWB T	326	MD 201	2.8	0.4	2.0	3.0	10
SWB T	327	MD 201	2.5	0.5	2.0	3.0	10
SWB T	328	MD 201	3.2	0.4	3.0	4.0	10

I-95/495 SB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	392	[Unnamed Street]	3.1	0.3	3.0	4.0	10
SEB L	393	[Unnamed Street]	4.2	0.4	4.0	5.0	10

I-95/495 SB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	1.1	0.3	1.0	2.0	10
NEB T	375	MD 201	1.1	0.3	1.0	2.0	10
NEB T	376	MD 201	2.2	0.4	2.0	3.0	10
SWB T	381	MD 201	1.2	0.6	0.0	2.0	10
SWB T	382	MD 201	1.2	0.4	1.0	2.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	4.4	0.5	4.0	5.0	10
NEB L	238	Cherrywood Lane	4.1	0.3	4.0	5.0	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	6.5	1.3	5.0	9.0	10
NWB T	231	MD 201	13.7	4.2	5.2	19.0	10
NWB T	232	MD 201	13.9	4.6	5.3	21.0	10
SEB T	235	MD 201	7.6	0.7	7.0	9.0	10

TransModeler

Transportation Impact Study

NODE: 45

NODE: 45

NODE: 57

NODE: 57

NODE: 32

NODE: 67

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	7.5	0.8	6.1	9.0	10
SEB R	250	MD 201	2.2	0.6	1.0	3.0	10

MD 201 & IVY LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	1.2	0.4	1.0	2.0	10
NWB R	284	Crescent Street	1.0	0.0	1.0	1.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.1	0.3	0.0	1.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.4	0.5	0.0	1.0	10
NEB T	298	MD 201	2.8	0.9	2.0	4.0	10
NEB T	299	MD 201	3.2	1.0	2.0	5.0	10
NEB L	311	MD 201	2.1	0.3	2.0	3.0	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	2.0	0.0	2.0	2.0	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.8	0.4	0.0	1.0	10
SWB TR	345	MD 201	1.1	0.3	1.0	2.0	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	3.6	0.5	3.0	4.0	10
NEB T	83	[Unnamed Street]	3.0	0.0	3.0	3.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	1.1	0.3	1.0	2.0	10
SWB T	199	Edmonston Road	1.9	0.3	1.0	2.0	10
SWB TR	200	Edmonston Road	1.9	0.3	1.0	2.0	10

NODE: 52

POWDER	POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
POWDER	MILL RO	AD & EDMONS	TON ROAD				NODE: 19		
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
WB L	51	Poultry Road	3.1	0.3	3.0	4.0	10		
WB L	82	Poultry Road	3.2	0.4	3.0	4.0	10		
NB T	158	Poultry Road	15.3	4.0	13.0	25.1	10		
NB T	159	Poultry Road	15.1	2.6	13.0	22.2	10		
WB T	196	Poultry Road	4.4	0.7	3.0	5.0	10		
NB T	212	Poultry Road	17.8	3.5	14.0	23.4	10		
NB T	218	Poultry Road	13.2	0.4	13.0	14.0	10		
NB T	350	Poultry Road	12.9	0.6	12.0	14.0	10		
NB T	355	Poultry Road	12.7	0.7	12.0	14.0	10		
NB T	406	Poultry Road	12.1	0.3	12.0	13.0	10		

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	1.8	0.4	1.0	2.0	10
SEB T	65	Powder Mill Road	2.2	0.4	2.0	3.0	10
SEB T	184	Powder Mill Road	2.2	0.4	2.0	3.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	1.3	0.5	1.0	2.0	10
EB T	17	Powder Mill Road	4.2	0.4	4.0	5.0	10
WB T	42	Powder Mill Road	4.4	0.7	3.0	5.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	4.7	0.5	4.0	5.0	10

NODE: 19

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -Spillback Rate

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	0.0	0.0	0.0	0.0	10
NB TR	37	BW Parkway NB Off-Ramp	0.0	0.0	0.0	0.0	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB L	24	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	25	Powder Mill Road	0.0	0.0	0.0	0.0	10
WB R	207	Powder Mill Road	0.0	0.0	0.0	0.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	0.0	0.0	0.0	0.0	10
SWB TR	28	BW Parkway SB Off-Ramp	0.0	0.0	0.0	0.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	0.0	0.0	0.0	0.0	10
WB L	26	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	31	Powder Mill Road	0.1	0.0	0.0	0.1	10
EB R	206	Powder Mill Road	0.0	0.0	0.0	0.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	0.0	0.0	0.0	0.0	10
SB T	120	Edmonston Road	0.0	0.0	0.0	0.0	10
SB T	121	Edmonston Road	0.0	0.0	0.0	0.0	10
NB T	126	Edmonston Road	0.0	0.0	0.0	0.0	10
NB T	167	Edmonston Road	0.0	0.0	0.0	0.0	10
SB R	171	Edmonston Road	0.0	0.0	0.0	0.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE					NODE: 32		
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	0.0	0.0	0.0	0.0	10
EB R	118	Sunnyside Avenue	0.0	0.0	0.0	0.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB L	322	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB R	323	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB R	324	I-95/495 NB off-ramp	0.0	0.0	0.0	0.1	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	0.0	0.0	0.0	0.0	10
NEB T	319	MD 201	0.0	0.0	0.0	0.0	10
NEB T	320	MD 201	0.0	0.0	0.0	0.0	10
SWB T	326	MD 201	0.0	0.0	0.0	0.0	10
SWB T	327	MD 201	0.0	0.0	0.0	0.0	10
SWB T	328	MD 201	0.0	0.0	0.0	0.0	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Average **Std Deviation** Minimum Maximum **# Samples** Street Name SEB L 392 0.0 0.0 0.0 0.0 10 [Unnamed Street] SEB L 393 0.0 0.0 0.0 0.0 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** # Samples Movements Lane ID **Std Deviation** Minimum Maximum Street Name Average NEB T 374 MD 201 0.0 0.0 0.0 0.0 10 NEB T 375 0.0 0.0 0.0 0.0 MD 201 10 NEB T 376 MD 201 0.0 0.0 0.0 0.0 10 SWB T 381 MD 201 0.0 0.0 0.0 0.0 10 SWB T 382 MD 201 0.0 0.0 0.0 0.0 10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	0.0	0.0	0.0	0.0	10
NEB L	238	Cherrywood Lane	0.0	0.0	0.0	0.0	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	0.0	0.0	0.0	0.0	10
NWB T	231	MD 201	0.0	0.0	0.0	0.0	10
NWB T	232	MD 201	0.0	0.0	0.0	0.0	10
SEB T	235	MD 201	0.0	0.0	0.0	0.0	10

TransModeler

Transportation Impact Study

NODE: 45

NODE: 45

NODE: 57

NODE: 57

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	0.0	0.0	0.0	0.0	10
SEB R	250	MD 201	0.0	0.0	0.0	0.0	10

MD 201 &	MD 201 & IVY LANE						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, N	MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
NWB LT	283	Crescent Street	0.6	0.0	0.6	0.7	10	
NWB R	284	Crescent Street	0.2	0.0	0.2	0.2	10	

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.0	0.0	0.0	0.0	10
NEB T	298	MD 201	0.0	0.0	0.0	0.0	10
NEB T	299	MD 201	0.0	0.0	0.0	0.0	10
NEB L	311	MD 201	0.0	0.0	0.0	0.0	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	0.0	0.0	0.0	0.0	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.0	0.0	0.0	0.0	10
SWB TR	345	MD 201	0.0	0.0	0.0	0.0	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER	POWDER MILL ROAD & EDMONSTON ROAD						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	0.4	0.0	0.3	0.4	10
NEB T	83	[Unnamed Street]	0.2	0.0	0.1	0.2	10

POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SWB L	198	Edmonston Road	0.3	0.0	0.2	0.3	10	
SWB T	199	Edmonston Road	0.5	0.0	0.4	0.5	10	
SWB TR	200	Edmonston Road	0.5	0.0	0.4	0.5	10	

NODE: 52

POWDER	POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
POWDER	MILL RO	AD & EDMONSTO	N ROAD				NODE: 19		
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
WB L	51	Poultry Road	0.0	0.0	0.0	0.0	10		
WB L	82	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	158	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	159	Poultry Road	0.0	0.0	0.0	0.0	10		
WB T	196	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	212	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	218	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	350	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	355	Poultry Road	0.0	0.0	0.0	0.0	10		
NB T	406	Poultry Road	0.0	0.0	0.0	0.0	10		

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	0.0	0.0	0.0	0.0	10
SEB T	65	Powder Mill Road	0.0	0.0	0.0	0.0	10
SEB T	184	Powder Mill Road	0.0	0.0	0.0	0.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	17	Powder Mill Road	0.0	0.0	0.0	0.1	10
WB T	42	Powder Mill Road	0.0	0.0	0.0	0.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	0.0	0.0	0.0	0.0	10

NODE: 19

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -Overview

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD						NODE: 5
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
EB L on Po	wder Mill Road - La	ane ID 24		0 ()		
1	120.0	14.8	0.7	58.5	3.0	0.0%
2	120.0	11.6	0.6	45.4	2.0	0.0%
3	120.0	13.8	0.7	49.1	2.0	0.0%
4	120.0	14.3	0.7	45.5	2.0	0.0%
5	120.0	12.7	0.6	46.6	2.0	0.0%
6	120.0	12.8	0.6	54.0	2.0	0.0%
7	120.0	11.5	0.6	46.6	2.0	0.0%
8	120.0	14.5	0.7	62.5	2.0	0.0%
9	120.0	16.0	0.7	63.2	2.0	0.0%
10	120.0	12.1	0.6	45.7	2.0	0.0%
Average:	120.0	13.4	0.7	51.7	2.1	0.0%
EB T on Po	owder Mill Road - L	ane ID 25				
1	120.0	24.3	1.0	120.6	5.0	0.0%
2	120.0	23.9	1.0	135.9	6.0	0.0%
3	120.0	18.7	0.8	116.8	5.0	0.0%
4	120.0	23.6	1.0	133.2	6.0	0.0%
5	120.0	16.4	0.7	130.3	5.0	0.0%
6	120.0	24.0	1.0	128.0	5.0	0.0%
7	120.0	16.9	0.7	109.0	4.0	0.0%
8	120.0	19.1	0.8	125.0	5.0	0.0%
9	120.0	25.4	1.1	141.2	6.0	0.0%
10	120.0	16.7	0.7	102.8	5.0	0.0%
Average:	120.0	20.9	0.9	124.3	5.2	0.0%
NB L on B	W Parkway NB Off-	Ramp - Lane ID 36				
1	120.0	53.1	2.4	164.1	7.0	0.0%
2	120.0	64.0	2.8	177.9	8.0	0.0%
3	120.0	61.6	2.7	152.7	7.0	0.0%
4	120.0	56.8	2.5	161.2	7.0	0.0%
5	120.0	57.9	2.6	156.8	7.0	0.0%
6	120.0	61.5	2.7	166.7	7.0	0.0%
7	120.0	51.7	2.4	154.5	7.0	0.0%
8	120.0	58.1	2.6	148.4	6.0	0.0%
9	120.0	50.3	2.2	159.8	7.0	0.0%
10	120.0	50.9	2.3	144.7	6.0	0.0%
Average:	120.0	56.6	2.5	158.7	6.9	0.0%

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD	

ROAD						NODE: 5
Run	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback Bate (%)
NB TR on	BW Parkway NB Of	ff-Ramp - Lane ID 3	7		Ham Queuca	
1	120.0	1.9	0.1	18.7	1.0	0.0%
2	120.0	3.0	0.1	21.3	1.0	0.0%
3	120.0	2.0	0.1	18.0	1.0	0.0%
4	120.0	2.4	0.1	17.3	1.0	0.0%
5	120.0	4.1	0.2	26.2	1.0	0.0%
6	120.0	2.2	0.1	17.6	1.0	0.0%
7	120.0	1.4	0.1	14.6	1.0	0.0%
8	120.0	2.5	0.1	17.9	1.0	0.0%
9	120.0	2.2	0.1	17.1	1.0	0.0%
10	120.0	2.3	0.1	17.4	1.0	0.0%
Average:	120.0	2.4	0.1	18.6	1.0	0.0%
WB R on	Powder Mill Road -	Lane ID 207				
1	120.0	1.7	0.1	15.4	1.0	0.0%
2	120.0	1.2	0.1	12.9	1.0	0.0%
3	120.0	2.0	0.1	16.4	1.0	0.0%
4	120.0	2.3	0.1	17.7	1.0	0.0%
5	120.0	2.3	0.1	20.6	1.0	0.0%
6	120.0	1.5	0.1	18.4	1.0	0.0%
7	120.0	2.7	0.1	20.7	1.0	0.0%
8	120.0	1.1	0.1	0.0	0.0	0.0%
9	120.0	2.9	0.1	24.7	1.0	0.0%
10	120.0	1.4	0.1	15.4	1.0	0.0%
Average:	120.0	1.9	0.1	16.2	0.9	0.0%
WB T on	Powder Mill Road -	Lane ID 5				
1	120.0	26.4	1.2	119.1	5.0	0.0%
2	120.0	23.7	1.1	97.7	4.0	0.0%
3	120.0	21.3	0.9	111.9	4.0	0.0%
4	120.0	24.5	1.1	128.8	5.0	0.0%
5	120.0	19.7	0.9	119.7	5.0	0.0%
6	120.0	24.3	1.1	115.7	5.0	0.0%
7	120.0	21.1	0.9	99.4	4.0	0.0%
8	120.0	22.4	1.0	106.1	5.0	0.0%
9	120.0	24.8	1.1	126.0	5.0	0.0%
10	120.0	20.8	0.9	97.6	4.0	0.0%
Average:	120.0	22.9	1.0	112.2	4.6	0.0%

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD						NODE: 8
Dun	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
EB B on Br	observations	ano ID 206	Queueu	Length (It)	Nulli Queueu	
1	120.0	1.2	0.1	12.7	1.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.6	0.0	0.0	0.0	0.0%
4	120.0	1.2	0.1	13.7	1.0	0.0%
5	120.0	1.6	0.1	17.6	1.0	0.0%
6	120.0	1.3	0.1	11.1	1.0	0.0%
7	120.0	1.4	0.1	15.9	1.0	0.0%
8	120.0	1.2	0.1	0.0	0.0	0.0%
9	120.0	0.9	0.0	0.0	0.0	0.0%
10	120.0	1.0	0.1	0.6	0.0	0.0%
Average:	120.0	1.0	0.1	7.2	0.5	0.0%
EB T on Po	owder Mill Road - La	ane ID 31				
1	120.0	22.1	1.0	101.8	4.0	4.2%
2	120.0	16.6	0.7	95.5	4.0	6.7%
3	120.0	16.2	0.7	99.5	4.0	7.5%
4	120.0	18.7	0.8	94.8	4.0	7.5%
5	120.0	10.9	0.5	64.8	3.0	0.8%
6	120.0	19.5	0.9	89.9	4.0	4.2%
7	120.0	19.8	0.9	98.4	4.0	7.5%
8	120.0	14.1	0.6	92.8	4.0	5.0%
9	120.0	17.5	0.8	81.1	4.0	4.2%
10	120.0	18.8	0.8	106.4	4.0	6.7%
Average:	120.0	17.4	0.8	92.5	3.9	5.4%
SWB L on	BW Parkway SB Of	f-Ramp - Lane ID 27	7			
1	120.0	42.3	1.9	129.8	5.0	0.0%
2	120.0	56.6	2.5	132.3	6.0	0.0%
3	120.0	57.2	2.5	148.0	6.0	0.0%
4	120.0	51.8	2.3	137.1	6.0	0.0%
5	120.0	45.0	2.0	131.1	6.0	0.0%
6	120.0	42.4	1.9	125.1	5.0	0.0%
7	120.0	42.3	1.9	121.5	5.0	0.0%
8	120.0	50.7	2.3	135.7	6.0	0.0%
9	120.0	52.7	2.3	143.3	6.0	0.0%
10	120.0	47.7	2.2	130.3	6.0	0.0%
Average:	120.0	48.9	2.2	133.4	5.7	0.0%
SWB TR o	n BW Parkway SB C	Off-Ramp - Lane ID	28			
1	120.0	19.1	0.9	88.3	4.0	0.0%
2	120.0	20.1	1.0	86.6	4.0	0.0%
3	120.0	22.8	1.0	87.9	4.0	0.0%
4	120.0	21.3	1.0	85.3	4.0	0.0%

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

BUVU	
NUAD	

ROAD						NODE: 8
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SWB TR or	n BW Parkway SB C	Off-Ramp - Lane ID	28			
5	120.0	17.8	0.8	88.6	4.0	0.0%
6	120.0	20.4	0.9	89.8	4.0	0.0%
7	120.0	23.4	1.1	87.9	4.0	0.0%
8	120.0	26.8	1.2	102.6	4.0	0.0%
9	120.0	15.0	0.7	62.1	3.0	0.0%
10	120.0	24.1	1.1	96.5	4.0	0.0%
Average:	120.0	21.1	1.0	87.6	3.9	0.0%
WB L on P	owder Mill Road - I	Lane ID 26				
1	120.0	1.2	0.1	16.0	1.0	0.0%
2	120.0	2.2	0.1	16.0	1.0	0.0%
3	120.0	1.7	0.1	16.5	1.0	0.0%
4	120.0	1.6	0.1	16.8	1.0	0.0%
5	120.0	2.5	0.1	17.3	1.0	0.0%
6	120.0	2.2	0.1	17.1	1.0	0.0%
7	120.0	2.2	0.1	17.7	1.0	0.0%
8	120.0	2.0	0.1	16.7	1.0	0.0%
9	120.0	1.2	0.1	15.5	1.0	0.0%
10	120.0	2.7	0.1	18.4	1.0	0.0%
Average:	120.0	2.0	0.1	16.8	1.0	0.0%
WB T on P	owder Mill Road - I	Lane ID 8				
1	120.0	6.6	0.3	63.5	2.0	0.0%
2	120.0	5.6	0.3	46.1	2.0	0.0%
3	120.0	4.5	0.2	27.0	1.0	0.0%
4	120.0	4.6	0.2	43.1	2.0	0.0%
5	120.0	6.1	0.3	47.7	2.0	0.0%
6	120.0	6.8	0.3	44.0	2.0	0.0%
7	120.0	6.0	0.3	39.7	2.0	0.0%
8	120.0	4.0	0.2	21.8	1.0	0.0%
9	120.0	4.5	0.2	35.8	2.0	0.0%
10	120.0	6.9	0.3	61.6	2.0	0.0%
Average:	120.0	5.6	0.3	43.0	1.8	0.0%

EDMONSTON ROAD & SUNNYSIDE AVENUE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
EB L on Su	EB L on Sunnyside Avenue - Lane ID 117							
1	120.0	42.3	2.0	98.9	4.0	0.0%		
2	120.0	44.1	2.0	119.4	5.0	0.0%		
3	120.0	39.7	1.8	111.7	5.0	0.0%		
4	120.0	37.2	1.7	97.1	4.0	0.0%		
5	120.0	39.4	1.8	100.5	5.0	0.0%		

EDMONISTON BOAD & SUNNVSIDE AVENUE

EDMONS	EDMONSTON ROAD & SUNNYSIDE AVENUE NODE: 32						
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)	
EB L on Su	nnyside Avenue - I	Lane ID 117					
6	120.0	35.2	1.6	100.0	4.0	0.0%	
7	120.0	49.0	2.1	129.6	5.0	0.0%	
8	120.0	38.7	1.8	102.7	5.0	0.0%	
9	120.0	35.8	1.6	94.3	4.0	0.0%	
10	120.0	41.3	1.9	103.5	4.0	0.0%	
Average:	120.0	40.3	1.8	105.8	4.5	0.0%	
FB R on Su	innyside Avenue -	lane ID 118					
1	120.0	16.8	0.8	85.6	3.0	0.0%	
2	120.0	14.2	0.7	63.0	3.0	0.0%	
3	120.0	18.4	0.8	93.8	4.0	0.0%	
4	120.0	14.6	0.6	87.3	3.0	0.0%	
5	120.0	14.6	0.6	84.5	3.0	0.0%	
6	120.0	22.7	1.0	79.7	3.0	0.0%	
7	120.0	15.7	0.7	72.7	3.0	0.0%	
8	120.0	16.0	0.7	78.7	3.0	0.0%	
9	120.0	21.2	0.9	79.2	3.0	0.0%	
10	120.0	17.8	0.8	81.7	3.0	0.0%	
Average:	120.0	17.2	0.8	80.6	3.1	0.0%	
NB L on Ed	monston Road - L	ane ID 114					
1	120.0	75.0	3.1	238.8	9.0	0.0%	
2	120.0	61.3	2.6	188.1	8.0	0.0%	
3	120.0	68.2	2.8	238.3	10.0	0.0%	
4	120.0	67.2	2.7	247.8	10.0	0.0%	
5	120.0	67.4	2.9	203.0	8.0	0.0%	
6	120.0	75.7	3.2	216.9	8.0	0.0%	
7	120.0	74.0	3.1	204.0	8.0	0.0%	
8	120.0	70.7	3.0	275.8	11.0	0.0%	
9	120.0	85.4	3.6	253.3	10.0	0.0%	
10	120.0	77.6	3.3	220.9	9.0	0.0%	
Average:	120.0	72.3	3.0	228.7	9.1	0.0%	
NB T on Ec	dmonston Road - L	ane ID 126					
1	120.0	8.1	0.3	75.6	3.0	0.0%	
2	120.0	7.1	0.3	65.1	3.0	0.0%	
3	120.0	10.5	0.4	84.0	3.0	0.0%	
4	120.0	8.7	0.4	67.0	3.0	0.0%	
5	120.0	6.3	0.3	45.8	2.0	0.0%	
6	120.0	5.8	0.3	48.0	2.0	0.0%	
7	120.0	4.6	0.2	42.3	2.0	0.0%	
8	120.0	8.2	0.4	60.5	3.0	0.0%	
9	120.0	8.2	0.4	57.7	3.0	0.0%	
10	120.0	6.9	0.3	78.9	3.0	0.0%	

EDMONSTON ROAD & SUNNYSIDE AVENUE

		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback		
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)		
NB T on Edmonston Road - Lane ID 126								
Average:	120.0	7.4	0.3	62.5	2.7	0.0%		
NB T on Edn	nonston Road - La	ane ID 167	0.2	64.4	2.0	0.0%		
1	120.0	7.6	0.3	64.4	3.0	0.0%		
2	120.0	4.1	0.2	20.6	1.0	0.0%		
3	120.0	7.5	0.3	49.9	2.0	0.0%		
4	120.0	6.4	0.3	50.0	2.0	0.0%		
5	120.0	6.2	0.3	52.7	2.0	0.0%		
0	120.0	5.9	0.3	42.0	2.0	0.0%		
/	120.0	4.0	0.2	35.1	2.0	0.0%		
0	120.0	9.1	0.4	73.0	3.0	0.0%		
9	120.0	8.0	0.4	70.9	3.0	0.0%		
10	120.0	6.2	0.5	50.0 F1 0	3.0	0.0%		
Average:	120.0	0.5	0.3	51.9	2.3	0.0%		
	120.0	5 2	0.2	24.4	1.0	0.0%		
2	120.0	5.8	0.3	34.4	2.0	0.0%		
2	120.0	5.8	0.3	34.2	2.0	0.0%		
3	120.0	0.9	0.3	23.6	2.0	0.0%		
5	120.0	4.0 6.1	0.2	12 3	2.0	0.0%		
5	120.0	5.9	0.3	42.3	1.0	0.0%		
7	120.0	7.9	0.4	46.2	2.0	0.0%		
8	120.0	5.7	0.3	25.8	1.0	0.0%		
9	120.0	5.9	0.3	34.7	1.0	0.0%		
10	120.0	6.9	0.3	40.7	2.0	0.0%		
Average:	120.0	6.0	0.3	35.7	1.5	0.0%		
Average.	120.0	0.0	0.5	55.7	1.9	0.070		
SB T on Edm	onston Road - La	ne ID 120						
1	120.0	41.2	1.8	175.6	7.0	0.0%		
2	120.0	45.5	2.0	189.1	8.0	0.0%		
3	120.0	44.6	1.8	182.8	7.0	0.0%		
4	120.0	48.3	2.1	185.5	8.0	0.0%		
5	120.0	42.0	1.8	183.2	8.0	0.0%		
6	120.0	38.5	1.6	168.3	7.0	0.0%		
7	120.0	41.3	1.8	185.4	7.0	0.0%		
8	120.0	47.2	2.0	191.2	8.0	0.0%		
9	120.0	42.0	1.8	176.1	7.0	0.0%		
10	120.0	41.1	1.7	190.0	8.0	0.0%		
Average:	120.0	43.2	1.8	182.7	7.5	0.0%		
5								
SB T on Fdm	onston Road - La	ine ID 121						
1	120.0	53.7	2.3	196.4	8.0	0.0%		
2	120.0	56.8	2.4	227.0	9.0	0.0%		

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32		
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
SB T on Edmonston Road - Lane ID 121								
3	120.0	54.2	2.3	210.3	9.0	0.0%		
4	120.0	60.0	2.5	214.1	9.0	0.0%		
5	120.0	54.0	2.3	216.3	9.0	0.0%		
6	120.0	49.0	2.1	185.1	8.0	0.0%		
7	120.0	50.7	2.1	195.6	8.0	0.0%		
8	120.0	60.2	2.5	236.8	10.0	0.0%		
9	120.0	49.4	2.1	210.2	9.0	0.0%		
10	120.0	55.9	2.4	215.6	9.0	0.0%		
Average:	120.0	54.4	2.3	210.7	8.8	0.0%		

I-95/495 NB OFF-RAMP & MD 201

Run	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile Num Queued	Spillback Bate (%)
NEB T on I	VD 201 - Lane ID 318	Lengen (ny	Queucu		Nulli Queucu	
1	120.0	10.2	0.5	61.3	3.0	0.0%
2	120.0	9.5	0.5	44.5	2.0	0.0%
3	120.0	9.4	0.5	42.9	2.0	0.0%
4	120.0	7.6	0.4	41.8	2.0	0.0%
5	120.0	17.7	0.8	70.6	3.0	0.0%
6	120.0	9.8	0.5	44.6	2.0	0.0%
7	120.0	7.7	0.4	44.8	2.0	0.0%
8	120.0	13.9	0.7	54.9	2.0	0.0%
9	120.0	11.4	0.5	57.1	2.0	0.0%
10	120.0	9.6	0.5	50.7	2.0	0.0%
Average:	120.0	10.7	0.5	51.3	2.2	0.0%
NEB T on I	MD 201 - Lane ID 319					
1	120.0	12.4	0.6	43.6	2.0	0.0%
2	120.0	12.6	0.6	50.0	2.0	0.0%
3	120.0	11.8	0.6	47.3	2.0	0.0%
4	120.0	11.0	0.5	46.4	2.0	0.0%
5	120.0	18.3	0.8	70.3	3.0	0.0%
6	120.0	12.2	0.6	50.8	2.0	0.0%
7	120.0	11.8	0.6	56.4	2.0	0.0%
8	120.0	15.5	0.7	58.0	3.0	0.0%
9	120.0	14.7	0.7	71.2	3.0	0.0%
10	120.0	13.5	0.6	63.4	3.0	0.0%
Average:	120.0	13.4	0.6	55.7	2.4	0.0%
NEB T on MD 201 - Lane ID 320						
1	120.0	15.2	0.7	66.4	3.0	0.0%
2	120.0	19.8	0.9	70.8	3.0	0.0%
3	120.0	16.9	0.8	73.8	3.0	0.0%
4	120.0	13.0	0.6	63.4	3.0	0.0%

I OF /AOF NIR OFE PANAD 8. MAD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
NEB T on MD 201 - Lane ID 320								
5	120.0	20.2	0.9	82.6	4.0	0.0%		
6	120.0	16.8	0.8	70.1	3.0	0.0%		
7	120.0	14.2	0.7	61.2	3.0	0.0%		
8	120.0	20.5	0.9	73.7	3.0	0.0%		
9	120.0	16.6	0.8	67.3	3.0	0.0%		
10	120.0	17.6	0.8	74.6	3.0	0.0%		
Average:	120.0	17.1	0.8	70.4	3.1	0.0%		
NWB L on	I-95/495 NB off-rar	mp - Lane ID 321						
1	120.0	18.9	0.8	86.3	3.0	0.0%		
2	120.0	15.0	0.7	73.6	3.0	0.0%		
3	120.0	16.9	0.8	75.6	3.0	0.0%		
4	120.0	17.8	0.8	74.5	3.0	0.0%		
5	120.0	16.4	0.7	78.7	3.0	0.0%		
6	120.0	16.2	0.7	72.7	3.0	0.0%		
7	120.0	17.9	0.8	75.4	3.0	0.0%		
8	120.0	13.1	0.6	69.6	3.0	0.0%		
9	120.0	21.7	1.0	80.3	4.0	0.0%		
10	120.0	19.7	0.9	83.5	4.0	0.0%		
Average:	120.0	17.4	0.8	77.0	3.2	0.0%		
NWB L on	I-95/495 NB off-rar	mp - Lane ID 322						
1	120.0	34.7	1.5	108.2	4.0	0.0%		
2	120.0	28.1	1.3	97.1	4.0	0.0%		
3	120.0	30.5	1.3	100.6	4.0	0.0%		
4	120.0	34.3	1.5	116.2	5.0	0.0%		
5	120.0	23.8	1.1	96.8	4.0	0.0%		
6	120.0	27.3	1.3	91.7	4.0	0.0%		
7	120.0	31.5	1.4	95.1	4.0	0.0%		
8	120.0	27.0	1.2	104.9	4.0	0.0%		
9	120.0	34.6	1.5	114.8	5.0	0.0%		
10	120.0	34.3	1.5	107.3	5.0	0.0%		
Average:	120.0	30.6	1.4	103.3	4.3	0.0%		
NWB R on	I-95/495 NB off-ra	mp - Lane ID 323						
1	120.0	53.2	2.2	193.8	7.0	0.0%		
2	120.0	46.5	2.0	174.8	8.0	0.0%		
3	120.0	50.1	2.1	194.6	8.0	0.0%		
4	120.0	59.5	2.5	201.9	8.0	0.0%		
5	120.0	41.8	1.8	197.6	8.0	0.0%		
6	120.0	49.5	2.1	182.6	8.0	0.0%		
7	120.0	50.5	2.1	187.1	8.0	0.0%		
8	120.0	52.2	2.2	195.2	8.0	0.0%		
9	120.0	57.5	2.5	206.2	9.0	0.0%		

1-95/495 NB OFF-RAMP & MD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57							
Due	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback	
	UDSErvations		Queueu	Length (It)	Nulli Queuea	Rate (%)	
10	120 0	56 7	24	187 4	8.0	0.0%	
Average:	120.0	51.8	2.4	197.4	8.0	0.0%	
Average.	120.0	51.0	2.2	192.1	0.0	0.070	
NW/B R on	1-95//95 NB off-ra	mn - Lane ID 324					
1	120.0	58.0	2.4	182.8	8.0	0.0%	
2	120.0	44.8	1.9	165.9	7.0	0.0%	
3	120.0	49.8	2.1	185.2	7.0	0.0%	
4	120.0	55.3	2.3	202.4	9.0	0.0%	
5	120.0	41.6	1.8	175.5	7.0	0.0%	
6	120.0	43.7	1.9	164.0	7.0	0.0%	
7	120.0	59.8	2.5	191.8	8.0	0.0%	
8	120.0	41.4	1.8	156.3	7.0	0.0%	
9	120.0	59.2	2.5	184.4	8.0	0.0%	
10	120.0	58.5	2.5	186.9	8.0	0.0%	
Average:	120.0	51.2	2.2	179.5	7.6	0.0%	
Ū.							
SWB T on	MD 201 - Lane ID 3	26					
1	120.0	13.5	0.7	47.8	2.0	0.0%	
2	120.0	14.3	0.7	52.8	2.0	0.0%	
3	120.0	15.8	0.7	62.7	3.0	0.0%	
4	120.0	13.7	0.7	64.1	3.0	0.0%	
5	120.0	21.1	1.0	67.9	3.0	0.0%	
6	120.0	12.7	0.6	62.1	3.0	0.0%	
7	120.0	15.6	0.7	65.6	3.0	0.0%	
8	120.0	15.9	0.7	58.7	3.0	0.0%	
9	120.0	15.6	0.8	52.0	3.0	0.0%	
10	120.0	13.9	0.7	60.5	3.0	0.0%	
Average:	120.0	15.2	0.7	59.4	2.8	0.0%	
SWB T on	MD 201 - Lane ID 3	327					
1	120.0	10.6	0.5	51.8	2.0	0.0%	
2	120.0	6.5	0.3	40.4	2.0	0.0%	
3	120.0	12.7	0.6	53.8	2.0	0.0%	
4	120.0	8.2	0.4	44.4	2.0	0.0%	
5	120.0	12.3	0.6	63.1	3.0	0.0%	
6	120.0	13.4	0.6	62.8	3.0	0.0%	
7	120.0	8.2	0.4	43.7	2.0	0.0%	
8	120.0	12.6	0.6	48.0	2.0	0.0%	
9	120.0	10.8	0.5	62.1	2.0	0.0%	
10	120.0	11.6	0.6	64.3	3.0	0.0%	
Average:	120.0	10.7	0.5	53.4	2.3	0.0%	
SWB T on	MD 201 - Lane ID 3	28					
1	120.0	14.7	0.7	68.9	3.0	0.0%	

I-95/495 NB OFF-RAMP & MD 201

I-95/495 NB OFF-RAMP & MD 201 NODE: 57							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
SWB T on MD 201 - Lane ID 328							
2	120.0	14.5	0.7	64.4	3.0	0.0%	
3	120.0	15.2	0.7	68.8	3.0	0.0%	
4	120.0	12.3	0.6	61.8	3.0	0.0%	
5	120.0	23.4	1.0	85.2	4.0	0.0%	
6	120.0	15.2	0.7	70.3	3.0	0.0%	
7	120.0	15.2	0.7	76.6	3.0	0.0%	
8	120.0	17.8	0.9	68.2	3.0	0.0%	
9	120.0	20.7	0.9	94.5	4.0	0.0%	
10	120.0	15.8	0.7	70.4	3.0	0.0%	
Average:	120.0	16.5	0.8	72.9	3.2	0.0%	

I-95/495 SB OFF-RAMP & MD 201

Avg Queue Avg Vehicles 95th Percentile 95th Percentile Spillback Rate (%) Queued Run Observations Length (ft) Length (ft) Num Queued NEB T on MD 201 - Lane ID 374 120.0 2.8 0.1 20.8 1.0 0.0% 1 120.0 0.2 20.2 0.0% 2 3.6 1.0 3 120.0 4.3 0.2 22.8 1.0 0.0% 4 120.0 2.4 0.1 18.7 1.0 0.0% 5 120.0 3.0 0.1 17.7 1.0 0.0% 6 120.0 1.9 0.1 16.6 1.0 0.0% 7 120.0 1.9 0.1 17.6 1.0 0.0% 8 120.0 0.2 0.0% 3.2 23.5 1.0 9 120.0 1.8 0.1 1.0 0.0% 16.4 10 120.0 2.6 0.1 1.0 0.0% 18.3 Average: 120.0 2.8 0.1 19.3 1.0 0.0% NEB T on MD 201 - Lane ID 375 120.0 2.4 0.1 19.5 1.0 0.0% 1 120.0 0.0% 2 3.2 0.1 21.2 1.0 3 120.0 4.2 0.2 21.3 1.0 0.0% 4 120.0 2.6 0.1 20.4 1.0 0.0% 5 120.0 2.2 0.1 16.1 1.0 0.0% 0.0% 6 120.0 1.9 0.1 17.2 1.0 7 120.0 3.3 0.1 17.9 1.0 0.0% 8 120.0 4.6 0.2 43.2 2.0 0.0% 9 120.0 2.7 0.1 18.4 1.0 0.0% 120.0 0.1 0.9 0.0 0.0% 10 2.5 Average: 120.0 3.0 0.1 19.6 1.0 0.0% MD 201 1..... 10 270

NEB I ON MID 201 - Lane ID 376										
1		120.0	6.2	0.3	62.1	3.0	0.0%			
2		120.0	9.9	0.4	71.3	3.0	0.0%			
3		120.0	10.4	0.4	80.0	3.0	0.0%			
1-95/495 SB OFF-RAMP & MD 201

1-95/495	SB OFF-RAMP &	& MD 201				NODE: 67
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
NEB T on I	MD 201 - Lane ID 37	6				
4	120.0	5.7	0.3	42.2	2.0	0.0%
5	120.0	4.4	0.2	39.4	2.0	0.0%
6	120.0	6.1	0.3	46.0	2.0	0.0%
7	120.0	4.5	0.2	40.0	2.0	0.0%
8	120.0	11.0	0.4	73.5	3.0	0.0%
9	120.0	8.6	0.4	66.6	3.0	0.0%
10	120.0	5.7	0.2	48.8	2.0	0.0%
Average:	120.0	7.3	0.3	57.0	2.5	0.0%
SEB L on [Unnamed Street] - I	Lane ID 392				
1	120.0	15.8	0.8	55.9	3.0	0.0%
2	120.0	15.4	0.8	47.6	2.0	0.0%
3	120.0	16.1	0.8	50.4	2.0	0.0%
4	120.0	17.5	0.9	63.7	3.0	0.0%
5	120.0	17.7	0.9	69.1	3.0	0.0%
6	120.0	14.3	0.7	56.5	3.0	0.0%
7	120.0	18.6	0.9	60.8	3.0	0.0%
8	120.0	18.3	0.9	60.0	3.0	0.0%
9	120.0	13.5	0.7	45.6	2.0	0.0%
10	120.0	19.6	1.0	68.9	3.0	0.0%
Average:	120.0	16.7	0.8	57.9	2.7	0.0%
SEB L on [Unnamed Street] - I	Lane ID 393				
1	120.0	28.4	1.3	86.7	4.0	0.0%
2	120.0	27.8	1.3	88.6	4.0	0.0%
3	120.0	27.4	1.3	84.0	4.0	0.0%
4	120.0	31.0	1.4	93.7	4.0	0.0%
5	120.0	32.8	1.5	96.1	4.0	0.0%
6	120.0	31.8	1.5	77.4	3.0	0.0%
7	120.0	30.2	1.5	89.6	4.0	0.0%
8	120.0	32.6	1.4	91.2	4.0	0.0%
9	120.0	28.3	1.3	81.3	3.0	0.0%
10	120.0	27.2	1.3	70.0	3.0	0.0%
Average:	120.0	29.8	1.4	85.9	3.7	0.0%
SWB T on	MD 201 - Lane ID 3	81				
1	120.0	2.2	0.1	13.4	1.0	0.0%
2	120.0	2.3	0.1	16.3	1.0	0.0%
3	120.0	5.0	0.2	44.7	2.0	0.0%
4	120.0	4.8	0.2	45.0	2.0	0.0%
5	120.0	2.6	0.1	16.1	1.0	0.0%
6	120.0	2.3	0.1	0.0	0.0	0.0%
7	120.0	1.4	0.1	0.0	0.0	0.0%
8	120.0	4.1	0.2	31.1	1.0	0.0%

I-95/495 SB OFF-RAMP & MD 201

I-95/495	05/495 SB OFF-RAMP & MD 201 NODE: 67								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)			
SWB T on	MD 201 - Lane ID 3	81							
9	120.0	2.1	0.1	16.1	1.0	0.0%			
10	120.0	1.6	0.1	16.4	1.0	0.0%			
Average:	120.0	2.8	0.1	19.9	1.0	0.0%			
SWB T on	MD 201 - Lane ID 3	82							
1	120.0	1.8	0.1	0.8	0.0	0.0%			
2	120.0	3.0	0.1	19.6	1.0	0.0%			
3	120.0	4.5	0.2	41.4	2.0	0.0%			
4	120.0	3.1	0.1	17.7	1.0	0.0%			
5	120.0	1.7	0.1	17.5	1.0	0.0%			
6	120.0	2.9	0.1	19.9	1.0	0.0%			
7	120.0	2.4	0.1	18.3	1.0	0.0%			
8	120.0	3.4	0.2	24.8	1.0	0.0%			
9	120.0	2.1	0.1	17.2	1.0	0.0%			
10	120.0	2.0	0.1	14.6	1.0	0.0%			
Average:	120.0	2.7	0.1	19.2	1.0	0.0%			

MD 201 & CHERRYWOOD LANE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)				
NEB L on (NEB L on Cherrywood Lane - Lane ID 237									
1	120.0	35.7	1.6	96.3	4.0	0.0%				
2	120.0	35.3	1.6	86.7	4.0	0.0%				
3	120.0	36.9	1.7	95.8	4.0	0.0%				
4	120.0	36.0	1.6	95.6	4.0	0.0%				
5	120.0	42.8	1.9	103.9	4.0	0.0%				
6	120.0	39.3	1.7	106.8	4.0	0.0%				
7	120.0	37.0	1.6	97.3	4.0	0.0%				
8	120.0	43.0	1.9	107.2	5.0	0.0%				
9	120.0	36.0	1.7	93.8	4.0	0.0%				
10	120.0	31.0	1.5	86.2	4.0	0.0%				
Average:	120.0	37.3	1.7	97.0	4.1	0.0%				
NEB L on (Cherrywood Lane -	Lane ID 238								
1	120.0	31.5	1.4	87.6	4.0	0.0%				
2	120.0	35.5	1.6	92.6	4.0	0.0%				
3	120.0	36.2	1.6	90.7	4.0	0.0%				
4	120.0	33.3	1.5	92.4	4.0	0.0%				
5	120.0	38.1	1.8	99.2	4.0	0.0%				
6	120.0	37.4	1.7	96.2	4.0	0.0%				
7	120.0	33.7	1.5	92.3	4.0	0.0%				

120.0

120.0

120.0

40.9

35.2

32.4

8

9

10

106.2

95.7

97.8

4.0

4.0

4.0

1.8

1.5

1.5

0.0%

0.0%

0.0%

MD 201 & CHERRYWOOD LANE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
NEB L on C	nerrywood Lane -	Lane ID 238				
Average:	120.0	35.4	1.6	95.1	4.0	0.0%
NEB R on C	herrvwood Lane -	Lane ID 239				
1	120.0	0.5	0.0	0.0	0.0	0.0%
2	120.0	0.7	0.0	0.0	0.0	0.0%
3	120.0	0.7	0.0	0.0	0.0	0.0%
4	120.0	0.3	0.0	0.0	0.0	0.0%
5	120.0	0.4	0.0	0.0	0.0	0.0%
6	120.0	0.2	0.0	0.0	0.0	0.0%
7	120.0	0.8	0.0	0.0	0.0	0.0%
8	120.0	0.8	0.0	0.0	0.0	0.0%
9	120.0	0.4	0.0	0.0	0.0	0.0%
10	120.0	0.4	0.0	0.0	0.0	0.0%
Average:	120.0	0.5	0.0	0.0	0.0	0.0%
NWB L on I	VID 201 - Lane ID 2	230				
1	120.0	50.1	2.3	132.5	6.0	0.0%
2	120.0	56.2	2.5	132.8	5.0	0.0%
3	120.0	56.3	2.5	151.9	6.0	0.0%
4	120.0	74.0	3.2	174.4	7.0	0.0%
5	120.0	60.2	2.6	143.6	6.0	0.0%
6	120.0	66.8	2.9	144.0	6.0	0.0%
7	120.0	55.0	2.4	148.1	5.0	0.0%
8	120.0	63.7	2.8	138.5	6.0	0.0%
9	120.0	53.6	2.4	134.6	5.0	0.0%
10	120.0	47.8	2.2	121.3	5.0	0.0%
Average:	120.0	58.4	2.6	142.2	5.7	0.0%
NWB T on I	MD 201 - Lane ID 2	231	0.2	20.0	1.0	0.0%
1	120.0	5.6	0.2	20.6	1.0	0.0%
2	120.0	3.8	0.2	44.0	2.0	0.0%
3	120.0	4.1	0.2	18.9	1.0	0.0%
4	120.0	3.9	0.2	23.7	1.0	0.0%
5	120.0	0.2	0.0	0.0	0.0	0.0%
0	120.0	2.0	0.1	10.4	1.0	0.0%
0	120.0	2.1	0.1	0.8	0.0	0.0%
ō	120.0	0.9	0.0	0.0	0.0	0.0%
9	120.0	3.0	0.2	39.U 16.6	1.0	0.0%
10	120.0	2.0	0.1	10.0	1.0	0.0%
Average:	120.0	2.9	0.1	19.0	U.ð	0.0%
NWB T on I	MD 201 - Lane ID 2	232				
1	120.0	3.9	0.2	18.0	1.0	0.0%
2	120.0	3.3	0.1	15.5	1.0	0.0%

MD 201 & CHERRYWOOD LANE

MD 201	MD 201 & CHERRYWOOD LANENODE: 45								
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)			
NWB T on	MD 201 - Lane ID 2	232							
3	120.0	5.4	0.2	15.2	1.0	0.0%			
4	120.0	6.1	0.2	19.1	1.0	0.0%			
5	120.0	5.3	0.2	21.9	1.0	0.0%			
6	120.0	5.4	0.2	22.6	1.1	0.0%			
7	120.0	3.9	0.2	39.8	2.0	0.0%			
8	120.0	1.6	0.1	9.5	1.0	0.0%			
9	120.0	5.6	0.2	40.5	2.0	0.0%			
10	120.0	6.3	0.3	48.9	2.0	0.0%			
Average:	120.0	4.7	0.2	25.1	1.3	0.0%			
SEB R on I	MD 201 - Lane ID 25	50							
1	120.0	8.3	0.4	62.7	2.0	0.0%			
2	120.0	5.0	0.2	42.6	2.0	0.0%			
3	120.0	9.0	0.4	51.3	2.0	0.0%			
4	120.0	8.1	0.4	47.5	2.0	0.0%			
5	120.0	7.3	0.4	45.1	2.0	0.0%			
6	120.0	8.9	0.4	68.0	3.0	0.0%			
7	120.0	9.7	0.4	58.3	3.0	0.0%			
8	120.0	7.3	0.3	43.0	2.0	0.0%			
9	120.0	4.6	0.2	41.4	2.0	0.0%			
10	120.0	6.1	0.3	43.4	2.0	0.0%			
Average:	120.0	7.4	0.3	50.3	2.2	0.0%			
1	120.0	38.5	1.6	162.4	7.0	0.0%			
2	120.0	40.7	1.8	192.7	8.0	0.0%			
3	120.0	42.7	1.8	193.9	8.0	0.0%			
4	120.0	43.5	1.8	194.5	8.0	0.0%			
5	120.0	39.7	1.6	214.0	8.0	0.0%			
6	120.0	34.5	1.4	168.7	6.0	0.0%			
7	120.0	36.9	1.5	174.3	7.0	0.0%			
8	120.0	40.9	1.7	169.8	7.0	0.0%			
9	120.0	48.4	2.0	214.7	8.0	0.0%			
10	120.0	41.6	1.7	169.8	7.0	0.0%			
Average:	120.0	40.7	1.7	185.5	7.4	0.0%			
SEB T on M	MD 201 - Lane ID 23	86							
1	120.0	43.4	1.8	176.0	7.0	0.0%			
2	120.0	41.4	1.7	181.3	8.0	0.0%			
3	120.0	40.2	1.7	172.0	7.0	0.0%			
4	120.0	48.9	2.0	225.9	9.0	0.0%			
5	120.0	39.7	1.6	196.1	8.0	0.0%			
6	120.0	39.2	1.6	184.1	7.0	0.0%			
7	120.0	43.0	1.8	201.6	8.0	0.0%			

MD 201 & CHERRYWOOD LANE

MD 201	MD 201 & CHERRYWOOD LANE NODE: 45							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
SEB T on MD 201 - Lane ID 236								
8	120.0	36.3	1.6	165.3	7.0	0.0%		
9	120.0	46.7	2.0	190.2	8.0	0.0%		
10	120.0	42.6	1.8	173.5	7.0	0.0%		
Average:	120.0	42.1	1.8	186.6	7.6	0.0%		

MD 201 & IVY LANE

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SB T on M	D 201 - Lane ID 251			<u> </u>		
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.2	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%
SB T on M	D 201 - Lane ID 252					
1	120.0	0.4	0.0	0.0	0.0	0.0%
2	120.0	0.4	0.0	0.0	0.0	0.0%
3	120.0	0.3	0.0	0.0	0.0	0.0%
4	120.0	0.5	0.0	0.0	0.0	0.0%
5	120.0	0.6	0.0	0.0	0.0	0.0%
6	120.0	0.1	0.0	0.0	0.0	0.0%
7	120.0	0.6	0.0	0.0	0.0	0.0%
8	120.0	0.1	0.0	0.0	0.0	0.0%
9	120.0	0.4	0.0	0.0	0.0	0.0%
10	120.0	0.4	0.0	0.0	0.0	0.0%
Average:	120.0	0.4	0.0	0.0	0.0	0.0%

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							NODE: 52
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
NEB L on	MD 201 - Lane ID 31	1					
1	120.0	13.0	0.6	48.3	2.0	0.0%	
2	120.0	10.0	0.5	41.5	2.0	0.0%	
3	120.0	11.2	0.6	42.2	2.0	0.0%	
4	120.0	12.8	0.6	45.8	2.0	0.0%	
5	120.0	11.4	0.6	40.2	2.0	0.0%	
6	120.0	11.9	0.6	45.9	2.0	0.0%	

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET						
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
NEB L on I	MD 201 - Lane ID 31	.1				
7	120.0	11.9	0.6	44.5	2.0	0.0%
8	120.0	12.0	0.6	43.0	2.0	0.0%
9	120.0	11.5	0.6	42.1	2.0	0.0%
10	120.0	10.9	0.6	39.3	2.0	0.0%
Average:	120.0	11.7	0.6	43.3	2.0	0.0%
NFB R on	MD 201 - Lane ID 33	22				
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%
Average.	120.0	0.0	0.0	0.0	0.0	0.070
	MD 201 Lana ID 20	7				
	120.0	0.4	0.0	0.0	0.0	0.0%
2	120.0	1.6	0.1	17.3	1.0	0.0%
2	120.0	0.8	0.0	0.0	0.0	0.0%
3	120.0	1.7	0.0	17.0	1.0	0.0%
4	120.0	1.7	0.1	17.0	1.0	0.0%
5	120.0	1.1	0.1	0.8	0.0	0.0%
7	120.0	1.5	0.1	15.2	0.0	0.0%
7	120.0	1.5	0.1	19.2	1.0	0.0%
0	120.0	2.4	0.1	16.9	1.0	0.0%
9	120.0	1.7	0.1	10.8	1.0	0.0%
10	120.0	1.0	0.1	0.0	0.0	0.0%
Average:	120.0	1.4	0.1	8.7	0.5	0.0%
		-				
NEB T on	MD 201 - Lane ID 29	98	0.0	20.0	1.0	0.00/
1	120.0	3.6	0.2	20.0	1.0	0.0%
2	120.0	5.4	0.3	41.2	2.0	0.0%
3	120.0	8.3	0.4	57.0	2.0	0.0%
4	120.0	7.4	0.4	41.7	2.0	0.0%
5	120.0	7.8	0.3	52.9	2.0	0.0%
6	120.0	6.3	0.3	46.3	2.0	0.0%
7	120.0	7.2	0.3	47.0	2.0	0.0%
8	120.0	14.9	0.6	90.5	4.0	0.0%
9	120.0	9.8	0.4	73.8	3.0	0.0%
10	120.0	5.9	0.3	44.3	2.0	0.0%
Average:	120.0	7.7	0.4	51.5	2.2	0.0%

MD 201. MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201	, MARYLAND SHA	A DRIVEWAY &	CRESCENT STRE	ET		NODE: 52
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
NEB T on	MD 201 - Lane ID 29	8				
NFR T on	MD 201 - Lane ID 29	٥				
1	120.0	5.5	0.3	38.1	2.0	0.0%
2	120.0	5.7	0.3	39.8	2.0	0.0%
3	120.0	8.9	0.4	48.7	2.0	0.0%
4	120.0	7.5	0.3	34.9	2.0	0.0%
5	120.0	6.0	0.3	29.4	1.0	0.0%
6	120.0	5.2	0.2	36.8	2.0	0.0%
7	120.0	9.6	0.4	50.0	2.0	0.0%
8	120.0	12.2	0.5	66.1	3.0	0.0%
9	120.0	10.0	0.4	48.5	2.0	0.0%
10	120.0	6.0	0.3	49.0	2.0	0.0%
Average:	120.0	7.7	0.3	44.1	2.0	0.0%
NWB LT o	on Crescent Street - L	ane ID 283				
1	120.0	12.2	0.7	21.9	1.0	64.2%
2	120.0	11.8	0.6	30.8	1.0	60.8%
3	120.0	13.2	0.7	21.6	1.0	70.0%
4	120.0	13.1	0.7	34.7	2.0	62.5%
5	120.0	13.2	0.8	32.9	2.0	66.7%
6	120.0	12.3	0.7	20.7	1.0	65.8%
7	120.0	11.5	0.6	26.0	1.0	60.8%
8	120.0	11.7	0.6	33.3	1.0	60.0%
9	120.0	11.7	0.6	22.6	1.0	61.7%
10	120.0	12.4	0.7	31.6	1.0	65.0%
Average:	120.0	12.3	0.7	27.6	1.2	63.8%
NWB R or	n Crescent Street - La	ine ID 284				
1	120.0	3.6	0.2	19.0	1.0	20.0%
2	120.0	2.3	0.1	16.3	1.0	14.2%
3	120.0	4.1	0.2	18.6	1.0	20.8%
4	120.0	1.4	0.1	15.2	1.0	7.5%
5	120.0	3.1	0.2	18.3	1.0	17.5%
6	120.0	3.3	0.2	18.9	1.0	17.5%
7	120.0	2.4	0.1	19.0	1.0	12.5%
8	120.0	2.4	0.1	17.2	1.0	14.2%
9	120.0	2.8	0.2	17.9	1.0	15.8%
10	120.0	2.7	0.1	18.8	1.0	13.3%
Average:	120.0	2.8	0.2	17.9	1.0	15.3%
SEB LTR o	on Maryland SHA Driv	veway - Lane ID 28	31			
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.1	0.0	0.0	0.0	0.0%
3	120.0	0.5	0.0	0.0	0.0	0.0%
4	120.0	0.1	0.0	0.0	0.0	0.0%

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET NODE: 5							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
SEB LTR on	Maryland SHA Dr	iveway - Lane ID 28	1				
5	120.0	0.7	0.0	0.0	0.0	0.0%	
6	120.0	0.0	0.0	0.0	0.0	0.0%	
7	120.0	0.5	0.0	0.0	0.0	0.0%	
8	120.0	0.3	0.0	0.0	0.0	0.0%	
9	120.0	0.1	0.0	0.0	0.0	0.0%	
10	120.0	0.3	0.0	0.0	0.0	0.0%	
Average:	120.0	0.3	0.0	0.0	0.0	0.0%	
SWB L on I	MD 201 - Lane ID 3	42					
1	120.0	9.5	0.5	46.5	2.0	0.0%	
2	120.0	7.3	0.4	40.2	2.0	0.0%	
3	120.0	7.4	0.4	42.2	2.0	0.0%	
4	120.0	6.9	0.4	25.6	1.0	0.0%	
5	120.0	9.1	0.5	42.7	2.0	0.0%	
6	120.0	6.1	0.3	19.1	1.0	0.0%	
7	120.0	10.5	0.5	40.2	2.0	0.0%	
8	120.0	7.6	0.4	40.2	2.0	0.0%	
9	120.0	11.0	0.5	52.6	2.0	0.0%	
10	120.0	8.0	0.4	40.7	2.0	0.0%	
Average:	120.0	8.3	0.4	39.0	1.8	0.0%	
SWB T on I	MD 201 - Lane ID 3	43					
1	120.0	0.2	0.0	0.0	0.0	0.0%	
2	120.0	0.7	0.0	0.0	0.0	0.0%	
3	120.0	0.0	0.0	0.0	0.0	0.0%	
4	120.0	0.3	0.0	0.0	0.0	0.0%	
5	120.0	0.3	0.0	0.0	0.0	0.0%	
6	120.0	0.8	0.0	0.0	0.0	0.0%	
7	120.0	0.0	0.0	0.0	0.0	0.0%	
8	120.0	0.0	0.0	0.0	0.0	0.0%	
9	120.0	0.0	0.0	0.0	0.0	0.0%	
10	120.0	0.9	0.0	0.0	0.0	0.0%	
Average:	120.0	0.3	0.0	0.0	0.0	0.0%	
SWB T on I	MD 201 - Lane ID 3	44					
1	120.0	0.7	0.0	0.0	0.0	0.0%	
2	120.0	0.9	0.1	0.9	0.0	0.0%	
3	120.0	0.7	0.0	0.0	0.0	0.0%	
4	120.0	1.2	0.1	0.8	0.0	0.0%	
5	120.0	2.3	0.1	18.4	1.0	0.0%	
6	120.0	0.5	0.0	0.0	0.0	0.0%	
7	120.0	1.7	0.1	16.9	1.0	0.0%	
8	120.0	1.3	0.1	16.3	1.0	0.0%	
9	120.0	1.3	0.1	17.1	1.0	0.0%	

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
SWB T on	MD 201 - Lane ID 3	44					
10	120.0	1.9	0.1	17.2	1.0	0.0%	
Average:	120.0	1.3	0.1	8.8	0.5	0.0%	
SWB TR oi	n MD 201 - Lane ID	345					
1	120.0	1.2	0.1	0.0	0.0	0.0%	
2	120.0	2.9	0.2	19.2	1.0	0.0%	
3	120.0	1.9	0.1	17.0	1.0	0.0%	
4	120.0	2.4	0.1	16.7	1.0	0.0%	
5	120.0	5.3	0.3	41.4	2.0	0.0%	
6	120.0	3.4	0.2	22.6	1.0	0.0%	
7	120.0	4.4	0.2	19.8	1.0	0.0%	
8	120.0	2.2	0.1	16.8	1.0	0.0%	
9	120.0	2.6	0.1	17.5	1.0	0.0%	
10	120.0	3.1	0.2	18.7	1.0	0.0%	
Average:	120.0	2.9	0.2	19.0	1.0	0.0%	

POULTRY ROAD

Run	Observations	Avg Queue	Avg Vehicles	95th Percentile	95th Percentile Num Queued	Spillback Rate (%)
SB T on Po	oultry Road - Lane II	D 109	queueu		tuni queucu	
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%
SB T on Poultry Road - Lane ID 131						
1	120.0	0.0	0.0	0.0	0.0	0.0%
2	120.0	0.0	0.0	0.0	0.0	0.0%
3	120.0	0.0	0.0	0.0	0.0	0.0%
4	120.0	0.0	0.0	0.0	0.0	0.0%
5	120.0	0.0	0.0	0.0	0.0	0.0%
6	120.0	0.0	0.0	0.0	0.0	0.0%
7	120.0	0.0	0.0	0.0	0.0	0.0%
8	120.0	0.0	0.0	0.0	0.0	0.0%
9	120.0	0.0	0.0	0.0	0.0	0.0%
10	120.0	0.0	0.0	0.0	0.0	0.0%
Average:	120.0	0.0	0.0	0.0	0.0	0.0%

POULTRY	Y ROAD					NODE: 40
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
SB T on Po	ultry Road - Lane I	D 131				
POWDER	R MILL ROAD &	EDMONSTON R	OAD			NODE: 19
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)
NB T on Po	oultry Road - Lane	ID 158				
1	120.0	36.0	1.1	90.7	3.0	0.0%
2	120.0	35.6	1.1	104.9	3.0	0.0%
3	120.0	43.8	1.3	97.4	3.0	0.0%
4	120.0	39.1	1.2	95.7	3.0	0.0%
5	120.0	31.3	0.9	92.1	3.0	0.0%
6	120.0	38.3	1.2	87.3	3.0	0.0%
7	120.0	33.4	1.0	88.5	3.0	0.0%
8	120.0	34.0	1.0	90.0	3.0	0.0%
9	120.0	40.8	1.2	91.9	3.0	0.0%
10	120.0	38.5	1.2	91.2	3.0	0.0%
Average:	120.0	37.1	1.1	93.0	3.0	0.0%
NB T on Po	oultry Road - Lane	ID 159				
1	120.0	40.9	1.3	96.6	3.0	0.0%
2	120.0	36.1	1.1	84.9	3.0	0.0%
3	120.0	40.9	1.3	109.6	4.0	0.0%
4	120.0	38.2	1.2	94.8	3.0	0.0%
5	120.0	41.6	1.3	94.5	3.0	0.0%
6	120.0	37.4	1.2	106.0	4.0	0.0%
7	120.0	36.7	1.1	97.4	3.0	0.0%
8	120.0	37.7	1.2	92.9	3.0	0.0%
9	120.0	34.3	1.1	91.8	3.0	0.0%
10	120.0	45.7	1.5	116.7	4.0	0.0%
Average:	120.0	39.0	1.2	98.5	3.3	0.0%
NB T on Po	oultry Road - Lane	ID 212				
1	120.0	35.1	1.1	97.2	3.0	0.0%
2	120.0	42.1	1.3	107.4	4.0	0.0%
3	120.0	33.8	1.0	86.0	3.0	0.0%
4	120.0	34.8	1.1	89.1	3.0	0.0%
5	120.0	36.2	1.1	93.4	3.0	0.0%
6	120.0	31.5	1.0	85.6	3.0	0.0%
7	120.0	40.5	1.2	116.2	4.0	0.0%
8	120.0	35.1	1.1	100.0	3.0	0.0%
9	120.0	32.6	1.0	84.6	3.0	0.0%
10	120.0	31.1	0.9	90.4	3.0	0.0%
Average:	120.0	35.3	1.1	95.0	3.2	0.0%
NB T on Po	oultry Road - Lane	ID 218				
1	120.0	24.3	0.7	73.0	2.0	0.0%

DOWNDED MILL DOAD & EDMONISTON DOAD

POWDE	R MILL ROAD &	EDMONSTON R	OAD			NODE: 19
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
NB T on Po	oultry Road - Lane	ID 218				
2	120.0	28.2	0.8	83.3	3.0	0.0%
3	120.0	30.8	0.9	85.4	3.0	0.0%
4	120.0	24.3	0.7	71.7	2.0	0.0%
5	120.0	25.1	0.7	72.6	2.0	0.0%
6	120.0	24.6	0.8	78.7	3.0	0.0%
7	120.0	35.3	1.0	94.1	3.0	0.0%
8	120.0	27.8	0.8	83.7	3.0	0.0%
9	120.0	29.0	0.9	83.9	3.0	0.0%
10	120.0	25.1	0.8	69.9	2.0	0.0%
Average:	120.0	27.5	0.8	79.6	2.6	0.0%
NB T on Po	oultry Road - Lane	ID 350				
1	120.0	25.3	0.8	76.4	2.0	0.0%
2	120.0	28.4	0.8	79.4	3.0	0.0%
3	120.0	25.0	0.7	81.4	3.0	0.0%
4	120.0	26.5	0.8	70.0	2.0	0.0%
5	120.0	28.3	0.8	85.5	3.0	0.0%
6	120.0	20.8	0.6	66.1	2.0	0.0%
7	120.0	25.8	0.8	77.7	2.0	0.0%
8	120.0	31.1	0.9	89.2	3.0	0.0%
9	120.0	26.9	0.8	79.9	3.0	0.0%
10	120.0	27.4	0.8	87.0	3.0	0.0%
Average:	120.0	26.6	0.8	79.3	2.6	0.0%
NB T on Po	oultry Road - Lane	ID 355				
1	120.0	31.6	0.9	86.5	3.0	0.0%
2	120.0	23.9	0.7	68.1	2.0	0.0%
3	120.0	26.0	0.8	87.3	3.0	0.0%
4	120.0	26.0	0.8	73.6	2.0	0.0%
5	120.0	26.6	0.8	79.8	3.0	0.0%
6	120.0	31.8	1.0	94.0	3.0	0.0%
7	120.0	25.6	0.8	78.6	2.0	0.0%
8	120.0	24.0	0.7	72.7	2.0	0.0%
9	120.0	22.9	0.7	72.5	2.0	0.0%
10	120.0	33.2	1.0	87.9	3.0	0.0%
Average:	120.0	27.2	0.8	80.1	2.5	0.0%
NB T on Po	oultry Road - Lane	ID 406				
1	120.0	23.0	0.7	65.0	2.0	0.0%
2	120.0	27.7	0.8	89.4	3.0	0.0%
3	120.0	28.2	0.8	80.4	3.0	0.0%
4	120.0	27.8	0.8	85.3	3.0	0.0%
5	120.0	23.0	0.7	68.8	2.0	0.0%
6	120.0	23.8	0.7	85.4	3.0	0.0%

DOWNER MILL ROAD & EDMONISTON ROAD

POWDE	R MILL ROAD &	EDMONSTON R	OAD			NODE: 19
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
NB T on Pe	oultry Road - Lane	ID 406				
7	120.0	28.5	0.9	85.2	3.0	0.0%
8	120.0	22.6	0.7	68.6	2.0	0.0%
9	120.0	23.3	0.7	66.1	2.0	0.0%
10	120.0	27.7	0.8	86.1	3.0	0.0%
Average:	120.0	25.6	0.8	78.0	2.6	0.0%
NEB L on [Unnamed Street] -	Lane ID 49				
1	120.0	30.6	1.4	84.4	4.0	42.5%
2	120.0	24.7	1.1	76.6	3.0	35.8%
3	120.0	27.0	1.2	83.8	4.0	39.2%
4	120.0	27.8	1.3	81.5	4.0	38.3%
5	120.0	30.5	1.3	85.6	4.0	40.8%
6	120.0	33.8	1.5	83.5	4.0	47.5%
7	120.0	27.6	1.2	83.4	4.0	37.5%
8	120.0	27.7	1.3	81.8	3.0	37.5%
9	120.0	29.4	1.3	78.3	4.0	43.3%
10	120.0	28.0	1.3	81.9	3.0	40.0%
Average:	120.0	28.7	1.3	82.1	3.7	40.2%
NEB T on	Unnamed Street]	Lane ID 83				
1	120.0	12.3	0.5	75.8	3.0	15.0%
2	120.0	9.2	0.4	67.4	3.0	10.8%
3	120.0	12.6	0.6	70.3	3.0	17.5%
4	120.0	15.1	0.7	74.2	3.0	21.7%
5	120.0	13.2	0.6	79.4	3.0	16.7%
6	120.0	17.6	0.8	78.4	3.0	24.2%
7	120.0	12.8	0.6	74.4	3.0	15.8%
8	120.0	13.1	0.6	71.4	3.0	16.7%
9	120.0	10.3	0.5	68.3	3.0	15.0%
10	120.0	10.9	0.5	69.7	3.0	15.0%
Average:	120.0	12.7	0.6	72.9	3.0	16.8%
SEB L on P	owder Mill Road -	Lane ID 64				
1	120.0	12.9	0.7	39.8	2.0	0.0%
2	120.0	11.0	0.6	38.9	2.0	0.0%
3	120.0	11.5	0.6	42.1	2.0	0.0%
4	120.0	11.3	0.6	38.4	2.0	0.0%
5	120.0	13.5	0.7	46.9	2.0	0.0%
6	120.0	10.2	0.6	37.5	2.0	0.0%
7	120.0	9.3	0.5	39.1	2.0	0.0%
8	120.0	11.7	0.6	37.4	2.0	0.0%
9	120.0	10.8	0.6	38.6	2.0	0.0%
10	120.0	12.0	0.6	42.8	2.0	0.0%
Average:	120.0	11.4	0.6	40.2	2.0	0.0%

POWDER MILL ROAD & EDMONSTON ROAD

POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Oueued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
SEB L on F	Powder Mill Road -	Lane ID 64	Queucu				
		Lana ID 194					
1	120.0	14 9	0.7	46.9	2.0	0.0%	
2	120.0	14.0	0.7	47.4	2.0	0.0%	
3	120.0	14.9	0.7	61.2	3.0	0.0%	
4	120.0	12.3	0.6	43.9	2.0	0.0%	
5	120.0	13.0	0.6	45.0	2.0	0.0%	
6	120.0	12.6	0.6	45.3	2.0	0.0%	
7	120.0	15.0	0.7	52.7	2.0	0.0%	
8	120.0	11.6	0.6	49.1	2.0	0.0%	
9	120.0	12.6	0.6	51.6	2.0	0.0%	
10	120.0	16.7	0.8	51.5	2.0	0.0%	
Average:	120.0	13.8	0.7	49.5	2.1	0.0%	
SEB T on F	Powder Mill Road -	Lane ID 65					
1	120.0	14.3	0.7	49.8	2.0	0.0%	
2	120.0	17.3	0.9	61.2	3.0	0.0%	
3	120.0	12.8	0.6	51.8	2.0	0.0%	
4	120.0	13.2	0.6	55.7	2.0	0.0%	
5	120.0	14.4	0.7	48.3	2.0	0.0%	
6	120.0	10.2	0.5	42.0	2.0	0.0%	
7	120.0	15.8	0.7	59.7	3.0	0.0%	
8	120.0	10.9	0.6	41.5	2.0	0.0%	
9	120.0	16.3	0.8	63.4	3.0	0.0%	
10	120.0	13.9	0.7	48.6	2.0	0.0%	
Average:	120.0	13.9	0.7	52.2	2.3	0.0%	
SWB L on	Edmonston Road -	Lane ID 198					
1	120.0	7.2	0.4	19.1	1.0	39.2%	
2	120.0	5.1	0.3	18.9	1.0	28.3%	
3	120.0	6.7	0.4	20.6	1.0	31.7%	
4	120.0	7.7	0.4	23.2	1.0	39.2%	
5	120.0	5.6	0.3	18.8	1.0	30.8%	
6	120.0	6.7	0.4	21.3	1.0	35.8%	
7	120.0	6.2	0.3	19.3	1.0	32.5%	
8	120.0	7.6	0.4	26.1	1.0	39.2%	
9	120.0	6.0	0.3	19.4	1.0	31.7%	
10	120.0	6.0	0.4	18.5	1.0	33.3%	
Average:	120.0	6.5	0.4	20.5	1.0	34.2%	
SWB T on	Edmonston Road -	Lane ID 199					
1	120.0	11.2	0.6	35.4	2.0	50.0%	
2	120.0	8.3	0.5	32.1	2.0	40.8%	
3	120.0	11.5	0.6	38.1	2.0	49.2%	
4	120.0	10.0	0.6	37.9	2.0	45.8%	

DOWDED MILL DOAD & EDMONSTON DOAD

POWDEF	R MILL ROAD &	EDMONSTON R	OAD			NODE: 19
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
SWB T on	Edmonston Road -	Lane ID 199				
5	120.0	10.9	0.6	36.8	2.0	50.8%
6	120.0	10.7	0.6	36.5	2.0	50.0%
7	120.0	11.7	0.7	37.0	2.0	58.3%
8	120.0	9.9	0.6	35.6	2.0	47.5%
9	120.0	10.9	0.6	37.3	2.0	48.3%
10	120.0	9.9	0.5	32.2	1.0	45.0%
Average:	120.0	10.5	0.6	35.9	1.9	48.6%
SWB TR or	n Edmonston Road	- Lane ID 200				
1	120.0	10.9	0.6	35.9	2.0	49.2%
2	120.0	10.2	0.5	38.7	2.0	40.0%
3	120.0	10.5	0.6	35.6	2.0	50.8%
4	120.0	10.0	0.5	37.9	2.0	43.3%
5	120.0	10.4	0.6	37.0	2.0	45.0%
6	120.0	11.5	0.6	37.8	2.0	50.0%
7	120.0	12.6	0.7	36.2	2.0	58.3%
8	120.0	12.1	0.6	36.9	2.0	50.8%
9	120.0	11.3	0.6	36.3	2.0	49.2%
10	120.0	9.4	0.5	37.7	2.0	39.2%
Average:	120.0	10.9	0.6	37.0	2.0	47.6%
WB L on P	oultry Road - Lane	ID 51				
1	120.0	15.6	0.7	63.8	3.0	0.0%
2	120.0	19.2	0.9	67.9	3.0	0.0%
3	120.0	13.3	0.6	52.0	2.0	0.0%
4	120.0	19.2	0.9	70.0	3.0	0.0%
5	120.0	16.4	0.7	65.7	3.0	0.0%
6	120.0	19.4	0.9	69.9	3.0	0.0%
7	120.0	16.5	0.8	67.0	3.0	0.0%
8	120.0	16.2	0.7	65.3	2.0	0.0%
9	120.0	18.1	0.8	78.0	3.0	0.0%
10	120.0	22.0	1.0	96.1	4.0	0.0%
Average:	120.0	17.6	0.8	69.6	2.9	0.0%
WB L on P	oultry Road - Lane	ID 82				
1	120.0	17.5	0.9	68.5	3.0	0.0%
2	120.0	23.4	1.1	83.8	3.0	0.0%
3	120.0	16.4	0.8	69.5	3.0	0.0%
4	120.0	19.0	0.9	68.9	3.0	0.0%
5	120.0	18.6	0.9	61.9	3.0	0.0%
6	120.0	23.8	1.0	93.7	4.0	0.0%
7	120.0	21.0	1.0	76.0	3.0	0.0%
8	120.0	18.8	0.9	60.7	3.0	0.0%
9	120.0	19.4	0.9	69.0	3.0	0.0%

POWDER MILL ROAD & EDMONSTON ROAD

POWDER	POWDER MILL ROAD & EDMONSTON ROAD NODE: 19							
Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)		
WB L on Pe	oultry Road - Lane	ID 82						
10	120.0	20.9	1.0	69.6	3.0	0.0%		
Average:	120.0	19.9	0.9	72.2	3.1	0.0%		
WB T on P	oultry Road - Lane	ID 196						
1	120.0	21.9	1.0	101.6	4.0	0.0%		
2	120.0	29.6	1.3	99.7	4.0	0.0%		
3	120.0	25.0	1.1	94.3	4.0	0.0%		
4	120.0	22.7	1.0	86.6	3.0	0.0%		
5	120.0	22.2	1.0	81.0	3.0	0.0%		
6	120.0	28.8	1.2	130.3	5.0	0.0%		
7	120.0	21.5	0.9	101.5	3.0	0.0%		
8	120.0	27.1	1.2	100.9	4.0	0.0%		
9	120.0	26.7	1.2	115.2	5.0	0.0%		
10	120.0	26.4	1.2	99.1	4.0	0.0%		
Average:	120.0	25.2	1.1	101.0	3.9	0.0%		

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Run	Observations	Avg Queue Length (ft)	Avg Vehicles Queued	95th Percentile Length (ft)	95th Percentile Num Queued	Spillback Rate (%)	
EB T on Powder Mill Road - Lane ID 17							
1	120.0	18.6	0.9	89.5	4.0	0.8%	
2	120.0	22.8	1.1	89.7	4.0	2.5%	
3	120.0	25.9	1.2	96.8	4.0	3.3%	
4	120.0	19.7	0.9	85.0	4.0	2.5%	
5	120.0	17.7	0.8	77.4	3.0	0.8%	
6	120.0	21.4	1.0	87.6	3.0	1.7%	
7	120.0	19.9	0.9	93.4	4.0	2.5%	
8	120.0	20.0	0.9	90.9	4.0	0.0%	
9	120.0	17.0	0.7	90.1	4.0	1.7%	
10	120.0	17.8	0.8	91.6	4.0	1.7%	
Average:	120.0	20.1	0.9	89.2	3.8	1.8%	
NB L on Soil Conservation Road - Lane ID 13							
1	120.0	26.7	1.2	117.1	5.0	0.8%	
2	120.0	24.5	1.1	101.4	4.0	0.0%	
3	120.0	22.8	1.0	93.7	4.0	0.0%	
4	120.0	26.4	1.2	107.5	5.0	0.0%	
5	120.0	25.9	1.1	118.6	5.0	0.0%	
6	120.0	31.4	1.4	111.7	5.0	0.8%	
7	120.0	21.9	1.0	108.5	4.0	0.0%	
8	120.0	28.6	1.3	113.2	5.0	1.7%	
9	120.0	22.7	1.0	101.7	4.0	0.0%	
10	120.0	26.3	1.2	107.7	5.0	0.0%	
Average:	120.0	25.7	1.2	108.1	4.6	0.3%	

SOIL CONSERVATION ROAD & POWDER MILL ROAD

SOIL CONSERVATION ROAD & POWDER MILL ROAD						
		Avg Queue	Avg Vehicles	95th Percentile	95th Percentile	Spillback
Run	Observations	Length (ft)	Queued	Length (ft)	Num Queued	Rate (%)
NB L on Se	oil Conservation Ro	ad - Lane ID 13				
WB L on P	owder Mill Road -	Lane ID 11				
1	120.0	9.5	0.5	41.4	2.0	0.0%
2	120.0	9.0	0.4	42.9	2.0	0.0%
3	120.0	7.3	0.4	34.7	1.0	0.0%
4	120.0	8.5	0.5	36.5	2.0	0.0%
5	120.0	8.1	0.4	32.9	1.0	0.0%
6	120.0	9.4	0.5	41.2	2.0	0.0%
7	120.0	9.6	0.5	40.5	2.0	0.0%
8	120.0	8.0	0.4	20.6	1.0	0.0%
9	120.0	9.2	0.5	22.6	1.0	0.0%
10	120.0	8.8	0.5	32.1	1.0	0.0%
Average:	120.0	8.7	0.5	34.5	1.5	0.0%
WB T on F	Powder Mill Road -	Lane ID 42				
1	120.0	23.9	1.1	87.3	4.0	0.0%
2	120.0	24.1	1.1	108.9	5.0	0.0%
3	120.0	27.6	1.2	103.6	4.0	3.3%
4	120.0	26.5	1.2	113.3	5.0	1.7%
5	120.0	25.4	1.1	115.6	5.0	0.0%
6	120.0	23.0	1.1	100.1	4.0	0.0%
7	120.0	23.3	1.1	110.3	5.0	0.0%
8	120.0	23.7	1.0	104.3	4.0	0.0%
9	120.0	23.7	1.1	90.1	4.0	0.8%
10	120.0	25.4	1.1	119.3	5.0	0.0%
Average:	120.0	24.7	1.1	105.3	4.5	0.6%

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection - Avg Queue

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	56.6	4.9	50.3	64.0	10
NB TR	37	BW Parkway NB Off-Ramp	2.4	0.7	1.4	4.1	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	22.9	2.2	19.7	26.4	10
EB L	24	Powder Mill Road	13.4	1.5	11.5	16.0	10
EB T	25	Powder Mill Road	20.9	3.6	16.4	25.4	10
WB R	207	Powder Mill Road	1.9	0.6	1.1	2.9	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8	_
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SWB L	27	BW Parkway SB Off-Ramp	48.9	5.8	42.3	57.2	10	
SWB TR	28	BW Parkway SB Off-Ramp	21.1	3.4	15.0	26.8	10	

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	5.6	1.1	4.0	6.9	10
WB L	26	Powder Mill Road	2.0	0.5	1.2	2.7	10
EB T	31	Powder Mill Road	17.4	3.2	10.9	22.1	10
EB R	206	Powder Mill Road	1.0	0.5	0.0	1.6	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	72.3	6.8	61.3	85.4	10
SB T	120	Edmonston Road	43.2	3.1	38.5	48.3	10
SB T	121	Edmonston Road	54.4	4.0	49.0	60.2	10
NB T	126	Edmonston Road	7.4	1.7	4.6	10.5	10
NB T	167	Edmonston Road	6.5	1.6	4.0	9.1	10
SB R	171	Edmonston Road	6.0	1.0	4.0	7.9	10

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	40.3	4.1	35.2	49.0	10
EB R	118	Sunnyside Avenue	17.2	2.9	14.2	22.7	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	17.4	2.4	13.1	21.7	10
NWB L	322	I-95/495 NB off-ramp	30.6	3.9	23.8	34.7	10
NWB R	323	I-95/495 NB off-ramp	51.8	5.3	41.8	59.5	10
NWB R	324	I-95/495 NB off-ramp	51.2	7.8	41.4	59.8	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	10.7	3.1	7.6	17.7	10
NEB T	319	MD 201	13.4	2.2	11.0	18.3	10
NEB T	320	MD 201	17.1	2.5	13.0	20.5	10
SWB T	326	MD 201	15.2	2.4	12.7	21.1	10
SWB T	327	MD 201	10.7	2.3	6.5	13.4	10
SWB T	328	MD 201	16.5	3.3	12.3	23.4	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 16.7 2.0 13.5 19.6 10 [Unnamed Street] SEB L 393 29.8 2.2 27.2 32.8 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201

	-						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	2.8	0.8	1.8	4.3	10
NEB T	375	MD 201	3.0	0.9	1.9	4.6	10
NEB T	376	MD 201	7.3	2.5	4.4	11.0	10
SWB T	381	MD 201	2.8	1.3	1.4	5.0	10
SWB T	382	MD 201	2.7	0.9	1.7	4.5	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	37.3	3.6	31.0	43.0	10
NEB L	238	Cherrywood Lane	35.4	2.9	31.5	40.9	10
NEB R	239	Cherrywood Lane	0.5	0.2	0.2	0.8	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	58.4	8.0	47.8	74.0	10
NWB T	231	MD 201	2.9	1.6	0.2	5.6	10
NWB T	232	MD 201	4.7	1.5	1.6	6.3	10
SEB T	235	MD 201	40.7	3.8	34.5	48.4	10

NODE: 67

NODE: 45

NODE: 45

NODE: 32

NODE: 57

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	42.1	3.7	36.3	48.9	10
SEB R	250	MD 201	7.4	1.7	4.6	9.7	10

MD 201 & IVY LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.1	0.0	0.2	10
SB T	252	MD 201	0.4	0.2	0.1	0.6	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							NODE: 52
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	12.3	0.7	11.5	13.2	10
NWB R	284	Crescent Street	2.8	0.8	1.4	4.1	10

MD 201, MARYLAND SHA DRIVEWAY	/ & CRESCENT STREET
--------------------------------------	--------------------------------

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.3	0.2	0.0	0.7	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	1.4	0.6	0.4	2.4	10
NEB T	298	MD 201	7.7	3.1	3.6	14.9	10
NEB T	299	MD 201	7.7	2.4	5.2	12.2	10
NEB L	311	MD 201	11.7	0.9	10.0	13.0	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	8.3	1.6	6.1	11.0	10
SWB T	343	MD 201	0.3	0.4	0.0	0.9	10
SWB T	344	MD 201	1.3	0.6	0.5	2.3	10
SWB TR	345	MD 201	2.9	1.2	1.2	5.3	10

POULTRY ROAD							NODE: 40
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	28.7	2.5	24.7	33.8	10
NEB T	83	[Unnamed Street]	12.7	2.4	9.2	17.6	10

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	6.5	0.9	5.1	7.7	10
SWB T	199	Edmonston Road	10.5	1.0	8.3	11.7	10
SWB TR	200	Edmonston Road	10.9	1.0	9.4	12.6	10

NODE: 52

POWDER MILL ROAD & EDMONSTON ROAD							NODE: 19
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	51	Poultry Road	17.6	2.5	13.3	22.0	10
WB L	82	Poultry Road	19.9	2.4	16.4	23.8	10
NB T	158	Poultry Road	37.1	3.7	31.3	43.8	10
NB T	159	Poultry Road	39.0	3.3	34.3	45.7	10
WB T	196	Poultry Road	25.2	3.0	21.5	29.6	10
NB T	212	Poultry Road	35.3	3.6	31.1	42.1	10
NB T	218	Poultry Road	27.5	3.6	24.3	35.3	10
NB T	350	Poultry Road	26.6	2.7	20.8	31.1	10
NB T	355	Poultry Road	27.2	3.7	22.9	33.2	10
NB T	406	Poultry Road	25.6	2.6	22.6	28.5	10

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	11.4	1.2	9.3	13.5	10
SEB T	65	Powder Mill Road	13.9	2.3	10.2	17.3	10
SEB T	184	Powder Mill Road	13.8	1.6	11.6	16.7	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	8.7	0.8	7.3	9.6	10
EB T	17	Powder Mill Road	20.1	2.7	17.0	25.9	10
WB T	42	Powder Mill Road	24.7	1.5	23.0	27.6	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	25.7	2.9	21.9	31.4	10

NODE: 2

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection - Avg **Num Queued**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	2.5	0.2	2.2	2.8	10
NB TR	37	BW Parkway NB Off-Ramp	0.1	0.0	0.1	0.2	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	1.0	0.1	0.9	1.2	10
EB L	24	Powder Mill Road	0.7	0.1	0.6	0.7	10
EB T	25	Powder Mill Road	0.9	0.2	0.7	1.1	10
WB R	207	Powder Mill Road	0.1	0.0	0.1	0.1	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	2.2	0.2	1.9	2.5	10
SWB TR	28	BW Parkway SB Off-Ramp	1.0	0.1	0.7	1.2	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	0.3	0.1	0.2	0.3	10
WB L	26	Powder Mill Road	0.1	0.0	0.1	0.1	10
EB T	31	Powder Mill Road	0.8	0.1	0.5	1.0	10
EB R	206	Powder Mill Road	0.1	0.0	0.0	0.1	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
NB L	114	Edmonston Road	3.0	0.3	2.6	3.6	10	
SB T	120	Edmonston Road	1.8	0.2	1.6	2.1	10	
SB T	121	Edmonston Road	2.3	0.2	2.1	2.5	10	
NB T	126	Edmonston Road	0.3	0.1	0.2	0.4	10	
NB T	167	Edmonston Road	0.3	0.1	0.2	0.4	10	
SB R	171	Edmonston Road	0.3	0.0	0.2	0.4	10	

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	1.8	0.2	1.6	2.1	10
EB R	118	Sunnyside Avenue	0.8	0.1	0.6	1.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	0.8	0.1	0.6	1.0	10
NWB L	322	I-95/495 NB off-ramp	1.4	0.1	1.1	1.5	10
NWB R	323	I-95/495 NB off-ramp	2.2	0.2	1.8	2.5	10
NWB R	324	I-95/495 NB off-ramp	2.2	0.3	1.8	2.5	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	0.5	0.1	0.4	0.8	10
NEB T	319	MD 201	0.6	0.1	0.5	0.8	10
NEB T	320	MD 201	0.8	0.1	0.6	0.9	10
SWB T	326	MD 201	0.7	0.1	0.6	1.0	10
SWB T	327	MD 201	0.5	0.1	0.3	0.6	10
SWB T	328	MD 201	0.8	0.1	0.6	1.0	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 0.8 0.1 0.7 1.0 10 [Unnamed Street] SEB L 393 1.4 0.1 1.3 1.5 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	0.1	0.0	0.1	0.2	10
NEB T	375	MD 201	0.1	0.0	0.1	0.2	10
NEB T	376	MD 201	0.3	0.1	0.2	0.4	10
SWB T	381	MD 201	0.1	0.0	0.1	0.2	10
SWB T	382	MD 201	0.1	0.0	0.1	0.2	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	1.7	0.1	1.5	1.9	10
NEB L	238	Cherrywood Lane	1.6	0.1	1.4	1.8	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	2.6	0.3	2.2	3.2	10
NWB T	231	MD 201	0.1	0.1	0.0	0.2	10
NWB T	232	MD 201	0.2	0.1	0.1	0.3	10
SEB T	235	MD 201	1.7	0.2	1.4	2.0	10

NODE: 32

NODE: 57

NODE: 57

NODE: 45

NODE: 45

MD 201 &	MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SEB T	236	MD 201	1.8	0.2	1.6	2.0	10	
SEB R	250	MD 201	0.3	0.1	0.2	0.4	10	

MD 201 & IVY LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	0.7	0.1	0.6	0.8	10
NWB R	284	Crescent Street	0.2	0.1	0.1	0.2	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.1	0.0	0.0	0.1	10
NEB T	298	MD 201	0.4	0.1	0.2	0.6	10
NEB T	299	MD 201	0.3	0.1	0.2	0.5	10
NEB L	311	MD 201	0.6	0.0	0.5	0.6	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	0.4	0.1	0.3	0.5	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.1	0.0	0.0	0.1	10
SWB TR	345	MD 201	0.2	0.1	0.1	0.3	10

POULTRY ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10	
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10	

POWDER MILL ROAD & EDMONSTON ROAD NO							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	1.3	0.1	1.1	1.5	10
NEB T	83	[Unnamed Street]	0.6	0.1	0.4	0.8	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	0.4	0.1	0.3	0.4	10
SWB T	199	Edmonston Road	0.6	0.1	0.5	0.7	10
SWB TR	200	Edmonston Road	0.6	0.1	0.5	0.7	10

NODE: 52

POWDER	OWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
POWDER	MILL RO	AD & EDMONST	ON ROAD				NODE: 19		
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
WB L	51	Poultry Road	0.8	0.1	0.6	1.0	10		
WB L	82	Poultry Road	0.9	0.1	0.8	1.1	10		
NB T	158	Poultry Road	1.1	0.1	0.9	1.3	10		
NB T	159	Poultry Road	1.2	0.1	1.1	1.5	10		
WB T	196	Poultry Road	1.1	0.1	0.9	1.3	10		
NB T	212	Poultry Road	1.1	0.1	0.9	1.3	10		
NB T	218	Poultry Road	0.8	0.1	0.7	1.0	10		
NB T	350	Poultry Road	0.8	0.1	0.6	0.9	10		
NB T	355	Poultry Road	0.8	0.1	0.7	1.0	10		
NB T	406	Poultry Road	0.8	0.1	0.7	0.9	10		

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	0.6	0.1	0.5	0.7	10
SEB T	65	Powder Mill Road	0.7	0.1	0.5	0.9	10
SEB T	184	Powder Mill Road	0.7	0.1	0.6	0.8	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	0.5	0.1	0.4	0.5	10
EB T	17	Powder Mill Road	0.9	0.1	0.7	1.2	10
WB T	42	Powder Mill Road	1.1	0.1	1.0	1.2	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	1.2	0.1	1.0	1.4	10

NODE: 2

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -**Percentile Queue**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	158.7	9.6	144.7	177.9	10
NB TR	37	BW Parkway NB Off-Ramp	18.6	3.1	14.6	26.2	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD NO								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
WB T	5	Powder Mill Road	112.2	11.6	97.6	128.8	10	
EB L	24	Powder Mill Road	51.7	7.3	45.4	63.2	10	
EB T	25	Powder Mill Road	124.3	12.1	102.8	141.2	10	
WB R	207	Powder Mill Road	16.2	6.6	0.0	24.7	10	

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	133.4	8.0	121.5	148.0	10
SWB TR	28	BW Parkway SB Off-Ramp	87.6	10.4	62.1	102.6	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	43.0	13.2	21.8	63.5	10
WB L	26	Powder Mill Road	16.8	0.9	15.5	18.4	10
EB T	31	Powder Mill Road	92.5	11.9	64.8	106.4	10
EB R	206	Powder Mill Road	7.2	7.6	0.0	17.6	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	228.7	26.9	188.1	275.8	10
SB T	120	Edmonston Road	182.7	7.3	168.3	191.2	10
SB T	121	Edmonston Road	210.7	15.3	185.1	236.8	10
NB T	126	Edmonston Road	62.5	14.4	42.3	84.0	10
NB T	167	Edmonston Road	51.9	16.3	20.6	73.0	10
SB R	171	Edmonston Road	35.7	7.1	23.6	46.2	10

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	105.8	11.1	94.3	129.6	10
EB R	118	Sunnyside Avenue	80.6	8.4	63.0	93.8	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	77.0	5.1	69.6	86.3	10
NWB L	322	I-95/495 NB off-ramp	103.3	8.4	91.7	116.2	10
NWB R	323	I-95/495 NB off-ramp	192.1	9.3	174.8	206.2	10
NWB R	324	I-95/495 NB off-ramp	179.5	14.1	156.3	202.4	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	51.3	9.5	41.8	70.6	10
NEB T	319	MD 201	55.7	9.9	43.6	71.2	10
NEB T	320	MD 201	70.4	6.2	61.2	82.6	10
SWB T	326	MD 201	59.4	6.5	47.8	67.9	10
SWB T	327	MD 201	53.4	9.1	40.4	64.3	10
SWB T	328	MD 201	72.9	10.0	61.8	94.5	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Street Name Average **Std Deviation** Minimum Maximum # Samples SEB L 392 57.9 8.2 45.6 69.1 10 [Unnamed Street] 70.0 SEB L 393 85.9 7.9 96.1 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201

	-						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	374	MD 201	19.3	2.5	16.4	23.5	10
NEB T	375	MD 201	19.6	10.2	0.9	43.2	10
NEB T	376	MD 201	57.0	15.4	39.4	80.0	10
SWB T	381	MD 201	19.9	15.8	0.0	45.0	10
SWB T	382	MD 201	19.2	10.0	0.8	41.4	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	97.0	7.3	86.2	107.2	10
NEB L	238	Cherrywood Lane	95.1	5.2	87.6	106.2	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	142.2	14.4	121.3	174.4	10
NWB T	231	MD 201	18.0	15.3	0.0	44.0	10
NWB T	232	MD 201	25.1	13.1	9.5	48.9	10
SEB T	235	MD 201	185.5	19.2	162.4	214.7	10

TransModeler Traffic Simulation Software

Transportation Impact Study

NODE: 45

NODE: 45

NODE: 67

NODE: 32

NODE: 57

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	186.6	17.8	165.3	225.9	10
SEB R	250	MD 201	50.3	9.5	41.4	68.0	10

MD 201 & IVY LANE							NODE: 50
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	27.6	5.6	20.7	34.7	10
NWB R	284	Crescent Street	17.9	1.3	15.2	19.0	10

MD 201, MARYLAND SH	A DRIVEWAY &	CRESCENT STREET
---------------------	--------------	------------------------

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	8.7	8.8	0.0	18.7	10
NEB T	298	MD 201	51.5	19.3	20.0	90.5	10
NEB T	299	MD 201	44.1	10.5	29.4	66.1	10
NEB L	311	MD 201	43.3	2.8	39.3	48.3	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	39.0	9.7	19.1	52.6	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	8.8	8.9	0.0	18.4	10
SWB TR	345	MD 201	19.0	10.0	0.0	41.4	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	82.1	2.8	76.6	85.6	10
NEB T	83	[Unnamed Street]	72.9	4.2	67.4	79.4	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	20.5	2.4	18.5	26.1	10
SWB T	199	Edmonston Road	35.9	2.2	32.1	38.1	10
SWB TR	200	Edmonston Road	37.0	1.0	35.6	38.7	10

NODE: 52

POWDER	POWDER MILL ROAD & EDMONSTON ROAD								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
POWDER MILL ROAD & EDMONSTON ROAD									
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples		
WB L	51	Poultry Road	69.6	11.4	52.0	96.1	10		
WB L	82	Poultry Road	72.2	10.0	60.7	93.7	10		
NB T	158	Poultry Road	93.0	5.2	87.3	104.9	10		
NB T	159	Poultry Road	98.5	9.5	84.9	116.7	10		
WB T	196	Poultry Road	101.0	13.8	81.0	130.3	10		
NB T	212	Poultry Road	95.0	10.4	84.6	116.2	10		
NB T	218	Poultry Road	79.6	7.8	69.9	94.1	10		
NB T	350	Poultry Road	79.3	7.2	66.1	89.2	10		
NB T	355	Poultry Road	80.1	8.5	68.1	94.0	10		
NB T	406	Poultry Road	78.0	9.7	65.0	89.4	10		

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	40.2	3.0	37.4	46.9	10
SEB T	65	Powder Mill Road	52.2	7.7	41.5	63.4	10
SEB T	184	Powder Mill Road	49.5	5.1	43.9	61.2	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	34.5	7.8	20.6	42.9	10
EB T	17	Powder Mill Road	89.2	5.2	77.4	96.8	10
WB T	42	Powder Mill Road	105.3	10.5	87.3	119.3	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	108.1	7.6	93.7	118.6	10

NODE: 19

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -**Percentile Num Queued**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	6.9	0.6	6.0	8.0	10
NB TR	37	BW Parkway NB Off-Ramp	1.0	0.0	1.0	1.0	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	4.6	0.5	4.0	5.0	10
EB L	24	Powder Mill Road	2.1	0.3	2.0	3.0	10
EB T	25	Powder Mill Road	5.2	0.6	4.0	6.0	10
WB R	207	Powder Mill Road	0.9	0.3	0.0	1.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD						NODE: 8	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	5.7	0.5	5.0	6.0	10
SWB TR	28	BW Parkway SB Off-Ramp	3.9	0.3	3.0	4.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	1.8	0.4	1.0	2.0	10
WB L	26	Powder Mill Road	1.0	0.0	1.0	1.0	10
EB T	31	Powder Mill Road	3.9	0.3	3.0	4.0	10
EB R	206	Powder Mill Road	0.5	0.5	0.0	1.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	114	Edmonston Road	9.1	1.1	8.0	11.0	10
SB T	120	Edmonston Road	7.5	0.5	7.0	8.0	10
SB T	121	Edmonston Road	8.8	0.6	8.0	10.0	10
NB T	126	Edmonston Road	2.7	0.5	2.0	3.0	10
NB T	167	Edmonston Road	2.3	0.7	1.0	3.0	10
SB R	171	Edmonston Road	1.5	0.5	1.0	2.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE						NODE: 32	
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	4.5	0.5	4.0	5.0	10
EB R	118	Sunnyside Avenue	3.1	0.3	3.0	4.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	3.2	0.4	3.0	4.0	10
NWB L	322	I-95/495 NB off-ramp	4.3	0.5	4.0	5.0	10
NWB R	323	I-95/495 NB off-ramp	8.0	0.5	7.0	9.0	10
NWB R	324	I-95/495 NB off-ramp	7.6	0.7	7.0	9.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	2.2	0.4	2.0	3.0	10
NEB T	319	MD 201	2.4	0.5	2.0	3.0	10
NEB T	320	MD 201	3.1	0.3	3.0	4.0	10
SWB T	326	MD 201	2.8	0.4	2.0	3.0	10
SWB T	327	MD 201	2.3	0.5	2.0	3.0	10
SWB T	328	MD 201	3.2	0.4	3.0	4.0	10

I-95/495 SB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	392	[Unnamed Street]	2.7	0.5	2.0	3.0	10
SEB L	393	[Unnamed Street]	3.7	0.5	3.0	4.0	10

I-95/495 SB OFF-RAMP & MD 201

I-95/495 SB OFF-RAMP & MD 201 NO								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
NEB T	374	MD 201	1.0	0.0	1.0	1.0	10	
NEB T	375	MD 201	1.0	0.5	0.0	2.0	10	
NEB T	376	MD 201	2.5	0.5	2.0	3.0	10	
SWB T	381	MD 201	1.0	0.7	0.0	2.0	10	
SWB T	382	MD 201	1.0	0.5	0.0	2.0	10	

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	4.1	0.3	4.0	5.0	10
NEB L	238	Cherrywood Lane	4.0	0.0	4.0	4.0	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	5.7	0.7	5.0	7.0	10
NWB T	231	MD 201	0.8	0.6	0.0	2.0	10
NWB T	232	MD 201	1.3	0.5	1.0	2.0	10
SEB T	235	MD 201	7.4	0.7	6.0	8.0	10

TransModeler

Transportation Impact Study

NODE: 45

NODE: 45

NODE: 32

NODE: 57

NODE: 57

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	7.6	0.7	7.0	9.0	10
SEB R	250	MD 201	2.2	0.4	2.0	3.0	10

MD 201 & IVY LANE							NODE: 50
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	251	MD 201	0.0	0.0	0.0	0.0	10
SB T	252	MD 201	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB LT	283	Crescent Street	1.2	0.4	1.0	2.0	10
NWB R	284	Crescent Street	1.0	0.0	1.0	1.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.5	0.5	0.0	1.0	10
NEB T	298	MD 201	2.2	0.8	1.0	4.0	10
NEB T	299	MD 201	2.0	0.5	1.0	3.0	10
NEB L	311	MD 201	2.0	0.0	2.0	2.0	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	1.8	0.4	1.0	2.0	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.5	0.5	0.0	1.0	10
SWB TR	345	MD 201	1.0	0.5	0.0	2.0	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER	POWDER MILL ROAD & EDMONSTON ROAD						
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	3.7	0.5	3.0	4.0	10
NEB T	83	[Unnamed Street]	3.0	0.0	3.0	3.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	198	Edmonston Road	1.0	0.0	1.0	1.0	10
SWB T	199	Edmonston Road	1.9	0.3	1.0	2.0	10
SWB TR	200	Edmonston Road	2.0	0.0	2.0	2.0	10

NODE: 52

POWDER MILL ROAD & EDMONSTON ROAD										
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples			
POWDER MILL ROAD & EDMONSTON ROAD										
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples			
WB L	51	Poultry Road	2.9	0.6	2.0	4.0	10			
WB L	82	Poultry Road	3.1	0.3	3.0	4.0	10			
NB T	158	Poultry Road	3.0	0.0	3.0	3.0	10			
NB T	159	Poultry Road	3.3	0.5	3.0	4.0	10			
WB T	196	Poultry Road	3.9	0.7	3.0	5.0	10			
NB T	212	Poultry Road	3.2	0.4	3.0	4.0	10			
NB T	218	Poultry Road	2.6	0.5	2.0	3.0	10			
NB T	350	Poultry Road	2.6	0.5	2.0	3.0	10			
NB T	355	Poultry Road	2.5	0.5	2.0	3.0	10			
NB T	406	Poultry Road	2.6	0.5	2.0	3.0	10			

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	2.0	0.0	2.0	2.0	10
SEB T	65	Powder Mill Road	2.3	0.5	2.0	3.0	10
SEB T	184	Powder Mill Road	2.1	0.3	2.0	3.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	1.5	0.5	1.0	2.0	10
EB T	17	Powder Mill Road	3.8	0.4	3.0	4.0	10
WB T	42	Powder Mill Road	4.5	0.5	4.0	5.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	4.6	0.5	4.0	5.0	10

NODE: 19

NODE: 2

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Lane Queue by Intersection -**Spillback Rate**

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	36	BW Parkway NB Off-Ramp	0.0	0.0	0.0	0.0	10
NB TR	37	BW Parkway NB Off-Ramp	0.0	0.0	0.0	0.0	10

BW PARKWAY NB OFF-RAMP, BW PARKWAY NB ON-RAMP & POWDER MILL

ROAD							NODE: 5
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	5	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB L	24	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	25	Powder Mill Road	0.0	0.0	0.0	0.0	10
WB R	207	Powder Mill Road	0.0	0.0	0.0	0.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SWB L	27	BW Parkway SB Off-Ramp	0.0	0.0	0.0	0.0	10
SWB TR	28	BW Parkway SB Off-Ramp	0.0	0.0	0.0	0.0	10

BW PARKWAY SB OFF-RAMP, BW PARKWAY SB ON-RAMP & POWDER MILL

ROAD							NODE: 8
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB T	8	Powder Mill Road	0.0	0.0	0.0	0.0	10
WB L	26	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	31	Powder Mill Road	0.1	0.0	0.0	0.1	10
EB R	206	Powder Mill Road	0.0	0.0	0.0	0.0	10

EDMONSTON ROAD & SUNNYSIDE AVENUE

EDMONSTON ROAD & SUNNYSIDE AVENUE								
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
NB L	114	Edmonston Road	0.0	0.0	0.0	0.0	10	
SB T	120	Edmonston Road	0.0	0.0	0.0	0.0	10	
SB T	121	Edmonston Road	0.0	0.0	0.0	0.0	10	
NB T	126	Edmonston Road	0.0	0.0	0.0	0.0	10	
NB T	167	Edmonston Road	0.0	0.0	0.0	0.0	10	
SB R	171	Edmonston Road	0.0	0.0	0.0	0.0	10	

EDMONSTON ROAD & SUNNYSIDE AVENUE							NODE: 32
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples

EDMONSTON ROAD & SUNNYSIDE AVENUE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
EB L	117	Sunnyside Avenue	0.0	0.0	0.0	0.0	10
EB R	118	Sunnyside Avenue	0.0	0.0	0.0	0.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	321	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB L	322	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB R	323	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10
NWB R	324	I-95/495 NB off-ramp	0.0	0.0	0.0	0.0	10

I-95/495 NB OFF-RAMP & MD 201

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	318	MD 201	0.0	0.0	0.0	0.0	10
NEB T	319	MD 201	0.0	0.0	0.0	0.0	10
NEB T	320	MD 201	0.0	0.0	0.0	0.0	10
SWB T	326	MD 201	0.0	0.0	0.0	0.0	10
SWB T	327	MD 201	0.0	0.0	0.0	0.0	10
SWB T	328	MD 201	0.0	0.0	0.0	0.0	10

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID Average **Std Deviation** Minimum Maximum **#** Samples Street Name SEB L 392 0.0 0.0 0.0 0.0 10 [Unnamed Street] SEB L 393 0.0 0.0 0.0 0.0 10 [Unnamed Street]

I-95/495 SB OFF-RAMP & MD 201 **NODE: 67** Movements Lane ID **Std Deviation** Minimum Maximum # Samples Street Name Average NEB T 374 MD 201 0.0 0.0 0.0 0.0 10 NEB T 375 0.0 0.0 0.0 0.0 MD 201 10 NEB T MD 201 0.0 0.0 0.0 0.0 10 376 SWB T 381 MD 201 0.0 0.0 0.0 0.0 10 SWB T 382 MD 201 0.0 0.0 0.0 0.0 10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	237	Cherrywood Lane	0.0	0.0	0.0	0.0	10
NEB L	238	Cherrywood Lane	0.0	0.0	0.0	0.0	10
NEB R	239	Cherrywood Lane	0.0	0.0	0.0	0.0	10

MD 201 & CHERRYWOOD LANE

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NWB L	230	MD 201	0.0	0.0	0.0	0.0	10
NWB T	231	MD 201	0.0	0.0	0.0	0.0	10
NWB T	232	MD 201	0.0	0.0	0.0	0.0	10
SEB T	235	MD 201	0.0	0.0	0.0	0.0	10

NODE: 32

NODE: 57

NODE: 57

NODE: 45

MD 201 & CHERRYWOOD LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB T	236	MD 201	0.0	0.0	0.0	0.0	10
SEB R	250	MD 201	0.0	0.0	0.0	0.0	10

MD 201 &	MD 201 & IVY LANE							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SB T	251	MD 201	0.0	0.0	0.0	0.0	10	
SB T	252	MD 201	0.0	0.0	0.0	0.0	10	

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET									
Movements Lane ID Street Name Average Std Deviation Minimum Maximum									
NWB LT	283	Crescent Street	0.6	0.0	0.6	0.7	10		
NWB R	284	Crescent Street	0.2	0.0	0.1	0.2	10		

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB LTR	281	Maryland SHA Driveway	0.0	0.0	0.0	0.0	10

MD 201, MARYLAND SHA DRIVEWAY & CRESCENT STREET

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB T	297	MD 201	0.0	0.0	0.0	0.0	10
NEB T	298	MD 201	0.0	0.0	0.0	0.0	10
NEB T	299	MD 201	0.0	0.0	0.0	0.0	10
NEB L	311	MD 201	0.0	0.0	0.0	0.0	10
NEB R	332	MD 201	0.0	0.0	0.0	0.0	10
SWB L	342	MD 201	0.0	0.0	0.0	0.0	10
SWB T	343	MD 201	0.0	0.0	0.0	0.0	10
SWB T	344	MD 201	0.0	0.0	0.0	0.0	10
SWB TR	345	MD 201	0.0	0.0	0.0	0.0	10

POULTRY ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SB T	109	Poultry Road	0.0	0.0	0.0	0.0	10
SB T	131	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NEB L	49	[Unnamed Street]	0.4	0.0	0.4	0.5	10
NEB T	83	[Unnamed Street]	0.2	0.0	0.1	0.2	10

POWDER	POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples	
SWB L	198	Edmonston Road	0.3	0.0	0.3	0.4	10	
SWB T	199	Edmonston Road	0.5	0.0	0.4	0.6	10	
SWB TR	200	Edmonston Road	0.5	0.1	0.4	0.6	10	

NODE: 52

POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
POWDER MILL ROAD & EDMONSTON ROAD							
Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	51	Poultry Road	0.0	0.0	0.0	0.0	10
WB L	82	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	158	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	159	Poultry Road	0.0	0.0	0.0	0.0	10
WB T	196	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	212	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	218	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	350	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	355	Poultry Road	0.0	0.0	0.0	0.0	10
NB T	406	Poultry Road	0.0	0.0	0.0	0.0	10

POWDER MILL ROAD & EDMONSTON ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
SEB L	64	Powder Mill Road	0.0	0.0	0.0	0.0	10
SEB T	65	Powder Mill Road	0.0	0.0	0.0	0.0	10
SEB T	184	Powder Mill Road	0.0	0.0	0.0	0.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
WB L	11	Powder Mill Road	0.0	0.0	0.0	0.0	10
EB T	17	Powder Mill Road	0.0	0.0	0.0	0.0	10
WB T	42	Powder Mill Road	0.0	0.0	0.0	0.0	10

SOIL CONSERVATION ROAD & POWDER MILL ROAD

Movements	Lane ID	Street Name	Average	Std Deviation	Minimum	Maximum	# Samples
NB L	13	Soil Conservation Road	0.0	0.0	0.0	0.0	10

10

NODE: 19

NODE: 2
Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report -Overview

Run	Number of Vehicles	Average Flow (vphpl)	Average Vehicle Occupancy (%)	Average Speed (mph)	Average Headway (sec)
Sensor 50 (La	ane 1)				
1	1,818.0	1,774.7	84.8%	16.9	2.0
2	1,834.0	1,788.1	87.8%	16.0	2.0
3	1,813.0	1,778.7	86.4%	16.5	2.0
4	1,829.0	1,781.5	86.7%	16.4	2.0
5	1,819.0	1,776.7	87.7%	16.0	2.0
6	1,836.0	1,782.8	89.4%	15.5	2.0
7	1,797.0	1,781.8	84.7%	17.0	2.0
8	1,809.0	1,779.8	86.4%	16.4	2.0
9	1,819.0	1,782.8	86.5%	16.5	2.0
10	1,832.0	1,781.3	86.1%	16.5	2.0
Average:	1,820.6	1,780.8	86.7%	16.4	2.0

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Flow

Concern ID	Position (1 = left-		Standard			Number of
Sensor ID	most lane)	Average	Deviation	winimum	iviaximum	Samples
50	Lane 1	1,780.8	3.7	1,774.7	1,788.1	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Occupancy

Position (1 = left-			Standard			Number of
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	0.9	0.0	0.8	0.9	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Speed

Position (1 = left-			Standard			Number of
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	16.4	0.4	15.5	17.0	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Headway

Position (1 = left-			Standard			Number of
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	2.0	0.0	2.0	2.0	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report -Overview

Run	Number of Vehicles	Average Flow (vphpl)	Average Vehicle Occupancy (%)	Average Speed (mph)	Average Headway (sec)
Sensor 50 (La	ne 1)				
1	1,749.0	1,741.7	70.4%	22.8	2.1
2	1,779.0	1,740.7	68.4%	23.6	2.1
3	1,751.0	1,741.2	70.4%	22.8	2.1
4	1,769.0	1,740.6	68.9%	23.4	2.1
5	1,743.0	1,735.5	67.8%	23.9	2.1
6	1,750.0	1,750.0	69.4%	23.3	2.1
7	1,775.0	1,735.8	68.8%	23.3	2.1
8	1,771.0	1,740.0	71.9%	22.2	2.1
9	1,747.0	1,735.5	68.9%	23.3	2.1
10	1,755.0	1,750.0	70.0%	23.2	2.1
Average:	1,758.9	1,741.1	69.5%	23.2	2.1

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Flow

Position (1 = left-		Standard		Number of		
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	1,741.1	5.3	1,735.5	1,750.0	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Occupancy

Position (1 = left-			Standard			Number of
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	0.7	0.0	0.7	0.7	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Speed

Position (1 = left-		Standard			Number of	
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	23.2	0.5	22.2	23.9	10

Project:	GatesACSignal
Scenario:	Simulation Project
Run(s):	Batch (10 runs)
Simulated:	Various
Time:	06:00:00 - 07:00:00
Interval:	Summary
Selection:	

Point Sensor Data Report - Avg Headway

Position (1 = left-			Standard			Number of
Sensor ID	most lane)	Average	Deviation	Minimum	Maximum	Samples
50	Lane 1	2.1	0.0	2.1	2.1	10

This page intentionally left blank.

2850 Eisenhower Ave. Suite 310 Alexandria, Virginia 22314

www.alliance.us.com

