STURGIS Barge Decommissioning Project

U.S. Army Corps of Engineers
Baltimore District
19 Feb 2015

US Army Corps of Engineers
BUILDING STRONG®
Today’s Presentation

- History of the STURGIS
- Environmental Assessment
- Decommissioning
 - Waste Segregation
 - Safety Measures
 - Oversight
 - Milestones
- Questions
First Barge Mounted Nuclear Power Plant

- The former World War II Liberty Ship, SS Charles H. Cugle, was converted into a nuclear power plant in 1966.

- STURGIS was the first barge mounted nuclear plant to regularly supply power to a shore station.

- The STURGIS’ nuclear reactor, MH-1A, was used to generate electricity for military and civilian use in the Panama Canal from 1968-1976.
Typical Pressurized Water Reactor Operations
The STURGIS is a Historic Property

- The STURGIS is considered a historic property eligible for listing in the National Register of Historic Places.
- During decommissioning, the Corps will preserve items of historic interest, including an electronic repository of documents.
Fuel Removal and Long-term Storage

- In 1977, the STURGIS returned to Fort Belvoir where the nuclear fuel was removed, and the vessel was prepared for safe long-term storage.

- The STURGIS has been maintained in James River Reserve Fleet at Joint Base Langley-Eustis, VA since 1978.

- The Corps of Engineers has performed quarterly monitoring and periodic maintenance for the past 36 years.
Characterization Confirms Very Low Radiation Levels

- The vessel’s radiological and chemical contaminants were evaluated in 2001.
- The extensive characterization confirmed that radiation levels have decayed to safer working levels.
Characterization
Basic Types of Ionizing Radiation

- **Alpha (α)**: $^4_2\alpha^+$
- **Beta (β)**: $^0_{-1}\beta^-$
- **Gamma (γ)**: $^0_0\gamma$
- **Neutron (n)**: 1_0n

Materials:
- Paper
- Plastic
- Lead
- Concrete
Where Did the Radioactivity Come From?

Radiation is emitted

Neutron is emitted

Materials become radioactive (e.g. Ni-63 & Co-60)

Materials become stable
- Co-60 > Ni-60
- Ni-63 > Cu-63
STURGIS Primary Radionuclides

- Primary radionuclides are activation products
 - Co-60
 - Ni-63
- Most of the activity is in the form of radioactive metal in the reactor pressure vessel and the primary shield tank
 - Ni-63 emits low-energy beta radiation
 - Co-60 emits beta and gamma radiation
Characteristics of the Important Radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Abbreviation</th>
<th>Half-life (years)</th>
<th>Radiation Emitted</th>
<th>Percent Abundance Dec 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt-60</td>
<td>Co-60</td>
<td>5.27</td>
<td>Beta/gamma</td>
<td>27.05 %</td>
</tr>
<tr>
<td>Nickel-63</td>
<td>Ni-63</td>
<td>100.1</td>
<td>Low-energy beta</td>
<td>72.46%</td>
</tr>
</tbody>
</table>
The Half-Life of a Radionuclide

- Half life is the time it takes for 1/2 of the atoms to decay.
- The half-life of Co-60 is 5.27 yrs.
- The half-life of Ni-63 is 100.1 yrs.
Radioactive Decay Since Shutdown

Co-60 gamma emitting isotope
Ni-63 low energy beta emitting isotope
Environmental Assessment
Four Coastal Cities Were Selected for the Assessment

- Galveston, TX
- Hampton Roads, VA
- Baltimore, MD, and
- Charleston, SC
Site Selection Was Based On:

- Proximity to the Corps of Engineers’ offices
- Proximity to waste disposal facilities, and
- Availability of shipyards and ship breaking operations.
An Environmental Assessment was Conducted in 2013

- The purpose of an environmental assessment is to determine the potential environmental impacts associated with each selected site.
The Environmental Assessment Considered:

- Ecology, including marine mammals, essential fish habitat, benthic communities and protected species
- Cultural resources, including preservation of historical documents
- Water, including bays, estuaries and wetlands
- Air quality, including towing and decommissioning activities
- Waste management, including hazardous and radioactive waste
The Bottom Line:
There are no significant impacts

- The environmental assessment concluded there are no significant environmental impacts, including impacts related to transportation.
Decommissioning
Primary Objectives

- Decommission, then dismantle the vessel.
- Remove radioactive material to permit the STURGIS to be released for unrestricted use.
- Segregate waste streams.
- Ensure wastes are disposed in licensed facilities.
- Recycle nonradioactive material.
- Terminate the Army Reactor Office permit.
Path Forward

- Inspect STURGIS prior to relocation.
- Conduct baseline radiological survey at Malin Shipyard prior to towing.
- Prepare STURGIS for towing to Malin Shipyard.
- Remove STURGIS' residual radiological and hazardous materials.
Path Forward

- All parts and contents of STURGIS and the MH-1A reactor will be disposed as
 - Clean (recycled/land filled) [Estimated ~90%]
 - The shipbreaking is planned to be completed in Brownsville, TX
 - Radioactive [Estimated ~8%]
 - Hazardous [Estimated ~2%]
 - Mixed waste (Radioactive and hazardous/asbestos/universal) [Estimated <1%]
Towing Route

Point-of-Origin: Joint Base Langley-Eustis, VA, James River Reserve Fleet

Point-of-Decommissioning: Malin International Shipyard and Drydock, Inc., Galveston, TX

~1,750 NAUTICAL MILES DISTANCE TRAVELED

460 FEET LENGTH OVERALL

65 FEET BEAM

15 FEET DRAFT

9,400 TONS DISPLACED WATER WHEN AFLOAT
WHERE DOES IT ALL GO?

REMOVAL OF NON-RADIOLOGICALLY CONTAMINATED MATERIAL & EQUIPMENT (M&E) WILL BE RECYCLED
- Overwhelming majority of M&E fall into this category
- Spare parts, secrets, manual tools
- Control room consoles
- Electrical distribution equipment
- Pipe and valves
- Crew furnishings
- Clean vessel

REMOVAL OF RADIOACTIVE WASTE TO A LICENSED DISPOSAL FACILITY
- Radiologically activated
 - Reactor Pressure Vessel (RPV)
 - Reactor components
 - Nearby metals
- Radiologically contaminated
 - Primary reaction system equipment
 - Liquid waste management system

REMOVAL OF NON-RADIOLOGICALLY CONTAMINATED HAZARDOUS WASTE FORMS
- Asbestos insulation, floor tiles, mastics, etc.
- Lubrication oils
- Diesel residues from emergency generator
- Cleaning materials
- Universal waste
Risk Reduction and Safety

- The potential risks from radiation sources may result from
 - Internal exposures, or
 - External exposures

- Different control methods are used depending on the type of exposure
Risk Reduction and Safety

- **External radiation protection**
 - Establishing a security perimeter to control access
 - Using shielding on components that have higher exposure rates
 - Minimizing the time any of the higher exposure rate components are not shielded
 - Using 3-D laser mapping to facilitate planning

- **Internal radiation protection**
 - Conduct activities in a contained area of the barge using proven industry standards
 - Use contamination control methods such as glove bags, foaming, and fixatives
 - Control air flow and emissions using HEPA filtration units
Hurricane Plan

- A detailed hurricane plan will be prepared:
 - Double tie the STURGIS in place and make sure it is water tight.
 - STURGIS will be left in the shipyard to ride out the storm.
 - Consistent with what Malin Shipyard has done before during previous hurricanes.
Project Team and Schedule
Contract Award

- March 2014, award of $34.6M to CB&I to complete the STURGIS decommissioning in Galveston

- Award was based on best value considering technical approach, management, past performance, and cost factors.
Project Team

- Members of the project and oversight team include:
 - Professional Engineers
 - Certified Health Physicists (Radiation Safety)
 - Environmental Scientists
 - Regulatory Specialists
 - Safety Specialists
 - Qualified Technicians
Highly Skilled and Experienced Contractor Team

<table>
<thead>
<tr>
<th>CB&I Prime Contractor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
</tr>
<tr>
<td>Quality Assurance</td>
</tr>
<tr>
<td>Safety and Health</td>
</tr>
<tr>
<td>Radiological Program</td>
</tr>
<tr>
<td>Project Controls</td>
</tr>
<tr>
<td>Contract Management</td>
</tr>
<tr>
<td>Procurement</td>
</tr>
<tr>
<td>Decommissioning</td>
</tr>
<tr>
<td>Dismantlement</td>
</tr>
<tr>
<td>Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EnergySolutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Management</td>
</tr>
<tr>
<td>Radiological Controls</td>
</tr>
<tr>
<td>Waste Certifications</td>
</tr>
<tr>
<td>Waste Transport</td>
</tr>
<tr>
<td>Waste Disposal</td>
</tr>
<tr>
<td>Regulatory Support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Malin International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towing Plan</td>
</tr>
<tr>
<td>Naval Architect</td>
</tr>
<tr>
<td>Pierside Operations</td>
</tr>
<tr>
<td>Decommissioning Facility</td>
</tr>
<tr>
<td>Shipyard Labor</td>
</tr>
<tr>
<td>Drydock (Submersible Barge)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ship Breaking, Recycling, and Vessel Disposal</td>
</tr>
</tbody>
</table>
Federal Oversight

- U.S. Army Corps of Engineers will provide quality assurance over the contractor and their quality control program
- Corps of Engineers National Environmental Center of Expertise
- Army Reactor Office and Reactor Council
- Oak Ridge Associated Universities – Independent Review
State Oversight

- **Texas Commission on Environmental Quality**
 - Disposal of Low level Radioactive Waste
 - Remediation of Asbestos Containing Materials

- **Texas Department of State Health Services**
 - Release of materials
 - Materials in transport
 - Licensing Asbestos workers
STURGIS Schedule

- Tow STURGIS in April 2015
- Begin decommissioning in May 2015
- Decommissioning will take 14-18 months
QUESTIONS?

USACE Baltimore District POC’s

Hans Honerlah – NAB Program Manager
Hans.b.honerlah@usace.army.mil
410-962-9184

Brenda Barber – NAB Project Manager
Brenda.m.barber@usace.army.mil
410-962-0030