Intelligence Community Campus – Bethesda

(ICC-B)

North Campus / Phase 1

April 5, 2012

US Army Corps of Engineers

Commission's Action

- Approved Master Plan
 - ▶ Updated Site Development Guide
 - ▶ Updated Transportation Management Plan
 - ▶ Updated Traffic Impact Study

- Requested targets for design:
 - ▶ Limit deforestation on the site to no more than 0.2 acres
 - ▶ Design Storm Water Management facilities with the goal of treating and retaining 100% of storm water for a 25-year storm

Design progression

Original Concept

December 1, 2011

February 2, 2012

Storm Water Management

"Design Storm Water Management facilities with the goal of treating and retaining 100% of storm water for a 25-year storm"

- 25 year storm
 - ► 5.8" of rain across 29 acres = 4.6M gal
 - ▶ 5.8" of rain across the North Campus = 1.7M gal
- Retain vs Detain

Retain, Demo, and Construct - Comparison of Proposed Garage Locations Intelligence Community Campus Bethesda, Maryland (Montgomery County) 0 50 100 200 Feet

Approximate Scale

January 19, 2012 Cot

Source: Montgomery County Aerial, 2008

Storm Water Management

"Design Storm Water Management facilities with the goal of treating and retaining 100% of storm water for a 25-year storm"

- 25 year storm
 - ▶ 5.8" of rain across 29 acres = 4.6M gal
 - ▶ 5.8" of rain across the North Campus = 1.7M gal
- Retain vs Detain
- Return to pre-development hydrology to the maximum extent practical (MDE and EISA 438)
- No adverse down-stream effects

Storm Water Management Standards

- NPDES and MDE Storm Water permits issued January 2012; pending revisions
- MDE Standard for redevelopment:
 - ► Reduce existing impervious area within the LOD by at least 50%; or
 - ► Provide water quality treatment for at least 50% of existing impervious area within the LOD; or
 - Use a combination of impervious area reduction and ESD implementation for at least 50% of existing impervious areas.
- MDE Standard: Treat first flush (first inch) from impervious surfaces

Storm Water Management

	Existing Condition	Approved Permit Design	Current Design
Impervious Surface Area	8.2 ac	5.3 ac ~35% Reduction	4.3 ac ~47% Reduction
Stormwater Treatment	4 ac from impervious surfaces (49%)	3.3 ac from impervious surfaces (62%)	4.3 ac impervious surfaces (100%) +6.2 ac pervious surfaces 10.5 ac Total – all area within LOD
		MDE Standard	

Intelligence Community Campus – Bethesda

(ICC-B)

North Campus / Phase 1

April 5, 2012

US Army Corps of Engineers
BUILDING STRONG®

