FINAL ADDENDUM 1 TO FINAL PRE-2005 HUMAN HEALTH RISK ASSESSMENT REVIEW

SPRING VALLEY FORMERLY USED DEFENSE SITE WASHINGTON, D.C.

Contract No.: W912DR-06-D-0002, Delivery Order 0011 and W912QR-08-D-0012, DA03 DERP FUDS MMRP/CWM Project No. C03DC091801 and DERP FUDS HTRW Project No. C03DC091802

BUILDING STRUNG

Prepared for:

US ARMY CORPS OF ENGINEERS BALTIMORE DISTRICT Prepared by:

ERT, Inc. Laurel, MD 20707 DECEMBER 16, 2013

December 16, 2013

Attn: Lan Reeser CENAB-EN-HN 10 S. Howard Street Baltimore, MD 21201-1715

Dear Mr. Reeser,

ERT, Inc., is pleased to present the Final Addendum 1 to the Final Pre-2005 Human Health Risk Assessment Review for the Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC.

This Final incorporates changes based on USACE and Stakeholder comments received on the Draft-Final version.

Electronic and hard copy distribution has been made as shown below. Please do not hesitate to call me at 301-323-1442 if you need anything more.

Sincerely,

ELECTRONIC SIGNATURE

Thomas J. Bachovchin Project Manager

DISTRIBUTION:

CENAB – Reeser (4) CEHNC – Anderson-Hudgins (1) USEPA – Hirsh (1) DCDOE – Sweeney (1) RAB TAPP – deFur (1) AU – Bridgham (1) Written Comments were received December 02, 2013, via email from the <u>USEPA</u> on the October 31, 2013 Draft Final Addendum 1 to the Pre-2005 Human Health Risk Assessment Review for SVFUDS.

Written Comments were received November 15, 2013, via email from the <u>DDOE</u> on the October 31, 2013 Draft Final Addendum 1 to the Pre-2005 Human Health Risk Assessment Review for SVFUDS.

Written Comments were received December 06, 2013, from the <u>RAB TAPP</u> on the October 31, 2013 Draft Final Addendum 1 to the Pre-2005 Human Health Risk Assessment Review for SVFUDS.

Written Comments were received December 12, 2013, from the <u>American</u> <u>University</u> on the October 31, 2013 Draft Final Addendum 1 to the Pre-2005 Human Health Risk Assessment Review for SVFUDS.

USEPA

From: Hirsh, Steven <Hirsh.Steven@epa.gov> Mon, Dec 2, 2013 at 9:52 AM

To: "Reeser, Leland H NAB" <Leland.H.Reeser@usace.army.mil>, "Mr. Jim Sweeney" <james.sweeney@dc.gov>, Environmental Stewardship Concepts LLC <pldefur@igc.org>, Bethany Bridgham <bjbesq@american.edu>, Paul Chrostowski <pc@cpfassociates.com>, "Anderson-Hudgins, Sherri K HNC" <Sherri.Anderson-Hudgins@usace.army.mil>

Cc: "Noble, Dan G NAB" <Dan.G.Noble@usace.army.mil>, Thomas Bachovchin <thomas.bachovchin@ertcorp.com>

Hi Lan,

EPA has complete its review of the Draft-Final Addendum 1 to the Pre-2005 HHRA Review Report for the Spring Valley FUDS. EPA agrees with the conclusions presented in the Addendum and has no comments on the draft document.

Thanks for the opportunity to review this draft.

Steven Hirsh U.S. EPA, Region III (3HS10) Office of Federal Facility Remediation 1650 Arch Street (3HS10) Philadelphia, PA 19103-2029

USACE RESPONSE: Noted.

DCDOE

From: Sweeney, James (DDOE) <james.sweeney@dc.gov> Fri, Nov 15, 2013 at 12:31 PM To: "Reeser, Leland H NAB" <Leland.H.Reeser@usace.army.mil>,

<u>Hirsh.Steven@epamail.epa.gov</u> <Hirsh.Steven@epamail.epa.gov>, Environmental Stewardship Concepts LLC <pldefur@igc.org>, Bethany Bridgham <bjbesq@american.edu>, Paul Chrostowski <pc@cpfassociates.com>, "Anderson-Hudgins, Sherri K HNC" <Sherri.Anderson-Hudgins@usace.army.mil>

Cc: "Noble, Dan G NAB" <Dan.G.Noble@usace.army.mil>, Thomas Bachovchin <thomas.bachovchin@ertcorp.com>, "Jackson, Richard (DDOE)" <richard.jackson2@dc.gov>

Lan:

Due to the lack of a staff toxicologist assigned to the Spring Valley project, the District Department of the Environment (DDOE) will defer to the Environmental Protection Agency (EPA) regarding comments on any risk assessment documents related to the Spring Valley FUDS. Therefore, we will not be making any comments on the subject document.

If you have any comments, please let me know.

USACE RESPONSE: Noted.

RAB TAPP

To: Lan Reeser, CENAB From: Peter deFur, ESC, LLC

Re: HHRA Pre-2005 data Date: 6 Dec 2013 CC: Greg Beumel, RAB

Basically, we agree that the document accomplishes the intended task, that the conclusions and recommendations are logical and supported by the evidence and that the document should be finalized and further work should proceed as recommended.

The current document is Addendum 1 to the August 2013 Final Pre-2005 HHRA for site-wide evaluation of human health risks for the Spring Valley FUDS. The evaluation presented here constitutes the follow-on screening recommended the previous version of this document. Risks were estimated on the basis of exposure units (EUs) with the objective of identifying remaining areas of the SVFUDS that require additional HHRA.

The combining of the data sets, with consideration of data quality, is consistent and effective in this case. The data were correctly combined into a single set and applied as exposure units (13 EUs).

The COPCs were selected appropriately and we agree with the data selection and the results, using exposure point concentrations that resulted from the data set. The analysis with ProUCL was appropriate and seems to avoided the problem of EUs so large they dilute higher concentration at some locations. The separate screening of "outliers" on the basis of maximum concentrations greater than 10X the average of the remaining sample values seems acceptable.

We agree with the Conclusions and recommendations:

- Complete HHRA: exposure assessment, toxicity assessment, and risk characterization steps
- Southern AU area should be evaluated as a stand-alone; AOI 9 and S-R into one HHRA document
- Single comprehensive work plan for the HHRAs
- All detected chemicals will be included in the HHRA, not just those COPCs resulting from this follow-on screening
- Exposure scenario assessments that are listed are appropriate for this effort

The text did not provide sample sizes (number of samples/data points) for most of the EUs. Giving these values would be helpful in interpreting the results.

The elevated thalium in Dalecarlia Woods remains an elevated result, regardless of the quality of the toxicity studies that are noted in the document.

USACE RESPONSE:

Please note that sample sizes are provided in the left-most column of the Appendix A tables.

USACE stands by the report recommendation for the single thallium sample in the Dalecarlia Woods area, based on the expanded PPRTV toxicity discussion presented in Section 2.3.6.

American University

American University (AU) appreciates the opportunity to review and comment on the Draft-Final Addendum 1 to the Final Pre-2005 Human Health Risk Assessment Review (HHRAR) dated October 31, 2013. AU's review and comments are limited to the portion of this document that pertains to AU property and should not be construed to apply to any other portions of the SVFUDS. In general, we agree with the scope and content of this investigation. Overall, however, the utility of this exercise is not readily apparent since it revolves around COPC screening and "All detected chemicals in that particular EU will be included in the HHRA, not just those COPCs resulting from this follow-on screen" (p. 26). Some of the comments, below, are intended to assist USACE in the formulation of the actual HHRA for the Southern AU EU that is to follow. Our detailed comments, recommendations, and questions are:

1. The data in this report have not been presented in the context of a remedial investigation (RI) report detailing the nature and extent of contamination. Such a report would typically contain information regarding sampling, preparation, and analytical methods; data validation; summary statistics including concentration contours; problems or issues encountered during sampling; contaminant fate and transport, and other relevant information¹. The actual analytical data is normally included or appended to the report. Although we assume that this type of information will be presented in a final RI document, it normally precedes a risk assessment that starts with an analysis of data suitability based on information presented in the RI². This type of information is available for the older studies included in the HHRAR, but not for the most recent data. Because of this, AU reserves the right to modify its comments on the HHRAR upon receipt and review of the RI report that contains this information. Hopefully this RI will precede the HHRA for the Southern AU EU.

USACE RESPONSE:

AU was provided an XL table of almost all of the analytical data with a few exceptions (only non-detects from the old RA data sets, shown as the black sample dots on Figures 12 and 13, are not available in the tables provided). However, the complete data set will be made available during your review of the Draft-Final Risk Assessment Work Plan. Other RI-related information will be included in the Site-Wide RI.

2. We were unable to replicate the calculations shown in the various appendices using the data that were transmitted in spreadsheet format. For example, Table E13 refers to 86 total samples, however, a dataset containing these values could not be located in the spreadsheet. It is also not apparent how the data uploaded to ProUCL were selected. AU requests copies of all datasets required to replicate the calculations presented in this document.

USACE RESPONSE:

The sample count was qualified in the report for several reasons (including the difficulty in counting samples when one backfill sample replaces multiple original samples, or in counting location vs data sets). It has been clarified throughout the document that the 86 locations comprise 115 separate data sets when splits and/or multiple depth increments from the same location are counted. The third tab of the XL table (AU Detects only) provides every sample used (minus a few parameters that were non-detect in the old data set as described in Comment 1 above). A more complete data set will be made available during your review of the Draft-Final Risk Assessment Work Plan.

3. This document appears to introduce the novel concept of statistical outliers as a screen to eliminate COPCs from consideration by eliminating data points containing these COPCs. This concept has been employed for several metals and polycyclic aromatic hydrocarbons (PAHs) in the Southern AU exposure unit. This practice was not used in the parent document, nor is it mentioned in Exhibit 1 – Screening Process Flow Chart. The justification for excluding outliers in risk assessment is not apparent. A statistical outlier is merely a data point that is distant from other points in the distribution. It may be due to natural variability or measurement error. Due to many considerations, EPA has noted that "the treatment and handling of outliers is a controversial and subjective topic." In any event, EPA guidance³ recommends that formal outlier tests (e.g. Rosner, Dixon) should be supplemented by graphical methods such as box and Q-Q plots to statistically evaluate outliers. EPA also recommends that the influence of outliers on the various statistics should be assessed by computing all relevant statistics for the datasets with and without outliers and performing a comparison of the results. Finally, EPA recommends that the entire project team should come to an agreement whether to treat the outlying observations separately or to include them in summary statistics. None of these recommendations has been followed and, in fact, the procedures used in this document to identify outliers are not generally accepted in the environmental statistics community. If any concepts relating to outliers are to be followed in the HHRA for the Southern AU EU, AU requests that they strictly follow EPA guidance and the team approach.

USACE RESPONSE:

The document explains in Section 2.1.3 and other places, that these 'outliers' are not discarded. Rather, conservatively, they are evaluated separately, specifically so that they do not dilute the concentrations across the larger EU. This was done at EPA's request at a meeting AU attended and the method used was discussed and approved by the participants. The last section of the Appendix C Screening Procedures Memo explains this. In addition, a paragraph will be added to Section 2.3.13 to further clarify.

4. Thallium was apparently omitted from the screening analysis due to the fact that its toxicity value is a PPTRV. It should be noted, however, that the November 2013 version of the RSL tables contains a screening level for thallium of 7.8E-02 (HQ=0.1) that should be used for screening.

USACE RESPONSE:

Thallium was screened, but was not taken to the next level for the reasons stated in the document. Section 2.3.6 will be expanded to provide further information on the approach to thallium.

5. It is difficult to determine what happened to benzo(a) pyrene data during the course of this analysis. It occurs in the data set, but does not show up in the summary tables for chemicals potentially posing risk. EPA Region 3's position regarding cPAH at other sites has been "that if a carcinogenic PAH fails the screening, the concentration term should be based on all detected cPAHs regardless of whether their individual concentrations failed the screen, since the cPAH concentrations are additive". AU requests that USACE adhere to this policy for the HHRA for the Southern AU EU⁴

USACE RESPONSE:

Table A.13 shows B(a)P to have been less than Background via ProUCL testing (output sheet contained in Appendix D) and so is not a COPC. However, the maximum value was determined

to be an outlier by the approved approach, was removed, and will be screened separately in the RA Work Plan. Note that this screening has already been completed and the RA Work Plan will show in more detail how B(a)P is still a Provisional COPC following that separate screen and is included in the RA.

6. AU is pleased to note that the HHRA will include a hypothetical residential scenario, however, the size of the current EU is too large to be plausible for residential occupancy and could cause dilution due to the small number of samples from some areas. AU recommends that a series of smaller residential EUs, similar in area to typical Spring Valley residential lots, be used for this analysis.⁵

USACE RESPONSE:

The establishment of EUs was done in accordance with the rationale provided in the previous document, the Final Pre-2005 HHRA Review. See section 7.1 (7.1.1).

7. AU is also pleased to note that all detected chemicals will be included in the HHRA for the Southern AU EU. Hopefully this will include all potential carcinogens (e.g., As, Be, cPAHs), and non-carcinogens (e.g., Hg, Al, Co, Sb, Tl, non-carcinogernic PAHs, phthalates, etc). **USACE RESPONSE:**

All chemicals analyzed are in the AU EU data set for the RA.

8. Data from L-18 and PSB have been excluded from this risk assessment on the basis that they have been evaluated in other risk assessments. However, as evident from Figure 9, there may be overlap from these and other investigations with the boundaries of the Southern AU EU. Since the purpose of a risk assessment is to characterize exposures that could actually occur, it is important that all data be included regardless of its degree of prior characterization. USACE should examine all relevant investigations including L-18, PSB, CDC, and TCRA Critical Lots to determine if any data from these investigations falls within the Southern AU EU boundaries. The HHRA should be based on all of this relevant and available data.

USACE RESPONSE:

A site figure was provided previously to AU and it formed the eastern reaches of the AU EU in the Pre-2005 HHRA Review document (figure 5). This figure was specifically developed to exclude Lot 18, the PSB, and the CDC, for the reasons stated. The TCRA Lots results, within the AU EU, are included in the data set.

9. USACE has yet to justify the adequacy of the Southern AU dataset for use in a risk assessment. Even a quick perusal of Figures 12 and 13 shows that the majority of the data is spatially clustered in the south portion of the EU and that the north portion is relatively uncharacterized. Many of the samples were tested only for selected metals despite the prevalence of PAHs. Few samples were tested for chemical agents or breakdown products and it is difficult to ascertain if even one sample was tested for the comprehensive SVFUDS list. No calculations have been provided to determine if the number of samples is even statistically adequate (e.g., $\alpha = 0.05$, $\beta=0.2$) for comparison to the RSLs with any meaningful level of confidence. Since we are unsure of the composition of the database, we are unable to perform such calculations ourselves. Finally, AU has been on record advocating the use of state-of-the-art geostatistical techniques to evaluate adequacy of sampling⁶. USACE has been resistant to using these methods, however, AU has been unable to perform the calculations since the coordinates of the data points are

unavailable. AU recommends that calculations of sample size be performed to determine sample number adequacy for RSL comparison and that geostatistical methods, as outlined in our earlier comments, be used to determine spatial adequacy. At the very least, a document should be prepared that shows exactly what data USACE plans to use in the HHRA along with all data qualifiers and geographical coordinates.

USACE RESPONSE:

There are 115 sets of results from 86 sample locations for an approximately 9 acre area, averaging to approximately 12+ samples per acre. The complete data set will be made available during your review of the Draft-Final Risk Assessment Work Plan. Sample coordinates wil be provided with the Work Plan.

From email message:

In addition to the other comments made, the University is particularly concerned by the disparity in the sample density between the northern section and the southern section (shown on the map attached below). One of the samples (AU-10) in this area has been removed as an "outlier". Another – the cluster around Baker-05 is actually a single composite sample. Taking these into account, that leaves only 10 samples to evaluate an area of approximately 3.5 acres (less than 3 samples per acre) which the University believes is insufficient for risk assessment purposes.

USACE RESPONSE:

See above response. Also, the statement about Baker-05 in incorrect. These are 6 discrete samples as can be seen in the third tab of the XL table, AU Detects only (TCRA-AU-BK05A, B, C, D, E, F). Note that much of the northern half of the EU has undergone the TCRA where much of this dirt was removed and replaced with clean backfill.

1 EPA 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA. EPA/540/G-89/004.

² EPA 1992. Guidance for Data Useability in Risk Assessment. Publication 9285.7-09A et seq.

³ EPA 2007. ProUCL Version 4.0 Technical Guide. EPA/600/R-07/041.

⁴ This should not be construed as an endorsement of EPA's policy by AU.

⁵ Also see, Hartmann, H.M., et al. 1993. Use of the exposure unit concept in risk assessment. ANL/EA/CP-797

⁶ AU (2012) American University Response to "Final Evaluation of Remaining Sampling Requirements": Site-Wide Remedial Investigation/Feasibility Study dated June 22, 2012.

FINAL

ADDENDUM 1 TO

FINAL PRE-2005 HUMAN HEALTH RISK ASSESSMENT REVIEW

SPRING VALLEY FORMERLY USED DEFENSE SITE WASHINGTON, DC

Contract No.: W912DR-06-D-0002, Delivery Order 0011 and W912QR-08-D-0012, DA03 DERP FUDS MMRP/CWM Project No. C03DC091801 and DERP FUDS HTRW Project No. C03DC091802

Prepared for:

Baltimore District

US Army Corps of Engineers. BUILDING STRONG.

Prepared by:

ERT, Inc. 14401 Sweitzer Lane, Suite 300 Laurel, Maryland 20707

December 16, 2013

This Page Intentionally Left Blank

Prepared by:

amy Rosenstein

Amy B. Rosenstein SENIOR RISK ASSESSOR

Prepared by:

Thomas J. Bachovchin, PG PROJECT MANAGER Date: 12/12/13

Date: 12/16/13

COMPLETION OF SENIOR TECHNICAL REVIEW

This document has been produced within the framework of the ERT, Inc. (ERT) quality management system. As such, a senior technical review has been conducted. This included review of all elements addressed within the document, proposed or utilized technologies and alternatives and their applications with respect to project objectives and framework of U.S. Army Corps of Engineers regulatory constraints under the current project, within which this work has been completed.

Jennifer Harlan SENIOR TECHNICAL REVIEWER/PROGRAM MANAGER Date: 9/05/13

This Page Intentionally Left Blank

TABLE OF CONTENTS

EXEC	EXECUTIVE SUMMARY ES-1		
1.0	INTR	ODUCTION	.1
1.1	Purp	ose and Objective	. 1
1.2	SVF	UDS Background	. 1
1.3	Over	rview of Approach	. 1
1.4	Orga	nization of the Document	. 2
1.5	Data	Used in the Follow-on Screen	. 2
	1.5.1	Pre-2005 Risk Assessment Samples	. 2
	1.5.2	Miscellaneous Grab Samples	. 2
	1.5.3	Recent (2012) Evaluation Document Samples	. 2
1.6	Expo	osure Units (EUs)	. 3
	1.6.1	Individual Property EUs	. 3
	1.6.2	POI 39 EU	. 3
	1.6.3	Dalecarlia Woods EU	. 3
	1.6.4	AOI 8 EU	. 3
	1.6.5	AOI 11 EU	. 4
	1.6.6	AOI 9 EU	.4
	1.6.7	AOI 13 EU	.4
	1.6.8	Western POI 53 EU	. 4
	1.6.9	Spaulding-Rankin EU	. 4
	1.6.10	Southern AU EU	. 5
2.0	SELE	CTION OF CHEMICALS OF POTENTIAL CONCERN	.6
2.1	Initia	al Screen	. 6
	2.1.1	Risk-Based Screening Levels	. 6
	2.1.2	Background Concentrations	. 6
	2.1.3	EU Dilution Testing	. 7
2.2	Add	itional Screening Incorporating Other Factors	. 7
	2.2.1	Additional Screening Steps	. 7
	2.2.2	Organization of Tables	. 8
2.3	Iden	tification and Evaluation of Follow-on Screen COPCs1	0
	2.3.1	4256 Warren Street Property	0
	2.3.2	4900 Quebec Street Property	1
	2.3.3	3949 52nd Street Property 1	1
	2.3.4	4015 52nd Street Property	
	2.3.5	POI 39 EU Screening	12

	2.3.6	Dalecarlia Woods EU Screening	. 12
	2.3.7	AOI 8 EU Screening	. 13
	2.3.8	AOI 11 EU Screening	. 13
	2.3.9	AOI 9 EU Screening	. 14
	2.3.10	AOI 13 EU Screening	. 14
	2.3.11	Western POI 53 EU Screening	. 15
	2.3.12	Spaulding-Rankin EU Screening	. 15
	2.3.13	Southern AU EU Screening	. 16
3.0	UNC	ERTAINTY DISCUSSION	20
4.0	CON	CLUSIONS	22
4.1	Expo	osure Unit Summary	. 22
	4.1.1	4256 Warren Street Property	. 22
	4.1.2	4900 Quebec Street Property	. 22
	4.1.3	3949 52 nd Street Property	. 22
	4.1.4	4015 52 nd Street Property	. 22
	4.1.5	POI 39 EU	. 22
	4.1.6	Dalecarlia Woods EU	. 22
	4.1.7	AOI 8 EU	. 22
	4.1.8	AOI 11 EU	. 23
	4.1.9	AOI 9 EU	. 23
	4.1.10	AOI 13 EU	. 23
	4.1.11	Western POI 53 EU	. 23
	4.1.12	Spaulding-Rankin EU	. 23
	4.1.13	Southern AU EU	. 23
5.0	RECO	OMMENDATIONS	
5.1	Reco	ommended Approach for Conducting HHRAs	. 26
6.0	REFE	CRENCES	

LIST OF TABLES

Table ES.1. Summary of COPCs by EU	ES-3
Table ES.2. Recommended HHRAs	ES-4
Table 2.1. Summary of Follow-on Screen	
Table 4.1. Summary of COPCs by EU	
Table 5.1. Recommended HHRAs	

EXHIBIT 1 - SCREENING PROCESS FLOW CHART	9
--	---

LIST OF APPENDICES

APPENDIX A

- Table A.1:
 4256 Warren Street Property Screening Review
- Table A.2:
 4900 Quebec Street Property Screening Review
- Table A.3:3949 52nd Street Property Screening Review
- Table A.4:4015 52nd Street Property Screening Review
- Table A.5:POI 39 Exposure Unit Screening Review
- Table A.6:
 Dalecarlia Woods Exposure Unit Screening Review
- Table A.7: AOI 8 Exposure Unit Screening Review
- Table A.8:AOI 11 Exposure Unit Screening Review
- Table A.9:
 AOI 9 Exposure Unit Screening Review
- Table A.10:
 AOI 13 Exposure Unit Screening Review
- Table A.11:
 Western POI 53 Exposure Unit Screening Review
- Table A.12: Spaulding-Rankin Exposure Unit Screening Review
- Table A.13: Southern AU Exposure Unit Screening Review

APPENDIX B

- Figure 1: Site Location Map
- Figure 2: All Areas Screened
- Figure 3: Individual Properties Screened
- Figure 4: POI 39 Exposure Unit
- Figure 5: Dalecarlia Woods Exposure Unit
- Figure 6: AOI 8 Exposure Unit
- Figure 7: AOI 11 Exposure Unit
- Figure 8: AOI 9 Exposure Unit
- Figure 9: AOI 13 Exposure Unit
- Figure 10: Western POI 53 Exposure Unit
- Figure 11: Spaulding-Rankin Exposure Unit
- Figure 12: Southern AU Exposure Unit
- Figure 13: Southern AU Exposure Unit Outlier Locations
- Figure 14: Areas Recommended for Human Health Risk Assessment

APPENDIX C - SCREENING STEPS PROCEDURE - MEMORANDUM

APPENDIX D - ProUCL STATISTICAL TESTING OUTPUT (CD only)

APPENDIX E – RISK CALCULATIONS

LIST OF ACRONYMS AND ABBREVIATIONS

AOI	area of interest
AU	American University
AUES	American University Experiment Station
CENAB	United States Army Corps of Engineers, Baltimore District
COPC	chemical of potential concern
CWM	chemical warfare materiel
DERP	Defense Environmental Restoration Program
EE/CA	Engineering Evaluation/Cost Analysis
EPC	exposure point concentration
ERT	ERT, Inc.
EU	exposure unit
FUDS	Formerly Used Defense Site
HI	hazard index
HHRA	Human Health Risk Assessment
HQ	hazard quotient
HTRW	hazardous, toxic, and radiologic waste
IRIS	Integrated Risk Information System
kg	kilogram
MEC	munitions and explosives of concern
mg	milligram
MMRP	Military Munitions Response Program
OSR	Operation Safe Removal
OU	Operable Unit
POI	point of interest
PPRTV	Provisional Peer-reviewed Toxicity Value
RAGS	Risk Assessment Guidance for Superfund
RfD	Reference Dose
RI/FS	Remedial Investigation and Feasibility Study
RSL	Regional or Risk-Based Screening Level
SVFUDS	Spring Valley Formerly Used Defense Site
UCL	Upper Confidence Limit
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency

EXECUTIVE SUMMARY

This document is Addendum 1 to the August 2013 *Final Pre-2005 Human Health Risk Assessment Review*. In the Final Pre-2005 Human Health Risk Assessment (HHRA) Review, rescreening of all soil data from the Spring Valley Formerly Used Defense Site (SVFUDS) in Washington, D.C., was done using updated risk-based screening levels and background data, to ensure that any potential risks associated with soils still in place at SVFUDS were evaluated.

Using the screening procedure presented in the Final Pre-2005 HHRA Review, this addendum presents the follow-on screening that was recommended in Section 7.3 of that document. The follow-on screening was conducted on Exposure Units (EUs) within the SVFUDS, as identified in the Final Pre-2005 HHRA Review, with the objective of identifying remaining areas of the SVFUDS that require additional human health risk assessment.

The approach for further risk evaluation for the EUs was to combine the older pre-2005 risk assessment samples with newer more recent sample results into a single data set for each of the EUs, and then apply the screening steps. This follow-on screening of the combined data sets was completed for all chemicals in the data set, not just the chemicals of potential concern (COPCs) determined to be remaining in the Final Pre-2005 HHRA Review.

Exposure Units and Data Used in the Follow-on Screen

An EU is a geographical area in which a receptor is randomly exposed to a contaminated medium for a relevant exposure duration; it considers similar past practices, similar receptor populations and exposure pathways, and geography. The Final Pre-2005 HHRA Review document derived EUs based on the screen of the data used in the pre-2005 risk assessments. Those EUs plus other discrete areas defined by sampling data not otherwise covered in any risk assessments totaled 13 areas screened in this document.

Three sets of sample data were used in this follow-on screen. Some EUs had samples from all three sets, while some EUs only had data from one or two of the sets. The first data set comprises all of the samples used in the pre-2005 risk assessments, i.e., all the data points used in the Final Pre-2005 HHRA Review document. The second data set comprises samples from miscellaneous sampling efforts conducted during anomaly investigations, or other samples collected for various reasons, which were not captured in any prior risk assessments. These included samples with collection dates from as early as 2001 to as late as 2011.

The third data set comprises samples resulting from the *Final Evaluation Document* (United States Army Corps of Engineers [USACE], 2012) recommendations. The sampling was based on the recommendations in the Area of Interest Memoranda that summarized possible historical American University Experiment Station (AUES) impacts not addressed in ongoing investigations, or possible data gaps, and made recommendations regarding whether any additional investigation was necessary. This relatively recent sampling was primarily completed in 2012, but also includes Area of Interest (AOI) 8 and AOI 11 sampling, some of which was completed as early as 2009.

Selection of Chemicals of Potential Concern

The follow-on screening process is basically the same one used in the Final Pre-2005 HHRA Review, consisting of an initial screen for all detected chemicals in soil that selects provisional

COPCs, and an additional screen incorporating other factors to identify remaining COPCs.

The initial screen compared the maximum detected value of each constituent against current riskbased screening levels and current background concentrations. This initial screen resulted in the identification of provisional COPCs. This is a conservative approach because a single maximum concentration is not a realistic representation of actual contamination at a site, and so an additional screen, incorporating other factors to make the evaluation more realistic and representative of current site conditions, was also performed.

The additional screen comprised two steps performed on the provisional COPCs using United States Environmental Protection Agency's (USEPA's) statistical software ProUCL: 1) an exposure point concentration (EPC) of each provisional COPC was calculated and a risk ratio determined, and 2) a two-sample hypothesis test comparing site concentrations to background concentrations was completed.

In addition, as part of the follow-on screen, detected concentrations using the combined data sets were reviewed to ensure that the identified EUs are not so large that they dilute higher concentrations of a chemical over the larger area. The process evaluated whether maximum concentrations of each chemical are more than 10 times higher than the average of the remaining concentrations of that chemical (i.e., identifies whether the maximum is an outlier). Where an outlier was determined, that sample location was removed from the data set and the EU was evaluated by the remaining samples; the outlier sample was then screened separately using the screening procedure (i.e., risk is assessed on the individual outlier location).

Findings

COPCs remained following the initial and additional screening steps. For some EUs, only a few naturally occurring metals remained as COPCs. In some cases, these were areas where the COPC was based on a single maximum value because there were insufficient samples to conduct statistical testing. These factors were considered in evaluating whether these areas could reasonably be eliminated from further assessment in a quantitative HHRA.

To further evaluate whether the COPCs for a given EU would be associated with potential human health risks if carried through a quantitative HHRA, non-cancer hazard quotient (HQ) values were calculated and incremental cancer risks were estimated for the remaining COPCs, assuming standard residential receptor scenarios.

The findings for each EU are summarized in Table ES.1 below.

Exposure Unit	COPCs Identified	TableReference	Conclusion
4256 Warren Street Property	Aluminum Arsenic Cobalt Iron Magnesium Vanadium	A.1	Non-cancer HQs < 1, no further evaluation
4900 Quebec Street Property 3949 52 nd Street	Mercury	A.2	Non-cancer $HQ < 1$, no further evaluation
Property	Cobalt	A.3	Non-cancer HQ < 1, no further evaluation
4015 52 nd Street Property	Aluminum Cobalt Iron Magnesium	A.4	Non-cancer HQs < 1, no further evaluation
POI 39	Aluminum Manganese	A.5	Non-cancer HQs < 1, no further evaluation
Dalecarlia Woods	Zinc (identified as an outlier)	A.6	Non-cancer HQ < 1, no further evaluation
AOI 8	Manganese	A.7	Non-cancer HQ < 1, no further evaluation
AOI 11	Aluminum Magnesium	A.8	Non-cancer HQs < 1, no further evaluation
AOI 9	Aluminum Cobalt Manganese	A.9	Cobalt Non-cancer HQ > 1, conduct HHRA
AOI 13	Aluminum Cobalt Iron Mercury (identified as an outlier)	A.10	Non-cancer HQs < 1, no further evaluation
Western POI 53 EU	Aluminum Vanadium	A.11	Non-cancer HQs < 1, no further evaluation
Spaulding-Rankin	Aluminum Cobalt Iron, Manganese Vanadium	A.12	Cobalt Non-cancer HQ > 1, conduct HHRA
Southern AU	Aluminum Cobalt, Iron Magnesium, Manganese Vanadium Outliers: antimony, beryllium, mercury, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene indeno(1,2,3-cd) pyrene phenanthrene	A.13	Antimony and cobalt HQs > 1, benzo(a)anthracene, benzo(b)fluoranthene, and indeno (1,2,3-cd) pyrene exceed USEPA cancer risk range, conduct HHRA

Table ES.1. Summary of COPCs by EU

Conclusions and Recommendations

The follow-on screen determined that:

- For the AOI 9 EU, based on the cobalt HQ exceeding one, further evaluation is required.
- For the Spaulding-Rankin EU, based on the cobalt HQ exceeding one, further evaluation is required.
- For the Southern American University (AU) EU, based on the HQs for antimony and cobalt exceeding one, and the estimated incremental cancer risks for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno (1,2,3-cd) pyrene being greater than the USEPA acceptable range, further evaluation is required.
- For all other EUs, no COPCs presenting potential risk remain and no further evaluation is required.

The follow-on screen determined that for three exposure units, COPCs remain that may present a risk. Based on the COPCs identified and the risks calculated, HQs that exceed one, and, for some chemicals, estimated incremental cancer risks greater than the USEPA acceptable range, quantitative HHRAs are recommended for the AOI 9, Spaulding-Rankin, and Southern AU EUs, as shown in Table ES.2. These EUs will undergo a complete HHRA consisting of exposure assessment, toxicity assessment, and risk characterization steps.

For all other EUs, no quantitative HHRAs are recommended.

Exposure Unit	COPCs Potentially Presenting Risk	HHRA Organization	
AOI 9	Cobalt	The HHRA for this EU and the HHRA for the Spaulding-Rankin EU will be bundled in the same document based on similar receptors (largely private residences)	
Spaulding – Rankin	Cobalt	The HHRA for this EU and the HHRA for the AOI 9 EU will be bundled in the same document based on similar receptors (largely private residences)	
Southern AU	Antimony Cobalt Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno (1,2,3-cd) pyrene	The HHRA for this EU will be a standalone document addressing the Southern AU EU only based on similar receptors for this portion of AU	

 Table ES.2.
 Recommended HHRAs

This Page Intentionally Left Blank

1.0 INTRODUCTION

1.1 Purpose and Objective

This document is Addendum 1 to the August 2013 *Final Pre-2005 Human Health Risk Assessment Review* (August 2013). In the Final Pre-2005 Human Health Risk Assessment (HHRA) Review, re-screening of all soil data from the Spring Valley Formerly Used Defense Site (SVFUDS) in Washington, D.C., was done using updated risk-based screening levels and background data, to ensure that any potential risks associated with soils still in place at SVFUDS were evaluated. The methodology was outlined in the *Final Evaluation Document for the Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC* (USACE, 2012), and was based on the historical information, analytical data, and recommendations/conclusions presented in five pre-2005 discrete HHRAs.

Using the screening procedure presented in the Final Pre-2005 HHRA Review, this addendum presents the follow-on screening that was recommended in Section 7.3 of that document. The follow-on screening was conducted on Exposure Units (EUs) within the SVFUDS, as identified in the Final Pre-2005 HHRA Review, with the objective of identifying remaining areas of the SVFUDS that require additional human health risk assessment.

ERT, Inc. (ERT) has been contracted by the U.S. Army Corps of Engineers (USACE), Baltimore District (CENAB), to perform a Remedial Investigation and Feasibility Study (RI/FS) for the SVFUDS (Defense Environmental Restoration Program [DERP] FUDS Military Munitions Response Program [MMRP]/Chemical Warfare Materiel [CWM] Project No. C03DC091801 and DERP FUDS Hazardous, Toxic, and Radioactive Waste (HTRW) Project No. C03DC091802). ERT is performing activities in support of ongoing sampling and remedial investigations addressing munitions and explosives of concern (MEC) and CWM under Contract W912DR-06-D-0002, Task Order 0011.

1.2 SVFUDS Background

The SVFUDS is an area of northwest Washington, DC, that was formerly occupied by the American University Experiment Station (AUES). During World War I, the U.S. government established the AUES to investigate the testing, production, and effects of noxious gases, antidotes, and protective masks. The AUES was located on the grounds of the current American University (AU) and used additional property in the vicinity to conduct this research and development on CWM, including mustard and lewisite agents, as well as adamsite, irritants, and smokes. After the war, these activities were transferred to other locations and the site was returned to the owners. The SVFUDS location map is presented as Figure 1 (all figures are presented in Appendix B).

1.3 Overview of Approach

As described in Section 7.3 of the Final Pre-2005 HHRA Review, the approach for further risk evaluation for the EUs developed was to combine the older pre-2005 risk assessment samples with newer more recent sample results into a single data set for each of the EUs, and then screen the data following the steps described in Section 2.0. This follow-on screening of the combined data sets was completed for all chemicals in the data set, not just the chemicals of potential

concern (COPCs) determined to be remaining in the Final Pre-2005 HHRA Review. If no COPCs remain in an EU through the follow-on screen, that EU drops out and is not considered further. If COPCs remain through the follow-on screen, that EU will undergo a complete HHRA consisting of exposure assessment, toxicity assessment, and risk characterization steps.

Figure 2 shows all individual EUs or areas covered in this follow-on screen addendum.

1.4 Organization of the Document

This review document is organized as follows: Section 1 provides the introduction (purpose and objective, and data used); Section 2 summarizes the procedures for the follow-on screen and further evaluates the identified COPCs; Section 3 contains the uncertainty discussion; Section 4 presents conclusions; Section 5 presents recommendations; and, Section 6 contains references. Appendix A contains the detailed screening tables, Appendix B contains the figures, Appendix C provides the screening steps procedural memorandum, Appendix D contains the ProUCL statistical output (Appendix D provided on CD only), and Appendix E provides risk calculations.

1.5 Data Used in the Follow-on Screen

Three sets of sample data were used in this follow-on screen as described below. Some EUs had samples from all three sets, while some EUs only had data from one or two of the sets. Appendix B presents figures of the individual EUs screened showing all sample locations. Note that in some cases, these locations represent more than one sample result, for example, where a sample location contained multiple depth increments, or where a single location contained a split result (as was the case for some of the USACE 1995 and United States Environmental Protection Agency (USEPA) 1999 risk assessment locations). Due to scale and space limitations, not every individual sample name is shown on the figures and some of the sample names shown are abbreviated. However, all results were used in the follow-on screen, including all depth increments and all split results.

1.5.1 <u>Pre-2005 Risk Assessment Samples</u>

The first data set comprises all of the samples used in the pre-2005 risk assessments, i.e., all the data points used in the Final Pre-2005 HHRA Review document. On the figures, these samples are color-coded using black dots.

1.5.2 Miscellaneous Grab Samples

The second data set comprises samples from miscellaneous sampling efforts conducted during anomaly investigations, or other samples collected for various reasons, which were not captured in any prior risk assessments. These included samples with collection dates from as early as 2001 to as late as 2011. On the figures, these samples are color-coded using blue dots.

1.5.3 <u>Recent (2012) Evaluation Document Samples</u>

The third data set comprises samples resulting from the *Final Evaluation Document* (USACE, 2012) recommendations. That document provided a plan for supplemental sampling to fill identified data gaps and ensure that areas were fully characterized to support conclusions about potential human health risks. The sampling was based on the recommendations in the Area of Interest Memoranda that summarized possible historical AUES impacts not addressed in ongoing

investigations, or possible data gaps, and made recommendations regarding whether any additional investigation was necessary. This relatively recent sampling was primarily completed in 2012. However, it also includes Area of Interest (AOI) 8 and AOI 11 sampling, some of which was completed as early as 2009. On the figures, these samples are color-coded using red dots.

1.6 Exposure Units (EUs)

An EU is a geographical area in which a receptor is randomly exposed to a contaminated medium for a relevant exposure duration; it considers similar past practices, similar receptor populations and exposure pathways, and geography. The intent of the follow-on screen was to assess an EU based on all data available, without regard as to when the data were collected.

The Final Pre-2005 HHRA Review document derived EUs based on the screen of the data used in the pre-2005 risk assessments. Those EUs, as well as other discrete areas defined by sampling data not otherwise covered in any risk assessments, formed the basis of the areas screened in this document. The EUs discussed below were assessed in this follow-on screen.

1.6.1 <u>Individual Property EUs</u>

Four separate private properties contained one or more data points and were screened: 4256 Warren Street, 4900 Quebec Street, 3949 52nd Street, and 4015 52nd Street. Each of these properties had miscellaneous grab samples (second data set). Two of the properties had a single sample, one property had two samples, and one property had 12 samples (see Figure 3). These properties were not identified in the Final Pre-2005 HHRA Review as EUs, but were defined by the miscellaneous grab samples that required the follow-on screen.

1.6.2 POI 39 EU

This point of interest (POI) was addressed in the Final Pre-2005 HHRA Review and was not recommended for further evaluation. However, a new data point, part of the miscellaneous grab data set, was added to a property within POI 39. Therefore, the entire POI 39 EU was rescreened using the combined data set of 14 samples (see Figure 4).

1.6.3 Dalecarlia Woods EU

This EU just west of the Dalecarlia Parkway, representing fenced woodlands with no residents, was investigated for geophysical anomalies and generated multiple miscellaneous grab samples. In addition to those, one pre-2005 risk assessment sample (from LTC Bancroft area) that was within the same area, was added and the entire EU was screened using the combined data set of 13 samples (see Figure 5). This area was not identified in the Final Pre-2005 HHRA Review as an EU, but was defined by the miscellaneous grab samples that required the follow-on screen.

1.6.4 AOI 8 EU

AOI 8 is the Former POI 12 (possible graded area as defined in the USACE 1995 *OSR FUDS RI Report*). It includes five properties between Van Ness and Upton Streets. The *Final Evaluation Document* (USACE, 2012) includes the background of this area and the rationale for the sampling completed there. This EU includes multiple residential properties and defines an area with common receptors and exposure pathways. It was screened using a data set of 4 samples

(recent Evaluation document data set) (see Figure 6).

1.6.5 <u>AOI 11 EU</u>

AOI 11 is defined as an expanded area of POI 13 and POI 14 encompassing the ten properties on 52nd Court and 5120, 5122, and 5124 52nd Street). The *Final Evaluation Document* (USACE, 2012) includes the background of this area and the rationale for the sampling completed there. This EU includes multiple residential properties and defines an area with common receptors and exposure pathways. It was screened using a data set of 6 samples (recent Evaluation document data set) (see Figure 7).

1.6.6 <u>AOI 9 EU</u>

This EU is defined by AOI 9, which contains POI 1, the circular trenches where static testing of CWM munitions was conducted, and POI 7, where agent persistency testing was reportedly conducted. There are a number of ground scars in the vicinity of POI 1 that became POIs 2, 3, 4, 5, 6, and 8. Portions of AOI 9 fall within the downrange impact areas of the Range Fan. This EU includes multiple residential properties and defines an area with common receptors and exposure pathways. It was screened using a combined data set of 59 samples (all three data sets)(see Figure 8).

1.6.7 <u>AOI 13 EU</u>

This EU is defined by AOI 13, which is located between Quebec Street and Woodway Lane. AOI 13 contains multiple 1918 ground scars, including POI 26. Three AUES buildings were located within AOI 13 and the northern edge of the Range Fan passes through a portion of it. This EU boundary includes 13 residential properties and defines an area with common receptors and exposure pathways. It was screened using a combined data set of 17 samples (all three data sets) (see Figure 9).

1.6.8 Western POI 53 EU

This EU is defined by that portion of POI 53 not covered by other EUs. It comprises residential properties along Glenbrook Road with common receptors and exposure pathways, and was screened using a combined data set of 10 samples (two data sets) (see Figure 10).

1.6.9 Spaulding-Rankin EU

This EU is defined by previous areas of investigation. It is limited to a single residential property previously known as the Spaulding-Rankin area, where the Range Fan firing point and concrete shell pits were located. The EU includes POIs 21, 22, 23, and 25 (POI 25 location as identified and as sampled for the 1995 Remedial Investigation). This property was maintained as a discrete EU based on the differences in past activities that occurred within this EU versus the other nearby residential properties. (Note that the POI 23 terminus samples are actually located on the 4845 Glenbrook Road property, but these data were included with the Spaulding-Rankin data set based on similar analytes and past practices). It was screened using a combined data set of 60 samples (all three data sets) (see Figure 11). Also note that the mercury data from USACE 1995 (and USEPA 1999, where USEPA used USACE split data) were not used in the screen because the inappropriate analytical method (inductively coupled plasma) had been used resulting in

unrealistically high mercury values, as has been documented in various SVFUDS presentations and discussions.

1.6.10 Southern AU EU

This EU is defined by previous areas of investigation conducted at AU. The 'Southern AU' EU combines the area addressed in the USEPA 2000 HHRA, and POI AU and portions of POIs 24 and 53 addressed in the USACE 1995 and USEPA 1999 HHRAs. However, the southeastern reaches of the POI AU and USEPA 2000 footprints are not included as that acreage is covered under the AU Lot 18 and AU Public Safety Building Human Health Risk Assessments (two separate documents). This EU is an active university campus with no full time permanent residences, and the EU boundary defines an area with common receptors and exposure pathways. It was screened using a combined data set of 86 sample locations comprising 115 sets of results (all three data sets) (see Figure 12).

2.0 SELECTION OF CHEMICALS OF POTENTIAL CONCERN

This section presents the procedures used in the follow-on screen, summarizing the more detailed presentation contained in the Final Pre-2005 HHRA Review.

The follow-on screening process described in this addendum consists of an initial screen for all detected chemicals in soil that selects provisional COPCs using a conservative approach, and an additional screen incorporating other factors to identify remaining COPCs. The follow-on screen was conducted on all EUs described in Section 1.6.

Tables A.1 through A.13 of Appendix A provide the detail of the screening steps described below.

2.1 Initial Screen

An *initial screen* of all detected chemicals in soil in the EU was conducted using current criteria. The initial screen compared the maximum detected value of each constituent against current riskbased screening levels and current background concentrations. This initial screen resulted in the identification of provisional COPCs. However, the use of the maximum detected value for this initial screen is a conservative approach because the use of a single maximum concentration is not a realistic representation of the distribution of actual contamination at a site. Therefore, an *additional screen*, incorporating other factors to make the evaluation more realistic and representative of current site conditions, was also performed, as described in Section 2.2.

A memorandum providing the detailed procedures for each step of the screen is contained in Appendix C.

2.1.1 <u>Risk-Based Screening Levels</u>

For the follow-on screen, the May 2013 USEPA Regional or Risk-Based Screening Levels (RSLs) (USEPA, 2013) were used to select COPCs in the initial screen, using the maximum detected concentration. USEPA RSLs reflect current toxicity values from sources used in the USEPA's toxicity hierarchy, and thus are updated by USEPA over time, if necessary, based on their review of newly published toxicity research. The USEPA RSLs are developed based on multiple exposure pathways and for chemicals with both carcinogenic and non-carcinogenic effects. RSLs correspond to either a 10⁻⁶ risk level for carcinogens or a Hazard Quotient (HQ) of 1 for non-carcinogens. The RSLs for non-cancer endpoints were adjusted to an HQ of 0.1 for the re-screening of COPCs in this HHRA review; this approach is commonly taken in an initial screening step to account for potential cumulative effects of non-carcinogens.

2.1.2 <u>Background Concentrations</u>

The current 2008 SVFUDS soil background data (USACE, 2008) were used. Comparison to background to determine which COPCs are elevated over background is consistent with USEPA (1989, 1992, 2002) guidance.

2.1.3 <u>EU Dilution Testing</u>

As described in Section 7.1 of the Final Pre-2005 HHRA Review, detected concentrations using the combined data sets were reviewed to ensure that the identified EUs are not so large that they dilute higher concentrations of a chemical over the larger area. In general, an assessment of the compatibility between EU size and the exposure scenarios that are applicable at SVFUDS indicates that, because of the similar residential exposure scenarios across all of the SVFUDS, excluding the AU campus, the EU sizes are compatible with potential exposures to residents and workers in these neighborhoods.

However, formal testing of whether there might be outliers in the larger EUs was included as a screening step. The procedural memorandum in Appendix C describes the detail of this testing, which evaluates whether maximum concentrations of each chemical are more than 10 times higher than the average of the remaining concentrations of that chemical (i.e., identifies whether the maximum is an outlier). Where an outlier was determined, that sample location was removed from the data set and the EU was evaluated by the remaining samples; the outlier sample was then screened separately using the screening procedure (i.e., risk is assessed on the individual outlier location).

2.2 Additional Screening Incorporating Other Factors

2.2.1 Additional Screening Steps

This section describes the additional screening factors used to further evaluate the provisional COPCs remaining following the initial screen. The additional screen comprised two steps performed on the provisional COPCs. Following the detail presented below, Exhibit 1 provides a screening process flow chart to capture all the steps conducted for this follow-on screen.

Step 1: Calculate a Risk Ratio

Assuming a sufficient quantity of samples (5 or greater) was available, USEPA's statistical software ProUCL (USEPA, 2011) was used to calculate the exposure point concentration (EPC) of each remaining provisional COPC. The risk ratio is the EPC divided by the most current RSL (adjusted down by 10 if based on a non-carcinogenic effect). This step results in one of two outcomes:

- If the risk ratio is less than or equal to one, the EPC does not exceed the RSL, and that COPC drops out.
- If the risk ratio is greater than one, the EPC exceeds the RSL, proceed to Step 2 (statistical comparison to background).

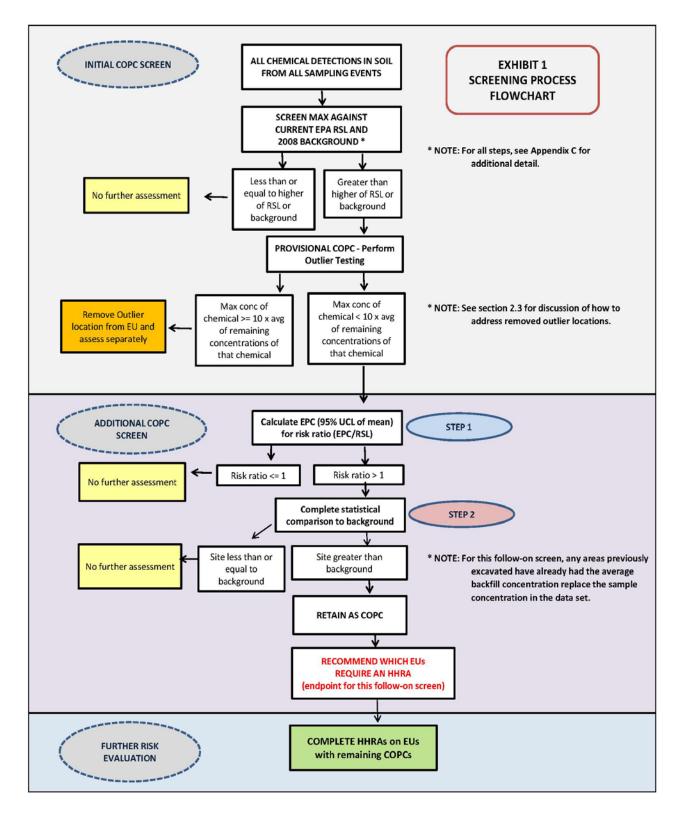
Step 2: Background Comparison

Assuming a sufficient quantity of samples (5 or greater) was available, a two-sample hypothesis test comparing site concentrations to background concentrations was completed using ProUCL-recommended procedures. This step results in one of two outcomes:

• If ProUCL determines that site concentrations are less than or equal to background, then the COPC drops out.

• If ProUCL determines that site concentrations are greater than background, the COPC is retained.

The detailed output of the ProUCL calculations for all steps is presented in Appendix D.


Excavated and Backfilled Areas:

In many areas, significant soil excavation has occurred and clean soil was used to backfill the excavations. The sub-steps of re-analyzing data after removing samples that represent excavated soil and then re-analyzing data after the backfill data have been included in the Step 1 and 2 analysis above. For additional details on those steps (previously Steps 3a and 3b) see Appendix C in the Final Pre-2005 HHRA Review document.

2.2.2 Organization of Tables

The analysis of COPCs using all of the steps described above is organized in tables specific to each EU. Appendix A presents Tables A.1 through A.13 showing the steps as applied per each of the EUs. These tables show all chemicals detected across all data sets applicable to that EU. On all tables, individual chemicals that remain COPCs following all initial and additional screening steps are highlighted in yellow.

Exhibit 1: Screening Process Flow Chart

2.3 Identification and Evaluation of Follow-on Screen COPCs

For some of the EUs, COPCs still remain through the initial and additional screening steps. Table 2.1 at the end of this section summarizes the remaining COPCs by EU.

The results of the follow-on screening identified EUs where only a few naturally occurring metals remained as COPCs. These COPCs may have been selected based on comparisons to an RSL that is based on uncertain toxicity data, or were naturally occurring metals that would not be associated with potential human health risks if carried through an HHRA. In some cases, these were areas where the COPC was based on a single maximum value because there were insufficient samples to conduct statistical testing.

The discussions in Sections 2.3.1 through 2.3.13 below consider these factors in evaluating whether these areas can reasonably be eliminated from further assessment in a quantitative HHRA. Although this differs from the standard screening of COPCs approach used at typical National Priority List (NPL) sites, based on professional judgment and the practical considerations of the SVFUDS, it is a reasonable means to focus efforts on more significant areas. This approach is particularly applicable at a site such as the SVFUDS, which is not an NPL site, and which comprises many different AOIs, POIs, or areas of investigation that have been identified based on past site history.

To support the statement that a given area would not be associated with potential human health risks if carried through an HHRA, HQ values were calculated. Appendix E provides tables with the calculations of HQ values as discussed in the paragraphs below. The procedure used to calculate the HQs is a standard EPA approach for residential receptors as follows: risks for a residential receptor were evaluated assuming that the resident would be exposed to soil via the incidental soil ingestion route. The dermal pathway was only quantified when arsenic was found to be a COPC because EPA recommends that only those COPCs with dermal absorption fractions listed in USEPA (2004) be quantified for the dermal pathway. The inhalation route provides a very small additional HQ for non-cancer effects, and does not change the conclusions of the paragraphs below; therefore, it is not discussed further. The assumptions and the equations used to assess the incidental soil ingestion pathway to calculate non-cancer HQs are shown in Table E.1; these apply to all the rest of the tables in Appendix E. Note that for the discussions below, the COPCs either impact different target organs, or if they impact the same target organ, the cumulative HQ is still less than or equal to one.

2.3.1 4256 Warren Street Property

At the 4256 Warren Street property, aluminum, arsenic, cobalt, iron, magnesium, and vanadium were determined to be COPCs through the screen (see Table A.1). These chemicals were selected based on a very limited data set (one sample).

For aluminum, the single sample result of 25,500 milligrams per kilogram (mg/kg) is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, the RSL for aluminum is based on a provisional peer-reviewed toxicity value (PPRTV) reference dose (RfD) of 1 mg/kg-day, which is not included in EPA's approved toxicity value database (the Integrated Risk Information System, [IRIS]), and the PPRTV is presented as having "low confidence" in the EPA support document (EPA, 2006). Further, as shown in Table E.1, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The detected concentration of arsenic (14.3 mg/kg) exceeded background (12.6 mg/kg) and the Regional or Risk-Based Screening Level (RSL) (0.61 mg/kg). However, as shown in Table E.1, when residential non-cancer risks were calculated for arsenic, the HQ was less than one.

The maximum detected concentration of cobalt (19.6 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). The RSL for cobalt is also based on a PPRTV, an RfD of 3.00E-4 mg/kg-day, for which EPA concludes there is a low-medium confidence level (EPA, 2008). However, as shown in Table E.1, by applying the PPRTV, when residential non-cancer risks were calculated for cobalt, the HQ was less than one.

Iron and magnesium were found to be greater than background in this one sample, but these are considered essential nutrients. Further, magnesium has no screening level.

The maximum detected concentration of vanadium (83.2 mg/kg) exceeded both background (75.5 mg/kg) and the adjusted RSL (39 mg/kg). The vanadium RSL is based on a PPRTV, an RfD of 5.00E-3 mg/kg-day for metallic vanadium (USEPA, 2009), which has been suspended by EPA, and the IRIS file for vanadium pentoxide is under review; thus there are no current EPA-approved toxicity values for inorganic vanadium. However, as shown in Table E.1, by applying the PPRTV, when residential non-cancer risks were calculated for vanadium, the HQ was less than one.

Due to there being only one sample, the uncertainties associated with the toxicity values used as the basis of the RSLs for some of the COPCs, the fact that two of the COPCs are essential nutrients, and that these chemicals are unlikely to cause unacceptable risks at these concentrations at this small discrete area, the elimination of these metals in soil as final COPCs is supported. Therefore, the 4256 Warren Street property will not be further considered in a quantitative HHRA.

2.3.2 4900 Quebec Street Property

At the 4900 Warren Street property, mercury was the only sampled analyte and it was determined to be a COPC through the screen (see Table A.2). The maximum detected concentration of mercury (2.61 mg/kg) exceeded background (0.25 mg/kg) and the adjusted RSL (1 mg/kg). However, as shown in Table E.2, when residential non-cancer risks were calculated for mercury, the HQ was less than one. As mercury is unlikely to cause unacceptable risk at this small discrete area, the elimination of it as a final COPC is supported. Therefore, the 4900 Quebec Street property will not be further considered in a quantitative HHRA.

2.3.3 <u>3949 52nd Street Property</u>

At the 3949 52nd Street property, cobalt was determined to be a COPC through the screen (see Table A.3). The data set was only two samples. The maximum detected concentration of cobalt (19.7 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). As noted above, the RSL for cobalt is based on a PPRTV for which EPA concludes there is a low-medium confidence level. As shown in Table E.3, by applying the PPRTV, when residential non-cancer risks were calculated for cobalt, the HQ was less than one. As cobalt is unlikely to cause

unacceptable risk at this small discrete area, the elimination of it as a final COPC is supported. Therefore, the 3949 52nd Street property will not be further considered in a quantitative HHRA.

2.3.4 4015 52nd Street Property

At the 4015 52nd Street property, aluminum, cobalt, iron, and magnesium, were determined to be COPCs through the screen (see Table A.4). These chemicals were selected based on a very limited data set (one sample).

For aluminum, the single sample result of 28,000 mg/kg is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.4, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of cobalt (22.8 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). However, as shown in Table E.4, by applying the PPRTV, when residential non-cancer risks were calculated for cobalt, the HQ was less than one.

Iron and magnesium were found to be greater than background in this one sample, but these are considered essential nutrients. Further, magnesium has no screening level.

Due to there being only one sample, the uncertainties associated with the toxicity values used as the basis of the RSLs for some of the COPCs, the fact that two of the COPCs are essential nutrients, and that these chemicals are unlikely to cause unacceptable risks at these concentrations at this small discrete area, the elimination of these metals in soil as final COPCs is supported. Therefore, the 4015 52nd Street property will not be further considered in a quantitative HHRA.

2.3.5 POI 39 EU Screening

At the POI 39 EU, aluminum and manganese were determined to be COPCs through the screen (see Table A.5). While POI 39 was eliminated from further review in the Final Pre-2005 HHRA Review, an additional miscellaneous grab sample was added to the data set and the EU was rescreened.

For aluminum, the maximum result of 28,400 mg/kg is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.5, by applying the PPRTV, if residential non-cancer risks were calculated for aluminum, the HQ would be less than one. The maximum detected concentration of manganese (2,580 mg/kg) exceeded background (968 mg/kg) and the adjusted RSL (180 mg/kg). However, as shown in Table E.5, when residential non-cancer risks were calculated for manganese, the HQ was less than one.

As aluminum and manganese are unlikely to cause unacceptable risk at this EU, the elimination of them as final COPCs is supported. Therefore, the POI 39 EU will not be further considered in a quantitative HHRA.

2.3.6 Dalecarlia Woods EU Screening

At the Dalecarlia Woods EU, no chemicals were determined to be COPCs through the screen (see Table A.6). However, the maximum zinc concentration (2,548 mg/kg) in one sample was

shown to be an outlier. That outlier location was removed from the data set and the conclusion based on the remaining samples was that there were no COPCs. The outlier location sample was then screened, and as shown in Table E.6, when residential non-cancer risks were calculated for zinc, as well as aluminum and cadmium (maximum concentrations associated with the zinc outlier sample), the HQs were less than one.

For thallium, the outlier sample result of 8 mg/kg is greater than the adjusted non-cancer RSL of 0.078 mg/kg and greater than the background value of 2.2 mg/kg. However, the toxicity value for thallium is a PPRTV, and is based on an uncertain data set. PPRTVs are provisional values are not yet published on USEPA's IRIS database. PPRTVs may be published as regular or "screening" PPRTVs - PPRTVs that are classified as "screening" are considered less wellsupported and are approved for use only in a screening assessment (USEPA, 2013). PPRTVs will be used in the follow-on HHRAs, with the exception of thallium, for which only a screening PPRTV is available. The PPRTV document for thallium (USEPA, 2012) states the following: "For the reasons noted in the main document, it is inappropriate to derive a subchronic or chronic p-RfD for thallium. However, information is available which, although insufficient to support derivation of a provisional toxicity value, under current guidelines, may be of limited use to risk assessors. In such cases, the Superfund Health Risk Technical Support Center summarizes available information in an appendix and develops a screening value. Users of screening toxicity values in an appendix to a PPRTV assessment should understand that there is considerably more uncertainty associated with the derivation of a supplemental screening toxicity value than for a value presented in the body of the assessment."

Due to the uncertainties associated with the toxicity values used as the basis of the RSL for thallium, and the HQs for aluminum, cadmium, and zinc being less than one, these chemicals are unlikely to cause unacceptable risks at these concentrations. Therefore, the elimination of these metals in soil as COPCs is supported, and the Dalecarlia Woods EU will not be further considered in a quantitative HHRA.

2.3.7 AOI 8 EU Screening

At the AOI 8 EU, manganese was determined to be the only COPC through the screen (see Table A.7), based on a limited data set (four samples).

The maximum detected concentration of manganese (1,130 mg/kg) exceeded background (968 mg/kg) and the adjusted RSL (180 mg/kg). However, as shown in Table E.7, when residential non-cancer risks were calculated for manganese, the HQ was less than one. As manganese is unlikely to cause unacceptable risk at this EU, the elimination of it as a final COPC is supported. Therefore, the AOI 8 EU will not be further considered in a quantitative HHRA.

2.3.8 AOI 11 EU Screening

At the AOI 11 EU, aluminum and magnesium were determined to be COPCs through the screen (see Table A.8).

For aluminum, the maximum result of 21,000 mg/kg is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.8, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ

was less than one. The maximum detected concentration of magnesium (7,060 mg/kg) was found to be greater than background, but it has no screening level, and it is considered to be an essential nutrient.

As aluminum and magnesium are unlikely to cause unacceptable risk at this EU, the elimination of them as final COPCs is supported. Therefore, the AOI 11 EU will not be further considered in a quantitative HHRA.

2.3.9 AOI 9 EU Screening

At the AOI 9 EU, aluminum, cobalt, and manganese were determined to be COPCs through the screen (see Table A.9).

For aluminum, the maximum result of 51,900 mg/kg is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.9, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of cobalt (69.2 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). Table E.9 indicates that when residential non-cancer risks were calculated for cobalt, the HQ exceeded one for a child resident.

The maximum detected concentration of manganese (2,040 mg/kg) exceeded background (968 mg/kg) and the adjusted RSL (180 mg/kg). However, as shown in Table E.9, when residential non-cancer risks were calculated for manganese, the HQ was less than one.

While risks from the other chemicals are unlikely, since the cobalt HQ exceeds one, a quantitative HHRA is recommended for the AOI 9 EU.

2.3.10 AOI 13 EU Screening

At the AOI 13 EU, aluminum, cobalt, and iron, were determined to be COPCs through the screen (see Table A.10). The maximum mercury concentration (2.3 mg/kg) in one sample was shown to be an outlier and therefore, that sample was removed from the data set to evaluate the EU.

For aluminum, the maximum detected concentration (29,700 mg/kg) is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.10, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of cobalt (30.7 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). However, as shown in Table E.10, by applying the PPRTV, when residential non-cancer risks were calculated for cobalt, the HQ was less than one.

The maximum detected concentration of iron (38,500 mg/kg) exceeded background (32,400 mg/kg) and the adjusted RSL (5,500 mg/kg). However, iron is considered to be an essential nutrient.

The mercury outlier location was then screened separately, and as shown in Table E.10, when residential non-cancer risks were calculated for mercury, the HQ was less than one. In this outlier sample, cobalt was the only other chemical determined to be a COPC, but as shown in

Table E.10, when residential non-cancer risks were calculated for cobalt, the HQ was less than one.

As these chemicals are unlikely to cause unacceptable risks at this EU (including the outlier location), the elimination of these metals in soil as final COPCs is supported. Therefore, the AOI 13 EU will not be further considered in a quantitative HHRA.

2.3.11 Western POI 53 EU Screening

At the Western POI 53 EU, aluminum and vanadium were determined to be COPCs through the screen (see Table A.11).

For aluminum, the maximum detected concentration (26,500 mg/kg) is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.11, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of vanadium (129 mg/kg) exceeded both background (75.5 mg/kg) and the adjusted RSL (39 mg/kg). As noted previously, the vanadium RSL is based on a PPRTV which has been suspended by EPA, and the IRIS file for vanadium pentoxide is under review; thus there are no current EPA-approved toxicity values for inorganic vanadium. However, as shown in Table E.11, by applying the PPRTV, when residential non-cancer risks were calculated for vanadium, the HQ was less than one.

As these chemicals are unlikely to cause unacceptable risks at this EU, the elimination of these metals in soil as final COPCs is supported. Therefore, the Western POI 53 EU will not be further considered in a quantitative HHRA.

2.3.12 Spaulding-Rankin EU Screening

At the Spaulding-Rankin EU, aluminum, cobalt, iron, manganese, and vanadium, were determined to be COPCs through the screen (see Table A.12).

For aluminum, the maximum detected concentration (37,428 mg/kg) is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.12, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of cobalt (426 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). Table E.12 indicates that when residential non-cancer risks were calculated for cobalt, the HQ exceeded one for a child resident.

The maximum detected concentration of manganese (3,248 mg/kg) exceeded background (968 mg/kg) and the adjusted RSL (180 mg/kg). However, as shown in Table E.12, by applying the PPRTV, when residential non-cancer risks were calculated for manganese, the HQ was less than one.

The maximum detected concentration of iron (140,536 mg/kg) exceeded background (32,400 mg/kg) and the adjusted RSL (5,500 mg/kg). However, iron is considered to be an essential nutrient.

The maximum detected concentration of vanadium (195 mg/kg) exceeded both background (75.5 mg/kg) and the adjusted RSL (39 mg/kg). However, as shown in Table E.12, by applying the PPRTV, when residential non-cancer risks were calculated for vanadium, the HQ was less than one.

While risks from the other chemicals are unlikely, since the cobalt HQ exceeds one, a quantitative HHRA is recommended for the Spaulding-Rankin EU.

2.3.13 Southern AU EU Screening

At the Southern AU EU, aluminum, cobalt, iron, magnesium, manganese, and vanadium, were determined to be COPCs through the screen (see Table A.13). In addition, seven samples contained a total of eight outlier chemicals. Those samples were removed from the data set to evaluate the EU. The eight outlier chemicals in these seven sample locations were: antimony, beryllium, mercury, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, indeno (1,2,3-cd) pyrene, and phenanthrene. These outliers were evaluated separately.

For aluminum, the maximum detected concentration (56,138 mg/kg) is greater than both the background value (19,100 mg/kg) and the adjusted RSL (7,700 mg/kg). However, as shown in Table E.13, by applying the PPRTV, when residential non-cancer risks were calculated for aluminum, the HQ was less than one.

The maximum detected concentration of cobalt (193 mg/kg) exceeded background (17.8 mg/kg) and the adjusted RSL (2.3 mg/kg). Table E.13 indicates that when residential non-cancer risks were calculated for cobalt, the HQ exceeded one for a child resident.

The maximum detected concentration of iron (68,056 mg/kg) exceeded background (32,400 mg/kg) and the adjusted RSL (5,500 mg/kg). However, iron is considered to be an essential nutrient. The maximum detected concentration of magnesium (21,639 mg/kg) was found to be greater than background, but it has no screening level and is considered to be an essential nutrient.

The maximum detected concentration of manganese (3,070 mg/kg) exceeded background (968 mg/kg) and the adjusted RSL (180 mg/kg). However, as shown in Table E.13, by applying the PPRTV, when residential non-cancer risks were calculated for manganese, the HQ was less than one.

The maximum detected concentration of vanadium (627 mg/kg) exceeded both background (75.5 mg/kg) and the adjusted RSL (39 mg/kg). However, as shown in Table E.13, by applying the PPRTV, when residential non-cancer risks were calculated for vanadium, the HQ was less than one.

With regard to the outliers, Table A.13 is color-coded to track the process of outlier removal; green font indicates the first outlier test and the resulting five samples removed, while blue font indicates that after the maximum concentration was removed, for two samples, the next highest maximum concentration was still determined to be an outlier and it was also removed. This process resulted in seven sample locations being identified as outliers. Figure 13 shows that the seven samples are from six discrete locations (Baker-03 and SV-Baker-03 being a split of the same sample). Three of these locations contained outlier chemicals that were determined to be

COPCs through the screen, as discussed below.

Table E.13 also provides this color coding. As shown in page 2 of Table E.13 (green coded), when residential non-cancer risks were calculated for beryllium and mercury, the HQs were less than one. However, the HQ for antimony exceeds one for a child resident. No HQ was calculated for thallium, because, as previously described, the toxicity value is a PPRTV, and is based on an uncertain data set. (For this same reason, thallium, though technically an outlier in one sample, was not included in the outlier sample counts above.) For benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno (1,2,3-cd) pyrene, Table E.13 indicates that the estimated incremental cancer risks are greater than the USEPA acceptable range. Phenanthrene is also an outlier chemical but it has no published toxicity value and it is therefore not identified as a final COPC.

As shown in page 3 of Table E.13 (blue coded), when residential non-cancer risks were calculated for mercury, the HQ was less than one. However, for antimony, the HQ would exceed one for a child resident.

Please note that for each outlier sample, the entire data set will be screened in accordance with the screening procedures. However, this screening will be conducted in the comprehensive RA Work Plan to be completed for the areas requiring quantitative HHRAs. This process will separately assess risk on the individual outlier location.

In summary, for the Southern AU EU, the HQs for antimony and cobalt exceed one, and the estimated incremental cancer risks are greater than the USEPA acceptable range for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno (1,2,3-cd) pyrene.

Therefore, a quantitative HHRA is recommended for the Southern AU EU.

Exposure Unit	COPCs Identified	Table Reference
4256 Warren Street Property	Aluminum Arsenic Cobalt Iron Magnesium Vanadium	A.1
4900 Quebec Street Property	Mercury	A.2
3949 52 nd Street Property	Cobalt	A.3
4015 52 nd Street Property	Aluminum Cobalt Iron Magnesium	A.4
POI 39	Aluminum Manganese	A.5
Dalecarlia Woods	Zinc (identified as an outlier)	A.6
AOI 8	Manganese	A.7
AOI 11	Aluminum Magnesium	A.8
AOI 9	Aluminum Cobalt Manganese	A.9
AOI 13	Aluminum Cobalt Iron Mercury (identified as an outlier)	A.10
Western POI 53 EU	Aluminum Vanadium	A.11
Spaulding-Rankin	Aluminum Cobalt Iron, Manganese Vanadium	A.12
Southern AU	Aluminum Cobalt, Iron Magnesium, Manganese Vanadium Outliers: antimony, beryllium, mercury, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene indeno(1,2,3-cd) pyrene phenanthrene	A.13

Table 2.1. Summary of Follow-on Screen

1 **3.0 UNCERTAINTY DISCUSSION**

2 All HHRAs involve the use of assumptions, judgments, and imperfect data to varying degrees, 3 resulting in uncertainties in the final estimates of risk. These uncertainties are generally 4 associated with each step of the HHRA process (data evaluation and identification of COPCs, 5 exposure assessment, toxicity assessment, and risk characterization) (USEPA, 1989). However, 6 the parameters used in this follow-on screening of soil COPCs at SVFUDS were conservative, in 7 order to ensure that all potential site-related risks are considered. While the discussions below 8 are specific to this follow-on screen addendum, the uncertainties described in the Final Pre-2005 9 HHRA Review also apply.

10 Generally, the uncertainties associated with this follow-on soil screening procedure include:

- Screening levels are not available for all detected analytes (e.g., magnesium).
- Generic screening levels are based on conservative exposure assumptions that may not be appropriate for a site, possibly resulting in a greater number of analytes selected as COPCs.
- Use of a single detected concentration (as in the case of some EUs with limited sampling data) adds uncertainty to the screening.
- USEPA's published toxicity values, although peer-reviewed and based on available data, have uncertainties associated with the selection of the toxic effect level and the application of uncertainty factors to that effect level.
- Several screening levels use toxicity values that are not currently approved by USEPA
 including aluminum, cobalt, iron, thallium, and vanadium. The toxicity values for
 these metals are PPRTVs; PPRTVs were used in this follow-on screen, both in
 screening levels and to assess the potential for HQs greater than one, but are not
 approved for use in quantitative HHRAs by the USEPA.

Although there is uncertainty associated with this follow-on screening, the potential for EUassociated risks was assessed using conservative exposure assumptions (e.g., residential access to even the highest concentrations 350 days per year), accounting to some extent for this uncertainty and possibly resulting in selection of additional COPCs that are not associated with unacceptable risks. A more accurate and site-specific assessment of risk will be conducted for the EUs for which a full HHRA has been recommended, as discussed in Section 5.

11

4.0 CONCLUSIONS

The discussions below summarize the analysis presented in Section 2.3. Table 4.1 is a summary of the COPCs selected in the initial and additional screening steps conducted in this follow-on screening review. It is organized by EU and presents the COPCs, screening table reference, and conclusions.

4.1 Exposure Unit Summary

4.1.1 <u>4256 Warren Street Property</u>

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risks at these concentrations at this small discrete area. Therefore, the 4256 Warren Street property will not be further considered in a quantitative HHRA.

4.1.2 <u>4900 Quebec Street Property</u>

Based on the COPC identified and the risks calculated, mercury is unlikely to cause unacceptable risk at this small discrete area. Therefore, the 4900 Quebec Street property will not be further considered in a quantitative HHRA.

4.1.3 <u>3949 52nd Street Property</u>

Based on the COPC identified and the risks calculated, cobalt is unlikely to cause unacceptable risk at this small discrete area. Therefore, the 3949 52nd Street property will not be further considered in a quantitative HHRA.

4.1.4 <u>4015 52nd Street Property</u>

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risks at these concentrations at this small discrete area. Therefore, the 4015 52nd Street property will not be further considered in a quantitative HHRA.

4.1.5 <u>POI 39 EU</u>

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risk at this EU. Therefore, the POI 39 EU will not be further considered in a quantitative HHRA.

4.1.6 Dalecarlia Woods EU

Based on the COPC identified and the risks calculated, zinc is unlikely to cause unacceptable risk at this EU. Therefore, the Dalecarlia Woods EU will not be further considered in a quantitative HHRA.

4.1.7 <u>AOI 8 EU</u>

Based on the COPC identified and the risks calculated, manganese is unlikely to cause unacceptable risk at this EU. Therefore, the AOI 8 EU will not be further considered in a quantitative HHRA.

4.1.8 <u>AOI 11 EU</u>

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risk at this EU. Therefore, the AOI 11 EU will not be further considered in a quantitative HHRA.

4.1.9 <u>AOI 9 EU</u>

Based on the COPCs identified and the risks calculated, since the cobalt HQ exceeds one, a quantitative HHRA is recommended for the AOI 9 EU.

4.1.10 AOI 13 EU

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risks at this EU. Therefore, the AOI 13 EU will not be further considered in a quantitative HHRA.

4.1.11 Western POI 53 EU

Based on the COPCs identified and the risks calculated, these chemicals are unlikely to cause unacceptable risks at this EU. Therefore, the Western POI 53 EU will not be further considered in a quantitative HHRA.

4.1.12 Spaulding-Rankin EU

Based on the COPCs identified and the risks calculated, since the cobalt HQ exceeds one, a quantitative HHRA is recommended for the Spaulding-Rankin EU.

4.1.13 Southern AU EU

Based on the COPCs identified and the risks calculated, the HQs for antimony and cobalt exceed one, and the estimated incremental cancer risks are greater than the USEPA acceptable range for benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno (1,2,3-cd) pyrene. Therefore, a quantitative HHRA is recommended for the Southern AU EU.

Exposure Unit	COPCs Identified	TableReference	Conclusion
4256 Warren Street Property	Aluminum Arsenic Cobalt Iron Magnesium Vanadium	A.1	Non-cancer HQs < 1, no further evaluation
4900 Quebec Street Property 3949 52 nd Street	Mercury	A.2	Non-cancer $HQ < 1$, no further evaluation
Property	Cobalt	A.3	Non-cancer HQ < 1, no further evaluation
4015 52 nd Street Property	Aluminum Cobalt Iron Magnesium	A.4	Non-cancer HQs < 1, no further evaluation
POI 39	Aluminum Manganese	A.5	Non-cancer HQs < 1, no further evaluation
Dalecarlia Woods	Zinc (identified as an outlier)	A.6	Non-cancer HQ < 1, no further evaluation
AOI 8	Manganese	A.7	Non-cancer HQ < 1, no further evaluation
AOI 11	Aluminum Magnesium	A.8	Non-cancer HQs < 1, no further evaluation
AOI 9	Aluminum Cobalt Manganese	A.9	Cobalt Non-cancer HQ > 1, conduct HHRA
AOI 13	Aluminum Cobalt Iron Mercury (identified as an outlier)	A.10	Non-cancer HQs < 1, no further evaluation
Western POI 53 EU	Aluminum Vanadium	A.11	Non-cancer HQs < 1, no further evaluation
Spaulding-Rankin	Aluminum Cobalt Iron, Manganese Vanadium	A.12	Cobalt Non-cancer HQ > 1, conduct HHRA
Southern AU	Aluminum Cobalt, Iron Magnesium, Manganese Vanadium Outliers: antimony, beryllium, mercury, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene indeno(1,2,3-cd) pyrene phenanthrene	A.13	Antimony and cobalt HQs > 1, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and indeno (1,2,3-cd) pyrene exceed USEPA cancer risk range, conduct HHRA

Table 4.1. Summary of COPCs by EU

5.0 **RECOMMENDATIONS**

Table 4.1 indicates which EUs are recommended for a full HHRA. Those EUs, the COPCs for which potential risk was shown in the Appendix E tables, and the organization of the HHRAs, are summarized in Table 5.1 below. Figure 14 shows the EUs recommended for an HHRA.

Exposure Unit	COPCs Potentially Posing Risk	HHRA Organization
AOI 9	Cobalt	The HHRA for this EU and the HHRA for the Spaulding-Rankin EU will be bundled in the same document based on similar receptors (largely private residences)
Spaulding – Rankin	Cobalt	The HHRA for this EU and the HHRA for the AOI 9 EU will be bundled in the same document based on similar receptors (largely private residences)
Southern AU	Antimony Cobalt Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Indeno (1,2,3-cd) pyrene	The HHRA for this EU will be a standalone document addressing AU only based on similar receptors for this portion of AU

 Table 5.1. Recommended HHRAs

5.1 Recommended Approach for Conducting HHRAs

The EUs indicated in Table 5.1 will undergo a complete HHRA consisting of exposure assessment, toxicity assessment, and risk characterization steps.

The HHRA for the Southern AU EU will be a standalone document addressing AU only, based on similar receptors for this portion of AU. While risk will be quantified on an EU level, the HHRA for the Spaulding-Rankin and AOI 9 EUs will be bundled into a single HHRA document based on similar receptors (largely private residences).

A single comprehensive Work Plan will be prepared to provide the procedures to complete the HHRAs. The process is summarized in the paragraphs below.

All detected chemicals in that particular EU will be included in the HHRA, not just those COPCs resulting from this follow-on screen.

The exposure assessments will include the following receptors at residential locations: adult and child residents, outdoor (groundskeeper) workers, and construction/utility workers, while

university properties will be assessed for outdoor workers, student recreational users (representing lounging activities associated with a 4-year college student), and future theoretical residential users. Exposure pathways will include incidental soil ingestion, dermal contact, inhalation, and vegetable ingestion pathways, as appropriate for each EU.

The steps of a toxicity evaluation will include:

- Gathering toxicity information for the chemicals being evaluated;
- Identifying exposure periods for which toxicity values are necessary (e.g., chronic or sub-chronic); and
- Determining toxicity values for carcinogenic and non-carcinogenic effects (i.e., carcinogenic slope factors [SFs] and inhalation unit risks for carcinogens, and RfDs and reference concentrations [RfCs] for non-carcinogens).

Toxicity information would be obtained from the following hierarchy of primary sources:

- USEPA's IRIS on-line;
- USEPA's PPRTV;
- Agency for Toxic Substances and Disease Registry's Minimal Risk Levels;
- Toxicity Criteria Database (CalEPA, Office of Environmental Health Hazard Assessment, 2009); and
- USEPA's Health Effects Summary Tables (USEPA, 1997).

The final step of an HHRA is the risk characterization step, integrating the toxicity and exposure assessment outputs into quantitative expressions of risk. The total pathway-specific risk for a receptor will be derived by summing all the risks or hazards for all the chemicals in that pathway. The total carcinogenic risk for a receptor across all media and pathways will be derived by adding all the pathway specific risks or hazards. The acceptable incremental risk range of 1×10^{-6} to 1×10^{-4} is used to evaluate total cancer risks. The sum of HQs is referred to as a hazard index (HI). If a total receptor-specific HI exceeds one (HI > 1), there is a potential for non-cancer health effects, and the COPCs that contribute to that HI will be separated by target organ.

The conclusions of the EU-specific HHRAs will be taken into account in the risk management phase, when considering whether additional actions are required to protect public health at these locations.

6.0 **REFERENCES**

- CalEPA (California Environmental Protection Agency), Office of Environmental Health Hazard Assessment, 2009. Toxicity Criteria Database. Available online at: http://www.oehha.org/risk/chemicalDB/index.asp
- USACE, 1995. Remedial Investigation Report for the Operation Safe Removal (OSR) Formerly Used Defense Site, Washington, D.C.
- USACE, 1996. Final Remedial Investigation Report for Spaulding and Captain Rankin Areas, Volumes I and II. Parsons.
- USACE, 2000. Revised Final Engineering Evaluation/Cost Analysis (EE/CA) 4801, 4825, and 4835 Glenbrook Road, Spring Valley Operable Unit (OU) 3, Washington, DC.
- USACE, 2003. Engineering Evaluation/Cost Analysis for Arsenic in Soil. Volume III-Technical Memoranda and Other Supporting Data, Spring Valley Operable Units 4 and 5, Washington DC. December 17, 2003.
- USACE, 2008. Background Soil Sampling Report for SVFUDS. April 2008.
- USACE, 2012. Final Evaluation Document for the Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC. June 22, 2012.
- USACE, 2013. Final Pre-2005 Human Health Risk Assessment Review, Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC. August 2013.
- USEPA, 1989. Risk Assessment Guidance for Superfund (RAGS), Volume 1 Human Health Evaluation Manual (Part A). Interim final. Office of Emergency and Remedial Response. Washington, DC. EPA/540/1-89/002.
- USEPA, 1992. Guidance on Risk Characterization for Risk Managers and Risk Assessors. Memorandum from F. Henry Habicht II, Deputy Administrator. Office of Solid Waste and Emergency Response, Washington, DC.
- USEPA, 1997. Health Effects Assessment Summary Tables (HEAST). EPA 540/R-97/036.
- USEPA, 1999. USEPA Region III Draft Risk Assessment Report, Army Munitions Site, Spring Valley. October, 1999.
- USEPA, 2000. USEPA Region III American University Property, Spring Valley Operable Unit 3 HHRA. August 2000.
- USEPA, 2001. Risk Assessment Guidance for Superfund (RAGS) Volume 3 Part A, Process for Conducting Probabilistic Risk Assessment: Appendix C. December 31, 2001.
- USEPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005. July 2004.
- USEPA, 2006. Provisional Peer Reviewed Toxicity Values for Aluminum. 10-23-2006.

USEPA, 2008. Provisional Peer Reviewed Toxicity Values for Cobalt. 8-25-2008.

- USEPA, 2009. Final Provisional Peer-Reviewed Toxicity Values for Vanadium and Its Soluble Inorganic Compounds Other Than Vanadium Pentoxide (CASRN 7440-62-2 and Others). Derivation of Subchronic and Chronic Oral RfDs. 9-30-2009.
- USEPA, 2011. ProUCL, Version 4.1.01, updated 7/12/11. (http://www.epa.gov/osp/hstl/tsc/software.htm).
- USEPA, 2013. Regional or Risk-Based Screening Levels Tables. May 2013. Available online.

APPENDIX A: TABLES

- Table A.1:4256 Warren Street Property Screening Review
- Table A.2:
 4900 Quebec Street Property Screening Review
- Table A.3:3949 52nd Street Property Screening Review
- Table A.4:4015 52nd Street Property Screening Review
- Table A.5:POI 39 EU Screening Review
- Table A.6:
 Dalecarlia Woods EU Screening Review
- Table A.7: AOI 8 EU Screening Review
- Table A.8:AOI 11 EU Screening Review
- Table A.9:AOI 9 EU Screening Review
- Table A.10: AOI 13 EU Screening Review
- Table A.11: Western POI 53 EU Screening Review
- Table A.12: Spaulding-Rankin EU Screening Review
- Table A.13: Southern AU EU Screening Review

Table A.1												ADDITION	NAL SCREEN of PRO	OVISIONAL COP	Cs
	- Screening Review							INITIAL SCRE	EEN		STE	P 1	STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
4256 Warren	Aluminum	mg/kg	NC	7700	19100	25500	YES	MAX > BG and RSL	NA		25500	3.31	insufficient no. samples	YES, risk ratio >1	
	Antimony	mg/kg	NC	3.1	5.2	1.3	NO	MAX < BG and RSL							
1 sample	Arsenic	mg/kg	С	0.61	12.6	14.3	YES	MAX > BG and RSL	NA		14.3	23.44	insufficient no. samples	YES, risk ratio >1	
	Barium	mg/kg	NC		172	179	NO	MAX < RSL							
	Beryllium	mg/kg	NC		1.9	1.5	NO	MAX < BG and RSL							
	Cadmium	mg/kg	NC		2.36	1	NO	MAX < BG and RSL							
	Calcium	mg/kg		NS	NA	1180	NO	No BG or RSL							
	Chromium	mg/kg	NC	12000	51.3	66.6	NO	MAX < RSL							
	Cobalt	mg/kg	NC	2.3	17.8	19.6	YES	MAX > BG and RSL	NA		19.6	8.52	insufficient no. samples	YES, risk ratio >1	
	Copper	mg/kg	NC	310	49.65	169	NO	MAX < RSL							
	Iron	mg/kg	NC	5500	32400	67600	YES	MAX > BG and RSL	NA		67600	12.29	insufficient no. samples	YES, risk ratio >1	
	Lead	mg/kg		400	194	279	NO	MAX < RSL							
	Magnesium	mg/kg	NS		6950	7430		MAX > BG	NA		7430	No RSL	insufficient no. samples	YES, Max > BG	
	Manganese	mg/kg	NC		968	952	NO	MAX < BG							
	Mercury	mg/kg	NC		0.25	0.051	NO	MAX < BG and RSL							
	Nickel	mg/kg	NC		33.5	42.1	NO	MAX < RSL							
	Potassium	mg/kg		NS	NA	3770	NO	No BG or RSL							
	Selenium	mg/kg	NC		1.2	0.94	NO	MAX < BG and RSL							
	Sodium	mg/kg		NS	NA	86.2	NO	No BG or RSL							
		mg/kg	NC NC	0.078 39	2.2 75.5	ND (DL = 0.65)	NO	MAX DL < BG	NA		82.0	0.40	insufficient no.	YES,	
	Vanadium Zinc	mg/kg mg/kg	NC		158	83.2	YES NO	MAX > BG and RSL MAX < BG and RSL	INA		83.2	2.13	samples	risk ratio >1	
	Methylene chloride	µg/kg	NC		18	3.8	NO	MAX < BG and RSL							
	bis(2-Ethylhexyl) phthalate	µg/kg	С	35000	1479	74	NO	MAX < BG and RSL							
1. USEPA Mav 20	013 RSLs. NC adjusted downwa	ard by factor o	of 10												
2. Calculated usin	g EPA's ProUCL software (mini	imum of 5 sam	nples)												
	adjusted RSL; Drop out COPC				umber, then risk r	atio is max value d	ivided by adjusted R	SL							
	ground comparisons using Prol														
NA not applicable	; previous HHRA not conducted	d													
NC non-carcinoge	en														
C carcinogen															
NS none specifie															
mg/kg milligrams															
µg/kg micrograms	s per kilogram														
ND non detect															
DL detection Limi															
* If detected in the	e old risk assessment data set,	but not a Prov	visiona	al COPC (from P	re-2005 HHRA R	eview document), o	chemical is not show	n on this table unless mo	ore recent sample also	o contains a	detection of	that chemic	cal.		

Table A. 2												ADDITION	AL SCREEN of PRO	VISIONAL CO	OPCs
4900 Quebec Str	- Screening Review							INITIAL SCRE	EN		STE	EP 1	STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
4900 Quebec	Mercury	mg/kg	NC	1	0.25	2.61	YES	MAX > BG and RSL	NO		1.44	1.44	Site > BG	YES	
13 samples															
-	013 RSLs. NC adjusted		-												
	ng EPA's ProUCL softw			. ,			, , , , , ,								
	/ adjusted RSL; Drop o														
			L two	-sample hypothes	sis test to detern	nine it site res	uits greater than bac	kground (minimum of 5	samples)						
	e; previous HHRA not o	onducted													
NC non-carcinog C carcinogen															
NS none specifie	d		+												
mg/kg milligrams															
	s per kilogram														

Table A.3									
3949 52nd Str -	Screening Review	1						INITIAL SCREI	EN
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X th Avg of Remainin Data?
3949 52nd	Aluminum	mg/kg	NC	7700	19100	16500	NO	MAX < BG	
	Antimony	mg/kg	NC	3.1	5.2	ND (DL = 0.71 - 0.94)	NO	MAX DL < BG and RSL	
2 samples	Arsenic	mg/kg	С	0.61	12.6	4.4	NO	MAX < RSL	
	Barium	mg/kg	NC	1500	172	64.3	NO	MAX < BG and RSL	
	Beryllium	mg/kg	NC	1.6	1.9	1.2	NO	MAX < BG and RSL	
	Chromium	mg/kg	NC	12000	51.3	25	NO	MAX < BG and RSL	
	Cobalt	mg/kg	NC	2.3	17.8	19.7	YES	MAX > BG and RSL	NO
	Copper	mg/kg	NC	310	49.65	40.7	NO	MAX < BG and RSL	
	Lead	mg/kg	L	400	194	60.3	NO	MAX < RSL	
	Manganese	mg/kg	NC	180	968	730	NO	MAX < BG	
	Mercury	mg/kg	NC	1	0.25	0.13	NO	MAX < BG and RSL	
	Nickel	mg/kg	NC	150	33.5	24.8	NO	MAX < BG and RSL	
	Strontium	mg/kg	NC	4700	53	5.8	NO	MAX < BG and RSL	
	Tellurium	mg/kg		NS	5	1.2	NO	MAX < BG	
	Thallium	mg/kg	NC	0.078	2.2	ND (DL = 0.18 - 0.6)	NO	MAX DL < BG	
	Tin	mg/kg	NC	4700	8.4	0.78	NO	MAX < BG and RSL	
	Vanadium	mg/kg	NC	39	75.5	39	NO	MAX < BG	
	Zinc	mg/kg	NC	2300	158	69.7	NO	MAX < BG and RSL	
	Zirconium	mg/kg	NC	0.63	48.3	1.75	NO	MAX < BG	
	Perchlorate	µg/kg	NC	5500	0.612	2.9	NO	MAX < RSL	
	2013 RSLs. NC adjus								
	sing EPA's ProUCL so								
	by adjusted RSL; Drop								
4. Statistical bac	ckground comparisons	using ProUC	CL two	-sample hypothesis	test to determine if	site results greater t	han background (m	inimum of 5 samples)	
NC non-carcino	ogen								
C carcinogen									
NS none specif									
mg/kg milligram									
µg/kg microgra	ms per kilogram								
* If detected in	the old risk assessmer	nt data set, b	ut not	a Provisional COPC	C (from Pre-2005 HH	IRA Review docume	ent), chemical is not	shown on this table unless	more recent sam

			ADDIT	IONAL SCREEN of PR	OVISIONAL CO	PCs
		STE	P 1	STEP 2		
the ning	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
		19.7	8.57	insufficient no. samples	YES, risk ratio >1	
			<i></i>	. ,		
nple a	also contain	s a detectio	n of that ch	emical.		

Table A.4												ADDIT	IONAL SCREEN of P	ROVISIONAL CO	PCs
	Screening Review								CREEN		STE		STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
4015 52nd	Aluminum	mg/kg	NC	7700	19100	28000	YES	MAX > BG and RSL	NA		28000	3.64	insufficient no. samples	YES, risk ratio >1	
	Antimony	mg/kg	NC	3.1	5.2	ND (DL = 0.34)	NO	MAX DL < BG and RSL							
1 sample	Arsenic	mg/kg	С	0.61	12.6	3.4	NO	MAX < BG							
	Barium	mg/kg	NC	1500	172	109	NO	MAX < BG and RSL							
	Beryllium	mg/kg	NC	1.6	1.9	1.7	NO	MAX < BG							
	Cadmium	mg/kg	NC	7	2.36	0.57	NO	MAX < BG and RSL							
	Calcium	mg/kg		NS	NA	423		No BG or RSL							
	Chromium Cobalt	mg/kg mg/kg	NC NC	12000 2.3	51.3 17.8	49 22.8	NO YES	MAX < BG and RSL MAX > BG and RSL	NA		22.8	9.91	insufficient no. samples	YES, risk ratio >1	
	Copper	mg/kg	NC	310	49.65	37.6	NO	MAX < BG and RSL					34110163		
	Iron	mg/kg	NC	5500	32400	38300	YES	MAX > BG and RSL	NA		38300	6.96	insufficient no. samples	YES, risk ratio >1	
	Lead	mg/kg		400	194	20.7	NO	MAX < BG and RSL							
	Magnesium	mg/kg	NS	NS	6950	7160	YES	MAX > BG	NA		7160	No RSL	insufficient no. samples	YES, Max > BG	
	Manganese	mg/kg	NC	180	968	582	NO	MAX < BG					·		
	Mercury	mg/kg	NC	1	0.25	0.086	NO	MAX < BG and RSL							
	Nickel	mg/kg	NC	150	33.5	42.2		MAX < RSL							
	Potassium	mg/kg		NS	NA	4120		No BG or RSL							
	Selenium	mg/kg	NC	39	1.2	0.44	NO	MAX < BG and RSL							
	Sodium	mg/kg		NS	NA	89.1		No BG or RSL							
	Thallium	mg/kg	NC	0.078	2.2	1.1	NO	MAX < BG							
	Vanadium Zinc	mg/kg mg/kg	NC NC	39 2300	75.5 158	53.4 122	NO NO	MAX < BG MAX < BG and RSL							
	Methylene chloride	µg/kg	NC	36000	18	1.6	NO	MAX < BG and RSL							
2. Calculated usi	2013 RSLs. NC adjusted ing EPA's ProUCL softwa y adjusted RSL; Drop o	are (minimum	of 5 sa	amples)	mple number, the	en risk ratio is max v	, value divided by adju	sted RSL							
	kground comparisons us														
	le; previous HHRA not co	onducted													
NC non-carcino	gen														
C carcinogen															
NS none specifie															
mg/kg milligrams															
µg/kg microgran	ns per kilogram														

Table A.5												ADDITIONAL SCREEN	of PROVISIONAL C	OPCs
POI 39 - Screenin	g Review							INITIAL SCREEN		STE	P 1	STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
POI 39	Aluminum	mg/kg	NC	7700	19100	28400	YES	MAX > BG and RSL	NO	24437	3.17	Site > BG	YES	
	Antimony	mg/kg	NC	3.1	5.2	13.5	YES	MAX > BG and RSL	NO	11.8	3.81	Site ≤ BG	NO	
	Arsenic	mg/kg	С	0.61	12.6	5.30	NO	MAX < BG						
14 samples	Barium	mg/kg	NC	1500	172	172	NO	MAX < RSL						
	Beryllium	mg/kg	NC	16	1.9	3.40	NO	MAX < RSL						
	Chromium	mg/kg	NC	12000	51.3	43.6	NO	MAX < BG and RSL						
	Cobalt	mg/kg	NC	2.3	17.8	11.7	NO	MAX < BG						
	Copper	mg/kg	NC	310	49.65	27.7	NO	MAX < BG and RSL						
	Lead	mg/kg		400	194	96.7	NO	MAX < BG and RSL						
	Manganese	mg/kg	NC	180	968	2580	YES	MAX > BG and RSL	NO	1197	6.65	Site > BG	YES	
	Mercury	mg/kg	NC	1	0.25	0.090	NO	MAX < BG and RSL						
	Nickel	mg/kg	NC	150	33.5	34.7	NO	MAX < RSL						
	Strontium	mg/kg	NC	4700	53	12.0	NO	MAX < BG and RSL						
	Tellurium	mg/kg		NS	5	0.045	NO	MAX < BG						
	Thallium	mg/kg	NC	0.078	2.2	0.980	NO	MAX < BG						
	Vanadium	mg/kg	NC	39	75.5	49.3	NO	MAX < BG						
	Zinc	mg/kg	NC	2300	158	95.6	NO	MAX < BG and RSL						
	Zirconium	mg/kg	NC	0.63	48.3	6.67	NO	MAX < BG						
	Perchlorate	µg/kg	NC	5500	0.612	4.00	NO	MAX < RSL						
	13 RSLs. NC adjusted do	woword by fa	antor o	f 10										
	g EPA's ProUCL software													
	adjusted RSL; Drop out C				l nle number then	risk ratio is may v	alue divided by ediue	ted RSI						
	ground comparisons using													
VA not applicable			Samp											
VC non-carcinoge														
C carcinogen														
VS none specified	1													
ng/kg_milligrams µ														
ıg/kg micrograms														

Table A.6															A	DDITIONAL SCI			COPCs
	oods - Screening Review	1						ı	I	ITIAL SCREEN		1	1	STE			STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Backgroun d Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	NEXT Maximum Detected Value	Provisional COPC (NEXT max > higher of current RSL or 2008 background)?	Rationale	95% UCL of the mean ²	Risk Ratio ³	NOTES	Statistical Comparison to Background ⁴		NOTES
Dalecarlia Woods	Aluminum	mg/kg	NC	7700	19100	27783	YES	MAX > BG and RSL	NO	max associated with removed sample	17800	NO	MAX < BG						Evaluate aluminum in outlier sample separately (see Table E.6)
	Arsenic	mg/kg	С	0.61	12.6	7.60	NO	MAX < BG											
13 samples	Barium	mg/kg		1500	172	197	NO	MAX < RSL											
	Beryllium Cadmium	mg/kg mg/kg	NC NC	16 7	1.9 2.36	2.65 29	YES	MAX < RSL MAX > BG and RSL	All others ND	max associated with removed	1.3 U	NO	ND, but DL < BG and RSL						Evaluate cadmium in outlier sample separately (see Table
	Chromium	mg/kg	NC	12000	51.3	42.8	NO	MAX < BG and RSL	-	sample									E.6)
	Cobalt	mg/kg		2.3	17.8	13.4	NO	MAX < BG											
	Copper	mg/kg	NC	310	49.65	36.2	NO	MAX < BG and RSL											
	Lead	mg/kg		400	194	152	NO	MAX < BG and RSL											
	Manganese	mg/kg		180	968	899	NO	MAX < BG											
	Mercury	mg/kg	NC	1	0.25	0.130	NO	MAX < BG and RSL											
	Nickel	mg/kg		150	33.5	34.0	NO	MAX < RSL											
	Silver			39	0.87	0.73	NO	MAX < BG and RSL											
	Strontium	mg/kg	NC	4700	53	18.0	NO	MAX < BG and RSL											
	Tellurium	mg/kg		NS	5	3.00	NO	MAX < BG								All ND; used 1/2	,		Evaluate thallium in
	Thallium	mg/kg	NC	0.078	2.2	7.89	YES	MAX > BG and RSL	All others ND	max associated with removed sample	3.3 U	YES	ND, but DL > BG	0.49	6.29	of average DL as the EPC in the risk ratio.	Site ≤ BG	NO	outlier sample separately (see sect 2.3.6)
	Tin	mg/kg	NC	4700	8.4	2.80	NO	MAX < BG and RSL											
	Vanadium			39	75.5	48.0	NO	MAX < BG											
	Zinc	mg/kg	NC	2300	158	2548	YES	MAX > BG and RSL	YES	remove sample SV- ZONE9-A1 (LTC Bancroft)	100	NO	MAX < BG and R	SL					Evaluate zinc in outlier sample separately (see Table E.6)
	Zirconium	mg/kg	NC	0.63	48.3	6.15	NO	MAX < BG											
	Cyanide	mg/kg			0.26	1.00		MAX < RSL											
	Perchlorate	µg/kg			0.612	7.00	NO	MAX < RSL											
	2,4,6-Trinitrotoluene	μg/kg	NC	3600	NA	196	NO	MAX < RSL											
	2-amino-4,6-Dinitrotoluene	µg/kg	NC	15000	NA	183		MAX < RSL											
	4-amino-2,6-Dinitrotoluene		NC	15000	NA	166		MAX < RSL											
1. USEPA Ma	ay 2013 RSLs. NC adjusted	downward	by fac	ctor of 10															
2. Calculated	using EPA's ProUCL softwa	re (minimul	m of 5	i samples)															
3. EPC divide	ed by adjusted RSL; Drop ou	It COPC if	< or =	1. If insufficie															
4. Statistical to NA not applic	background comparisons usi	ng PIOUCL	. <i>เพ</i> บ-S	sample hypothe	esis lest to d	etermine it sit	e results greater than	background (minimum C	or o samples)										
NC non-carci			+																
C carcinoger	-		+																
NS none spe																			
	ams per kilogram		+																
	rams per kilogram																		
U not detecte																		1	
	in the old risk assessment da	ata set hut	not a	Provisional C	OPC (from P	рге-2005 ННР	A Review document	chemical is not shown o	n this table unless m	ore recent sample als	o containe a r	detection of that chemical	1						
		aia 501, DUL											•						
			+																
	l.	1	1		I	L	1		1	1		I		1	1	1	1	1	I

OI 8 Screenin	a Review							INITIAL SCREEN	
	9 1/24121								
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	
AOI 8	Aluminum	mg/kg	NC	7700	19100	17600	NO	MAX < BG	
	Antimony	mg/kg	NC	3.1	5.2	0.88	NO	MAX < BG and RS	
samples	Arsenic	mg/kg	С	0.61	12.6	6.3	NO	MAX < BG	
	Barium	mg/kg	NC	1500	172	111	NO	MAX < BG and RS	
	Beryllium	mg/kg	NC	1.6	1.9	1.2	NO	MAX < BG and RS	
	Boron Cadmium	mg/kg	NC NC	160 7	NS	33.4	NO	MAX < RSL MAX < BG and RS	
	Chromium	mg/kg mg/kg	NC	12000	2.36 51.3	0.66 49.8	NO NO	MAX < BG and RS	
	Cobalt	mg/kg	NC	2.3	17.8	16.5	NO	MAX < BG and RC	
	Copper	mg/kg	NC	310	49.65	94.8	NO	MAX < BO	
	Iron	mg/kg	NC	5500	32400	21500	NO	MAX < BG	
	Lead	mg/kg		400	194	71.9	NO	MAX < BG and RS	
	Magnesium	mg/kg	NS	NS	6950	3690	NO	MAX < BG	
	Manganese	mg/kg	NC	180	968	1130	YES	MAX > BG and R	
	Nickel	mg/kg	NC	150	33.5	35.2	NO	MAX < RSL	
	Selenium	mg/kg	NC	39	1.2	0.6	NO	MAX < BG and RS	
	Silver	mg/kg	NC	39	0.87	1.7	NO	MAX < RSL	
	Strontium	mg/kg	NC	4700	53	31.2	NO	MAX < BG and RS	
	Tellurium	mg/kg	NS	NS	5	4.8	NO	MAX < BG	
	Thallium	mg/kg	NC	0.078	2.2	0.38	NO	MAX < BG	
	Tin	mg/kg	NC	4700	8.4	4.5	NO	MAX < BG and RS	
	Titanium	mg/kg	NS	NS	2690	727	NO	MAX < BG	
	Vanadium	mg/kg	NC	39	75.5	30.4	NO	MAX < BG and RS	
	Zinc	mg/kg	NC	2300	158	138	NO	MAX < BG and RS	
	Zirconium	mg/kg	NC	0.63	48.3	23.5	NO	MAX < BG	
	Mercury	mg/kg	NC NC	1	0.25 0.148		NO NO	MAX < BG and RS MAX < RSL	
	Cyanide, Total Fluoride	mg/kg mg/kg	NC	2.2 310	0.26 NS	0.572 16	NO	MAX < RSL	
	2-Butanone	µg/kg	NC	2800000	18	5.1	NO	MAX < BG and RS	
	1,1'-Biphenyl	μg/kg	NC	5100	510	5.1	NO	MAX < BG and R	
	Acenaphthene	μg/kg	NC	340000	510	32	NO	MAX < BG and R	
	Anthracene	μg/kg	NC	1700000	510	71	NO	MAX < BG and R	
	Benzaldehyde	µg/kg	NC	780000	510	8.8	NO	MAX < BG and R	
	Benzo(a)anthracene	µg/kg	C	150	357.5	230	NO	MAX < BG	
	Benzo(a)pyrene	µg/kg	С	15	375	190	NO	MAX < BG	
	Benzo(b)fluoranthene	µg/kg	С	150	365.7	240	NO	MAX < BG	
	Benzo(ghi)perylene	µg/kg	NS	NS	331.5	110	NO	MAX < BG	
	Benzo(k)fluoranthene	µg/kg	С	1500	356.6	100	NO	MAX < BG and RS	
	Benzoic acid	µg/kg	NC	24000000	510	100	NO	MAX < BG and R	
	bis(2-Ethylhexyl) phthalate	µg/kg	С	35000	1479	200	NO	MAX < BG and R	
	Caprolactam	µg/kg	NC	3100000	510	47	NO	MAX < BG and RS	
	Carbazole	µg/kg	NS	NS	510	43	NO	MAX < BG	
	Chrysene	µg/kg	C	15000	400.9	260	NO	MAX < BG and RS	
	Dibenz(a,h)anthracene	µg/kg	C	15	510	36	NO	MAX < BG	
	Dibenzofuran Dimethyl phthalate	µg/kg	NC NS	7800 NS	510 510	8 300	NO NO	MAX < BG and RS MAX < BG	
	Dinethyl phthalate	μg/kg μg/kg	NC	610000	510	300 70	NO	MAX < BG MAX < BG and RS	
	Fluoranthene	μg/kg μg/kg	NC	230000	699.9	470	NO	MAX < BG and R	
	Fluorene	μg/kg	NC	230000	510	26	NO	MAX < BG and R	
	Indeno(1,2,3-cd)pyrene	μg/kg	C	150	334.7	95	NO	MAX < BG and R	
	Phenanthrene	µg/kg	NS	NS	407.4	370	NO	MAX < BG	
	Pyrene	µg/kg	NC	170000	626.4	500	NO	MAX < BG and RS	
	Perchlorate	µg/kg	NC	5500	0.612	7.2	NO	MAX < RSL	
	2013 RSLs. NC adjusted down								
	sing EPA's ProUCL software (m			, ,					
	by adjusted RSL; Drop out COI ckground comparisons using Pro							of 5 samples require	
A not applica	ble; previous HHRA not conduct ogen, C carcinogen, NS none	ted							
	ms per kilogram - μg/kg = micro								

			ADDIT	IONAL SCREEN OF PROV	OVISIONAL COPCs				
		STE		STEP 2					
	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	95% UCL	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES			
	NO	1130	6.28	NA	YES, risk ratio >1				
recer	nt sample also contains	s a detectior	n of that che	emical.					

									÷
AOI 11 Screening	Review							INITIAL SCREEN	1
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	ls Max of Re
AOI 11	Aluminum	mg/kg	NC	7700	19100	21000	YES	MAX > BG and RSL	
	Antimony	mg/kg	NC	3.1	5.2	0.45	NO	MAX < BG and RSL	
6 samples	Arsenic	mg/kg	С	0.61	12.6	5.8	NO	MAX < BG	
	Barium	mg/kg	NC	1500	172	75.4	NO	MAX < BG and RSL	
	Beryllium	mg/kg	NC	1.6	1.9	1.7	NO	MAX < BG	
	Cadmium	mg/kg	NC	7	2.36	0.32	NO	MAX < BG and RSL	
	Chromium	mg/kg	NC	12000	51.3	32.6	NO	MAX < BG and RSL	
	Cobalt	mg/kg	NC	2.3	17.8	14	NO	MAX < BG	
	Copper	mg/kg	NC	310	49.65	32.2	NO	MAX < BG and RSL	
	Iron	mg/kg	NC	5500	32400	28000	NO	MAX < BG	
	Lead	mg/kg		400	194	14	NO	MAX < BG and RSL	
	Magnesium	mg/kg	NS	NS	6950	7060	YES	MAX > BG	
	Manganese	mg/kg	NC	180	968	611	NO	MAX < BG	
	Nickel	mg/kg	NC	150	33.5	27.5	NO	MAX < BG and RSL	
	Silver	mg/kg	NC	39	0.87	0.32	NO	MAX < BG and RSL	
	Strontium	mg/kg	NC	4700	53	42.6	NO	MAX < BG and RSL	
	Tellurium	mg/kg	NS	NS	5	4.3	NO	MAX < BG	
	Thallium	mg/kg	NC	0.078	2.2	ND (DL = 4.1 - 4.4)	YES	ND, but DL > BG and RSL	
	Tin	mg/kg	NC	4700	8.4	1.9	NO	MAX < BG and RSL	-
	Titanium	mg/kg	NS	NS	2690	817	NO	MAX < BG	
	Vanadium	mg/kg	NC	39	75.5	34.8	NO	MAX < BG and RSL	
	Zinc	mg/kg	NC	2300	158	86.1	NO	MAX < BG and RSL	
	Zirconium	mg/kg	NC	0.63	48.3	40.8	NO	MAX < BG	
	Mercury	mg/kg	NC	1	0.25	0.04	NO	MAX < BG and RSL	
	Fluoride	mg/kg	NC	310	11	16	NO	MAX < RSL	
	2-Butanone	µg/kg	NC	2800000	18	9.1	NO	MAX < BG and RSL	
	Acetone	µg/kg	NC	6100000	554.7	53	NO	MAX < BG and RSL	
	Methyl Acetate	µg/kg	NC	7800000	18	11	NO	MAX < BG and RSL	
	Methylene Chloride	µg/kg	NC	56000	18	6.6	NO	MAX < BG and RSL	
	Bis(2-ethylhexyl) phthalate	µg/kg	С	35000	1479	39	NO	MAX < BG and RSL	
	Perchlorate	µg/kg	NC	5500	0.612	0.41	NO	MAX < BG and RSL	
	13 RSLs. NC adjusted downw								
	g EPA's ProUCL software (min		. ,						
	adjusted RSL; Drop out COP								
	ground comparisons using Pro		ole hyp	othesis test to deter	mine if site results g	reater than backg	round (minimum of 5 sa	amples)	
	; previous HHRA not conducte	d							<u> </u>
NC non-carcinoge	en								
C carcinogen									
NS none specified									<u> </u>
mg/kg milligrams									<u> </u>
ualka miaraarama	s per kilogram		1			1			

			ADDITION	NAL SCREEN of	PROVISIO	NAL COPCs
		STE	P 1	STEP 2		
Outlier - ax ≥ 10X the Avg emaining Data?	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	Notes
NO		19462	2.53	Site > BG	YES	
NO		6401	No RSL	Site > BG	YES	
NO		2.12	27.18	Site ≤ BG	NO	All ND; used 1/2 average DL as the EPC in the risk ratio
o contains a dete	ction of that	chemical.				

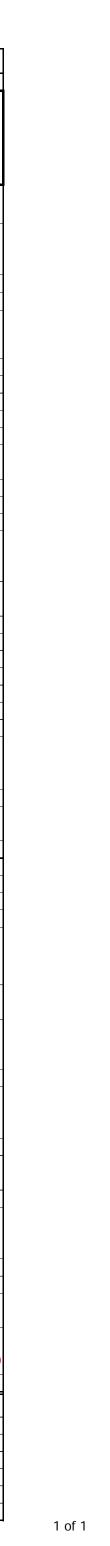
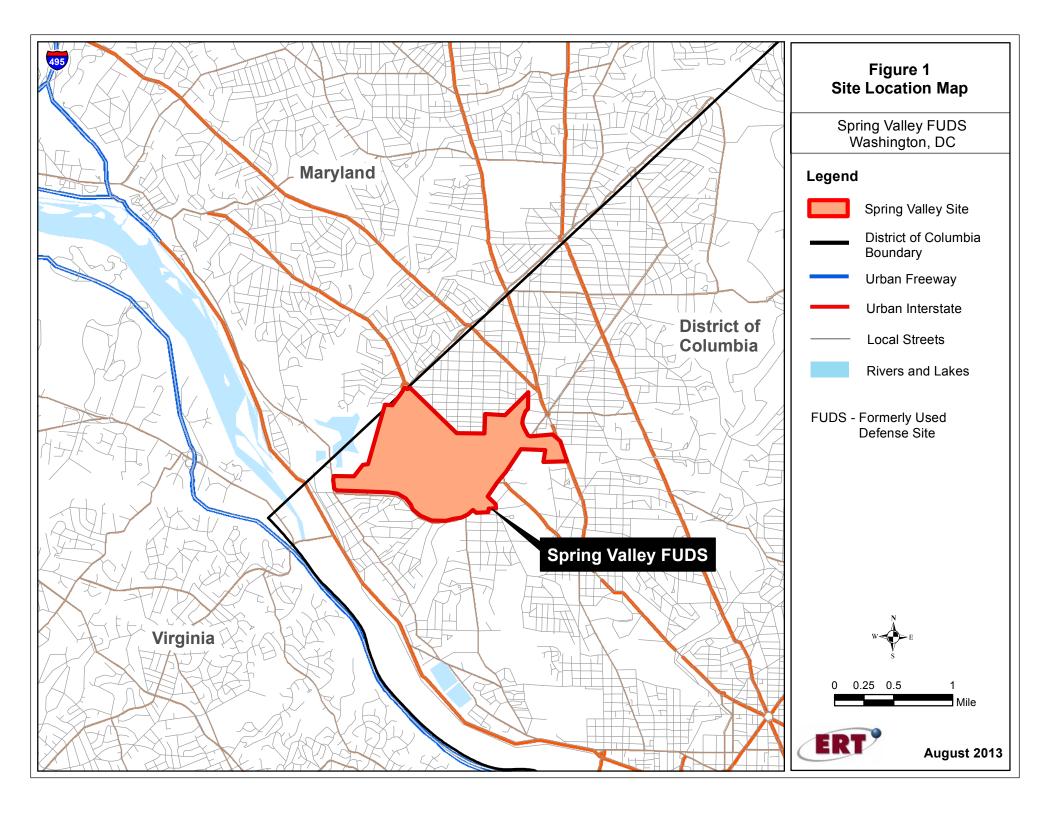
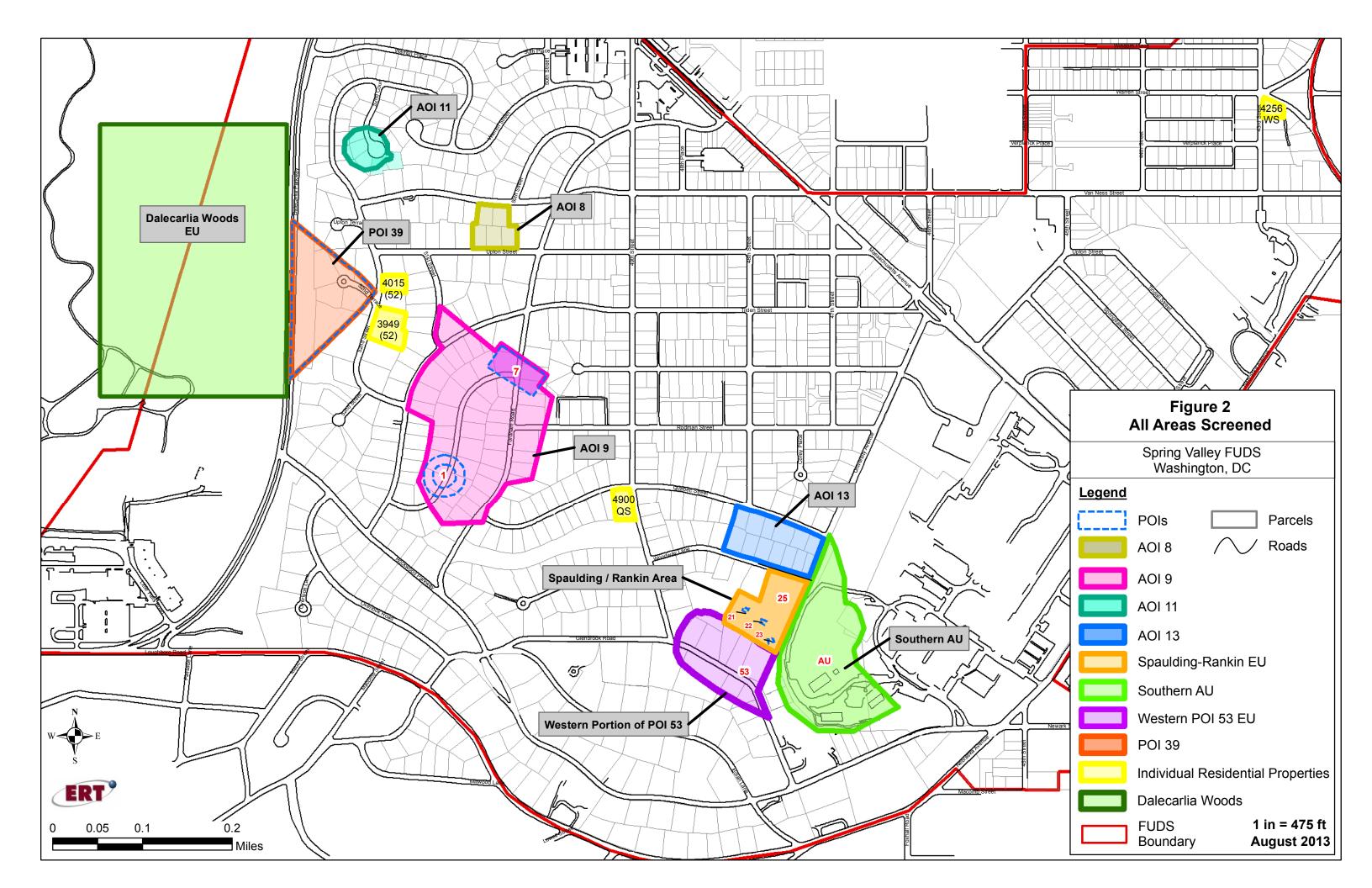
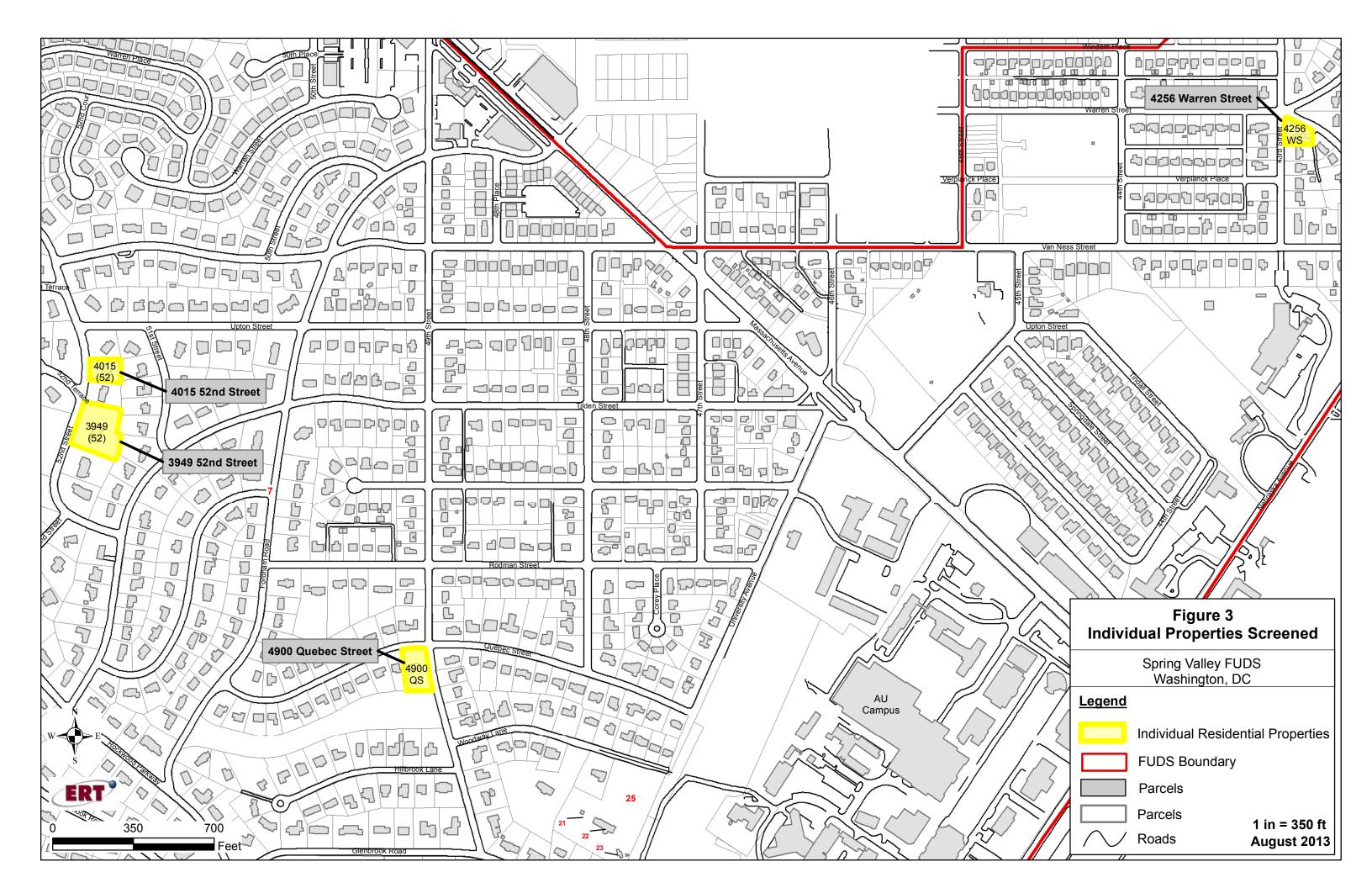

Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC	SEPA May 2013 RSLs ¹ 7700 3.1 0.61 1500 16 160 12000 2.3 310 5500 400 NA 180 1	2008 Background Conc. 19100 5.2 12.6 172 1.9 NS 51.3 17.8 49.65	Maximum Detected Value 51900 44.2 8.6 110 6.0 8.9	NO NO	INITIAL SCREEN Rationale MAX > BG and RSL MAX > BG and RSL MAX < BG MAX < BG MAX < BG and RSL	Outlier - Is Max ≥ 10X the Avg of Remaining Data? NO NO	STE 95% UCL of the mean ² 21199 10.12	P 1 Risk Ratio ³ 2.75 3.26	STEP 2 Statistical Comparison to Background ⁴ Site > BG Site ≤ BG	COPC? YES NO	NOTES
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC	RSLs ¹ 7700 3.1 0.61 1500 16 160 12000 2.3 310 5500 400 NA 180	Background Conc. 19100 5.2 12.6 172 1.9 NS 51.3 17.8	Detected Value 51900 44.2 8.6 110 6.0 8.9	(max > higher of current RSL or 2008 background)? YES YES NO NO	MAX > BG and RSL MAX > BG and RSL MAX < BG	Is Max ≥ 10X the Avg of Remaining Data? NO	of the mean ² 21199	2.75	Comparison to Background ⁴ Site > BG	YES	NOTES
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC NC NC NC NC NC N	3.1 0.61 1500 16 160 12000 2.3 310 5500 400 NA 180	5.2 12.6 172 1.9 NS 51.3 17.8	44.2 8.6 110 6.0 8.9	YES NO NO	MAX > BG and RSL MAX < BG						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	C NC NC NC NC NC NC NC NC NC NC NC NC	0.61 1500 16 160 12000 2.3 310 5500 400 NA 180	12.6 172 1.9 NS 51.3 17.8	8.6 110 6.0 8.9	NO NO	MAX < BG	NO	10.12	3.26	Site ≤ BG	NO	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC NC NC NC NC	1500 16 160 12000 2.3 310 5500 400 NA 180	172 1.9 NS 51.3 17.8	110 6.0 8.9	NO							
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC NC NC NC NC	16 160 12000 2.3 310 5500 400 NA 180	1.9 NS 51.3 17.8	6.0 8.9		MAX < BG and RSL						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NC NC NC NC NC	160 12000 2.3 310 5500 400 NA 180	NS 51.3 17.8	8.9	N()							
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC NC NS NC NC NC NC	12000 2.3 310 5500 400 NA 180	51.3 17.8			MAX < RSL						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NS NC NC NC NC	2.3 310 5500 400 NA 180	17.8	440		MAX < RSL						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NS NC NC NC NC NC	310 5500 400 NA 180		118		MAX < RSL		27.02	10.14	Site > BG	VEC	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NS NC NC NC NC NC	5500 400 NA 180	49.65	69.2 66.2		MAX > BG and RSL MAX < RSL		27.92	12.14	Site > BG	YES	
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	 NS NC NC NC NC	400 NA 180	32400	25800		MAX < BG						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NS NC NC NC NC	NA 180	194	367		MAX < BG						
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC NC	180	6950	7490		MAX > BG	NO	6578	No RSL	Site ≤ BG	NO	
mg/kg mg/kg mg/kg mg/kg mg/kg	NC NC NC		968	2040		MAX > BG and RSL	NO	678	3.77	Site > BG	YES	
mg/kg mg/kg mg/kg mg/kg	NC NC		0.25	0.32		MAX < RSL		070	5.77			
mg/kg mg/kg mg/kg	NC	150	33.5	73.5		MAX < RSL						
mg/kg mg/kg		4700	53	9.3		MAX < BG and RSL						
mg/kg	NS	NS	5	3.4		MAX < BG						
	NC	0.078	2.2	2.1		MAX < BG						
	NC	4700	8.4	30.5		MAX < RSL						
mg/kg		NA	2690	701	NO	MAX < BG						
mg/kg	NC	39	75.5	307	YES	MAX > BG and RSL	NO	72.08	1.85	Site ≤ BG	NO	
mg/kg	NC	2300	158	162	NO	MAX < RSL						
mg/kg	NC	0.63	48.3	6.38	NO	MAX < BG						
µg/kg	NC	5500	0.612	0.75	NO	MAX < RSL						
mg/kg	NC	2.2	0.26	0.51		MAX < RSL						
mg/kg	NC	310	11	9.7		MAX < BG and RSL						
µg/kg		61000	NS	9.6		MAX < RSL						
µg/kg	NC	61000	NS	12		MAX < RSL						
µg/kg	NC	340000	554.7	429		MAX < BG and RSL						
µg/kg	NC	1700000	NS	30.3		MAX < RSL						
µg/kg		NS	18	1.5		MAX < BG						
µg/kg	C	150	357.5	0.84		MAX < BG and RSL						
µg/kg	C	56000	18	2.6		MAX < BG and RSL						
µg/kg	NC	500000	18	11.3		MAX < BG and RSL						
	C											
		NS	407.4			MAX < BG						
	NC											
μg/kg μg/kg μg/kg μg/kg	C C NC	35000 15000 230000 NS	1479 400.9 699.9 407.4	51 169 650 350	NO NO NO NO	MAX < BG and RSL MAX < BG and RSL MAX < BG and RSL MAX < BG						
µg/kg	NC	170000	626.4	450	NU	IVIAX < BG and RSL						
<u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> <u>µg/kg</u> µg/kg		C NC NC or of 10	C 15 C 150 C 1500 C 35000 C 35000 C 15000 NC 230000 NS NS NC 170000	C 15 375 C 150 365.7 C 1500 356.6 NS 510 C 35000 1479 C 15000 400.9 NC 230000 699.9 NS 407.4 NC 170000 626.4	C 15 375 168 C 150 365.7 300 C 1500 356.6 155 NS 510 419 C 35000 1479 51 C 15000 400.9 169 NC 230000 699.9 650 NS 407.4 350 NC 170000 626.4 450 or of 10	NC 63000 18 3.5 NO C 15 375 168 NO C 150 365.7 300 NO C 1500 356.6 155 NO C 1500 356.6 155 NO C 1500 356.6 155 NO C 35000 1479 51 NO C 35000 1479 51 NO C 15000 400.9 169 NO NC 230000 699.9 650 NO NS 407.4 350 NO NC 170000 626.4 450 NO or of 10	NC 63000 18 3.5 NO MAX < BG and RSL C 15 375 168 NO MAX < BG	NC 63000 18 3.5 NO MAX < BG and RSL C 15 375 168 NO MAX < BG	NC 63000 18 3.5 NO MAX < BG and RSL Image: Constraint of the system of th	NC 63000 18 3.5 NO MAX < BG and RSL Image: Constraint of the stress of th	NC 63000 18 3.5 NO MAX < BG and RSL Image: Constraint of the state of the s	NC 63000 18 3.5 NO MAX < BG and RSL Image: Constraint of the state of the s

Table A.10																NAL SCREEN of PRO		COPCs
AOI 13 - Scree	ning Review								INIT		1		1	STE		STEP 2		
Exposure Init	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	NEXT Maximum Detected Value	Provisional COPC (NEXT max > higher of current RSL or 2008 background)?	Rationale	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
AOI 13	Aluminum	mg/kg	NC		19100	29700		MAX > BG and RSL	NO					20637	2.68	Site > BG	YES	
	Antimony	mg/kg	NC		5.2	0.996	NO	MAX < BG and RSL										
	Arsenic	mg/kg	C	0.61	12.6	12		MAX < BG										
	Barium Beryllium	mg/kg mg/kg	NC NC		172 1.9	168 1.9		MAX < BG and RSL MAX < RSL										
	Cadmium	mg/kg	NC		2.36	1.37		MAX < BG and RSL										
	Calcium	mg/kg		NS	NS	3520		No BG or RSL										
	Chromium	mg/kg	NC		51.3	125	NO	MAX < RSL										
	Cobalt	mg/kg	NC		17.8	30.7		MAX > BG and RSL	NO					21.53	9.36	Site > BG	YES	
		mg/kg	NC		49.65	116	NO	MAX < RSL MAX > BG and RSL	NO					20225	0.50		VEC	
	Iron Lead	mg/kg mg/kg	NC	5500 400	32400 194	38500 51.6		MAX > BG and RSL MAX < BG and RSL	NO					36225	6.59	Site > BG	YES	
	Magnesium	mg/kg	NS		6950	13100		MAX > BG	NO					9141	No RSL	Site ≤ BG	NO	
	Manganese	mg/kg	NC		968	992		MAX > BG and RSL	NO					636.1	3.53	Site ≤ BG	NO	
	Mercury	mg/kg	NC		0.25	2.3	YES	MAX > BG and RSL	YES	remove sample 4707WL-1(0.5)	0.29	NO	MAX < RSL					Evaluate outlier sample separately (see Table E.10)
	Nickel	mg/kg	NC		33.5	54.2		MAX < RSL										
	Potassium Selenium	mg/kg	NC	NS 39	NS 1.2	9580 6.85		No BG or RSL MAX < RSL										
	Silver	mg/kg mg/kg	NC		0.87	0.05		MAX < BG and RSL										
	Sodium	mg/kg		NS	NS	112		No BG or RSL										
	Strontium	mg/kg	NC	4700	53	17	NO	MAX < BG and RSL										
	Tellurium	mg/kg		NS	5	0.064		MAX < BG										
	Thallium	mg/kg	NC		2.2	3.2		MAX > BG and RSL	NO					1.42	18.22	Site ≤ BG	NO	
	Tin Titanium	mg/kg	NC	4700 NS	8.4 2690	3.1 1440	NO NO	MAX < BG and RSL MAX < BG										
	Vanadium	mg/kg mg/kg	NC		75.5	103		MAX > BG and RSL	NO					77.92	2.00	Site ≤ BG	NO	
	Zinc	mg/kg	NC		158	203		MAX < RSL							2.00			
	Zirconium	mg/kg	NC	0.63	48.3	3.6		MAX < BG										
	lodine	mg/kg	NC		0.08	45.67		MAX < RSL										
	Fluoride	mg/kg	NC		11	12	NO	MAX < RSL										
	Perchlorate Cyanide	µg/kg mg/kg	NC NC		0.612 0.26	2.9 0.318	NO NO	MAX < RSL MAX < RSL										
	Acetone	µg/kg	NC		554.7	57		MAX < BG and RSL										
	Chloroform	µg/kg	С		18	4.5		MAX < BG and RSL										
	Methylene chloride	µg/kg		56000	18	4.4	NO	MAX < BG and RSL										
	Toluene	µg/kg	NC		18	21	NO	MAX < RSL										
	m- & p-Xylene	µg/kg	NC		18	26		MAX < RSL										
	o-Xylene Dimethyl phthalate	μg/kg μg/kg	NC	69000 NS	18 510	10 310		MAX < RSL MAX < BG										
1. USEPA May	2013 RSLs. NC adj	iusted downv		by factor of 10														
3. EPC divided		rop out COP	PC if <	or = 1. If insuffi				ided by adjusted RSL										
NA not applica	ble; previous HHRA			two-sample hypo	othesis test to dete	ermine it site re	sults greater than ba	ackground (minimum of 5 sa	mples)									
NC non-carcin	ogen																	
C carcinogen NS none spec	ified																	
	ms per kilogram																	
	ams per kilogram																	
		nent data set	, but i	not a Provisional	COPC (from Pre-	-2005 HHRA Re	eview document), ch	nemical is not shown on this	table unless more red	cent sample also coi	ntains a detectio	on of that chemical.						

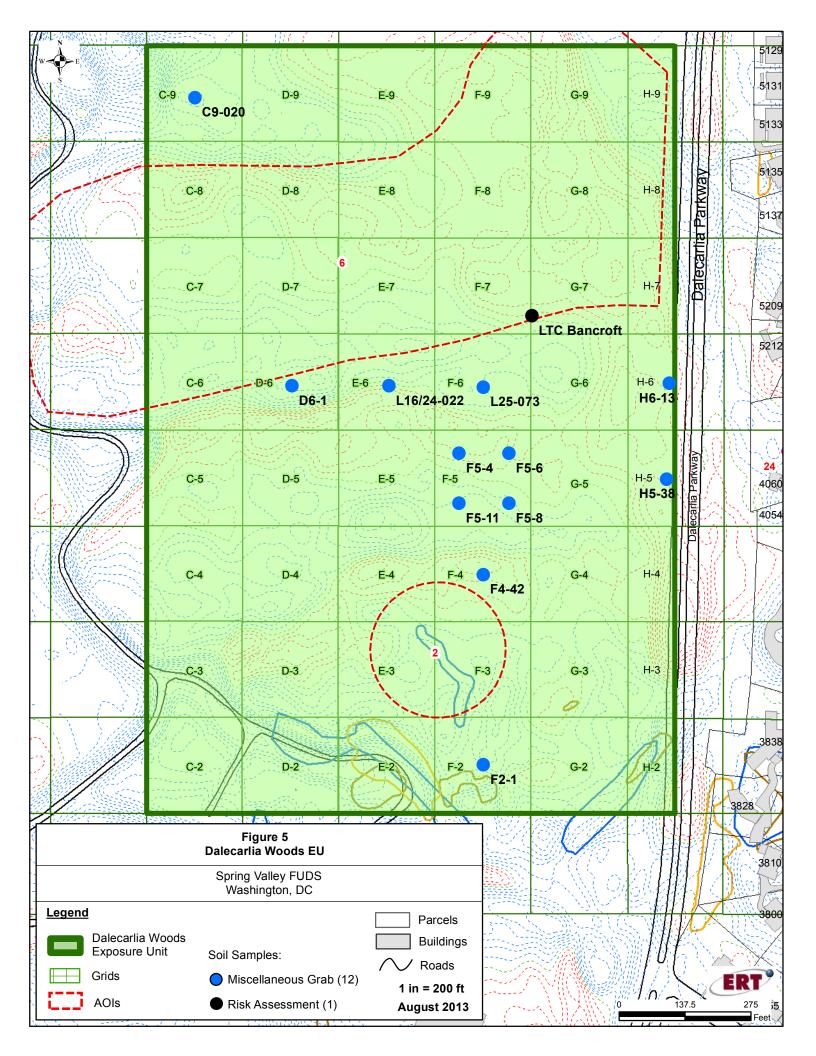
Table A.11												ADDITIO	NAL SCREEN of PRO	VISIONAL CO	PCs
Western POI 53 Scr	eening Review			EEN		STE	P 1	STEP 2							
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier - Is Max ≥ 10X the Avg of Remaining Data?	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
Western POI 53	Aluminum	mg/kg	NC	7700	19100	26500	YES	MAX > BG and RSL	NO		22022	2.86	Site > BG	YES	
	Antimony	mg/kg	NC	3.1	5.2	5	NO	MAX < BG							
10 samples	Arsenic	mg/kg	С	0.61	12.6	4	NO	MAX < BG							
	Manganese	mg/kg	NC	180	968	1380	YES	MAX > BG and RSL	NO		1189	6.61	Site ≤ BG	NO	
	Thallium	mg/kg	NC	0.078	2.2	3.41	YES	MAX > BG and RSL	NO	NO		32.51	Site ≤ BG	NO	
	Vanadium	mg/kg	NC	39	75.5	129	YES	MAX > BG and RSL	NO		84.68	2.17	Site > BG	YES	
1. USEPA May 2013	RSLs. NC adjusted dov	vnward by fac	ctor of	f 10											
	PA's ProUCL software (
	ljusted RSL; Drop out C														
	und comparisons using	ProUCL two-s	sample	e hypothesis tes	st to determine	if site results g	greater than backgro	ound (minimum of 5 samples	s required)						
NA not applicable															
NC non-carcinogen															
C carcinogen															
NS none specified															
mg/kg_milligrams per	-														
µg∕kg micrograms pe	er kilogram														

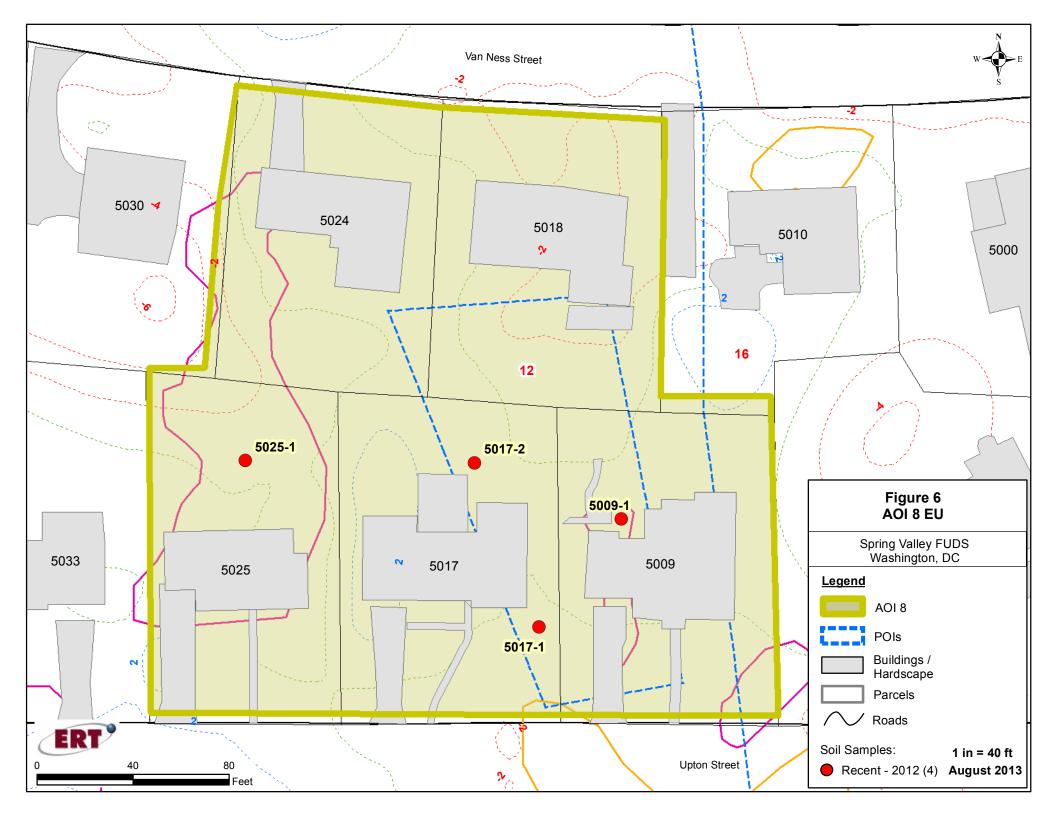

Table A.12											ADDIT	IONAL SCREEN of F	PROVISIONAL COPC	S
Spaulding-Rankin	- Screening Review							INITIAL SCREEN		STE	P 1	STEP 2		
Exposure Unit	Detected Analytes*	Units		USEPA May 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Notes	95% UCL of the mean ²	Risk Ratio ³	Statistical Comparison to Background ⁴	COPC?	NOTES
Spaulding-Rankin	Aluminum	mg/kg	NC	7700	19100	37428	YES	MAX > BG and RSL		16885	2.19	Site > BG	YES	
	Antimony	mg/kg	NC	3.1	5.2	18.5	YES	MAX > BG and RSL		4.492	1.45	Site ≤ BG	NO	
60 samples	Arsenic	mg/kg	С	0.61	12.6	131	YES	MAX > BG and RSL		16.46	26.98	Site ≤ BG	NO	
	Barium	mg/kg	NC	1500	172	293.57	NO	MAX < BG						
	Beryllium	mg/kg	NC		1.9	3.3	NO	MAX < RSL						
	Cadmium	mg/kg	NC		2.36	30.1	NO	MAX < RSL						
	Calcium	mg/kg		NS	NA	25590.57	NO	No BG or RSL						
	Chromium	mg/kg	NC		51.3	15866.71	YES	MAX > BG and RSL		2137	0.18		NO, risk ratio < 1	
	Cobalt	mg/kg	NC		17.8	426.52	YES	MAX > BG and RSL		99.95	43.46	Site > BG	YES	
	Copper	mg/kg	NC		49.65	481	YES	MAX > BG and RSL		129.5	0.42		NO, risk ratio < 1	
	Iron	mg/kg	NC		32400	140536.16	YES	MAX > BG and RSL		63501	11.55	Site > BG	YES	
	Lead	mg/kg		400	194	868	YES	MAX > BG and RSL		78.93	0.20		NO, risk ratio < 1	
	Magnesium	mg/kg		NS	6950	14900	YES	MAX > BG		5630	No RSL	Site ≤ BG	NO	
	Manganese	mg/kg	NC		968	3248	YES	MAX > BG and RSL		1286	7.14	Site > BG	YES	
	Mercury	mg/kg	NC		0.25	2.5	YES	MAX > BG and RSL		0.445	0.45		NO, risk ratio < 1	
	Nickel	mg/kg	NC		33.5	335	YES	MAX > BG and RSL		132.6	0.88		NO, risk ratio < 1	
	Potassium	mg/kg		NS	NA	3246.43	NO	No BG or RSL	_	40.45	0.40		NO risk ratio 4	
	Selenium	mg/kg	NC		1.2	47.07	YES	MAX > BG and RSL MAX < RSL		16.45	0.42		NO, risk ratio < 1	
	Silver Sodium	mg/kg	NC	39 NS	0.87 NA	3.73 199.29	NO	No BG or RSL						
	Strontium Total	mg/kg	NC		53	24	NO NO	MAX < RSL						
	Thallium	mg/kg	NC		2.2	75.72	YES	MAX > BG and RSL		10.45	133.97	Site ≤ BG	NO	
	Tin	mg/kg	NC		8.4	25.2	NO	MAX < RSL		10.45	133.97		NO	
	Titanium	mg/kg mg/kg	NC	NS NS	2690	685	NO	MAX < BG						
	Vanadium	mg/kg	NC		75.5	195	YES	MAX > BG and RSL		102.1	2.62	Site > BG	YES	
	Zinc	mg/kg	NC		158	13600	YES	MAX > BG and RSL		2501	1.09	Site ≤ BG	NO	
	Zirconium	mg/kg	NC		48.3	3.94	NO	MAX < BG		2001	1.00			
	Cyanide	mg/kg	NC		0.26	1.86	NO	MAX < RSL						
	Benzo(a)anthracene	µg/kg	C	150	357.5	110	NO	MAX < BG and RSL						
	Benzo(a)pyrene	μg/kg μg/kg	C	15	375	86	NO	MAX < BG						
	Benzo(b)fluoranthene	μg/kg	C	150	365.7	84	NO	MAX < BG and RSL						
	Chrysene	µg/kg	C	15000	400.9	110	NO	MAX < BG and RSL						
I. USEPA May 2013	3 RSLs. NC adjusted downwa	rd by factor of	10											
2. Calculated using	EPA's ProUCL software (minir	num of 5 samp	les)											
-	djusted RSL; Drop out COPC			-		-	-							
-	ound comparisons using ProU	CL two-sample	hypot	hesis test to determi	ne if site results grea	ater than backgroun	d (minimum of 5 sampl	es)						
IA not applicable														
IC non-carcinogen														
C carcinogen														
NS none specified														
ng/kg_milligrams pe	-													
g/kg_micrograms_p	per kilogram													
					5 HHRA Review do									

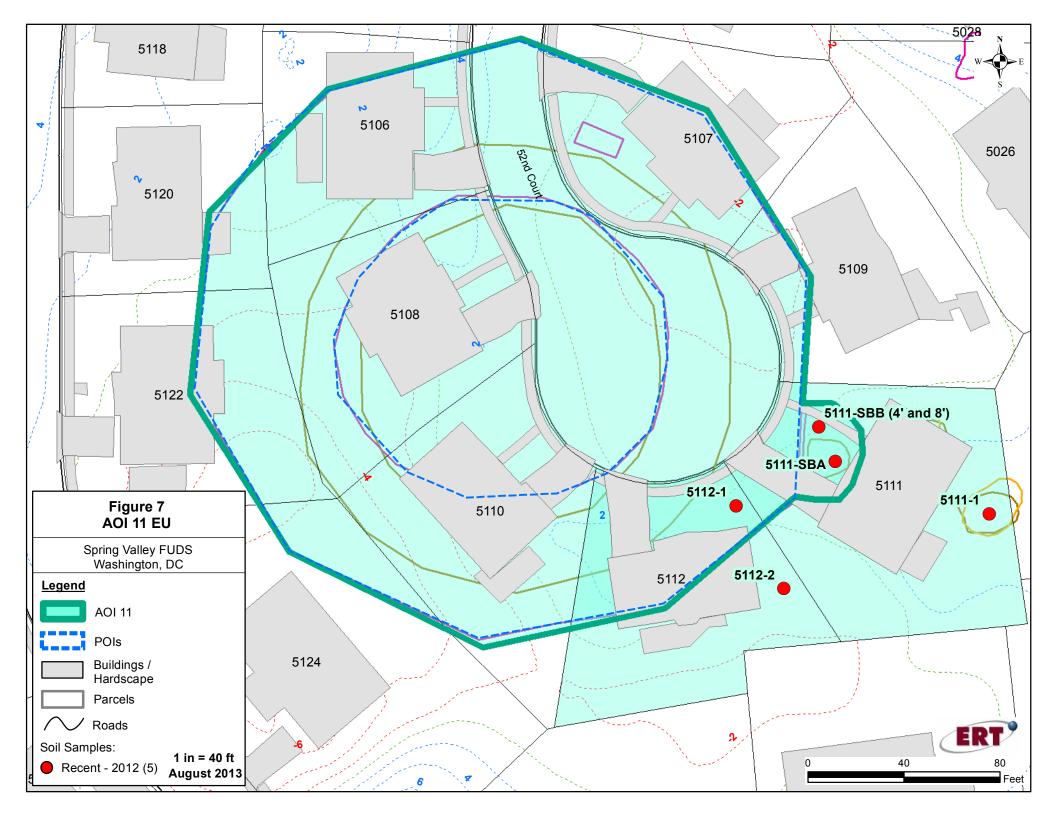

Image Image <t< th=""><th>Table A.1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0.75</th><th></th><th>ONAL SCREEN</th><th>of PROVISIO</th><th>NAL COPCs</th></t<>	Table A.1																	0.75		ONAL SCREEN	of PROVISIO	NAL COPCs
Mark	Exposure Unit				Background	Detected	COPC (max > higher of current RSL or 2008	Rationale	Is Max ≥ 10X the Avg	Maximum Detected	Provisional COPC (NEXT max > higher of current RSL or 2008		Is NEXT Max ≥ 10X the Avg of	Maximum Detected	NEXT max > higher or current RSL or 2008	f	Is NEXT Max ≥ 10X the Avg of Remaining	95% UCL of the	Risk	Statistical Comparison to	COPC?	NOTES
Image: state	Southern AU	Aluminum	mg/kg NG	C 7700	19100	57700		MAX > BG and RSL		56138	YES	MAX > BG and RSL	NO					20727	2.69	Site > BG	YES	
is is<		Antimony	mg/kg NG	C 3.1	5.2	40.4	YES	MAX > BG and RSL	YES, remove sample	36.3	YES	MAX > BG and RSL		19.1	YES	MAX > BG and RSL	NO	3.73	1.20	Site ≤ BG	NO	AU-03 and AU-10 are Outliers (see Table
norm no. no. <th< td=""><td>115 samples</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.63</td><td>9.22</td><td>Site ≤ BG</td><td>NO</td><td>E.13)</td></th<>	115 samples																	5.63	9.22	Site ≤ BG	NO	E.13)
Norm	<u>p</u>									4.5	NO	MAX < BG										SV-12A is an Outlier (see Table E.13)
Image Math																						
									10									50.00	05.00	0.4 50		
Image: state Image: state <t< td=""><td></td><td></td><td>00</td><td></td><td></td><td></td><td></td><td></td><td>NO</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>58.96</td><td>25.63</td><td>Site > BG</td><td>TES</td><td></td></t<>			00						NO									58.96	25.63	Site > BG	TES	
Note: Note: <t< td=""><td></td><td>Iron</td><td>mg/kg N(</td><td>C 5500</td><td>32400</td><td>90475</td><td>YES</td><td>MAX > BG and RSL</td><td></td><td>68056</td><td>YES</td><td>MAX > BG and RSL</td><td>NO</td><td></td><td></td><td></td><td></td><td>36159</td><td>6.57</td><td>Site > BG</td><td>YES</td><td></td></t<>		Iron	mg/kg N(C 5500	32400	90475	YES	MAX > BG and RSL		68056	YES	MAX > BG and RSL	NO					36159	6.57	Site > BG	YES	
Norw		Magnesium	mg/kg	NS	6950	21639	YES	MAX > BG														
No. N									YES, remove sample	2.3	YES	MAX > BG and RSL		1.7	YES	MAX > BG and RSL	NO		0.36			SV-AU-05 and SV-04 are Outliers (see
		Nickel	mg/kg NG	C 150	33.5	176	YES	MAX > BG and RSL	NO									67.32	0.45			Table E.13)
Name org No No <																						
Single Field With Gene Constrained Constrained <td></td>																						
Bordrin mpt N N O/D N O/D NO MAX BOX MAX BOX MAX BOX MAX BOX MAX BOX BOX <td></td> <td></td> <td>mg/kg</td> <td></td> <td></td> <td></td> <td></td> <td>No BG or RSL</td> <td></td>			mg/kg					No BG or RSL														
Shar Weight Min (wight Min (wig																						
Induity																						
Next Next No										4.73	YES	MAX > BG and RSL	NO					1.05	13.44	Site ≤ BG	NO	(see Section 2.3.13)
Option mining C 2 0.00 1.01 N/V 1.02 N/V 1.00 N/V 1.00 N/V 1.00<										293	YES	MAX > BG and RSL	NO					73.66	1.89	Site > BG	YES	
Accorder:12:00 model with law 2 C 0.22 1.4 1.3 VES Model with law 2 Model with law 2<																						
Mathema Columb why C Moto MAX Moto MAX Moto MAX Moto Moto Moto Max Moto Max Moto Max Moto Max Moto Max Max Moto Max Max Moto Max Max Moto Max M									NO		NO Max result excavat	ted: remainder ND										
Benck (Mathington Space Space <td></td>																						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Anthracene	µg/kg N0	C 1,700,000	510	181.25	NO	MAX < BG and RSL														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Benzo(a)anthracene	µg/kg C	150	357.5	3800	YES	MAX > BG and RSL		773	YES	MAX > BG and RSL	NO					150.9	1.01	Site ≤ BG	NO	BAKER-03 is Outlier (see Table E.13)
leptod log log <thl>log lo</thl>		Benzo(a)pyrene	µg/kg C	2 15	375	2800	YES	MAX > BG and RSL		595	YES	MAX > BG and RSL	NO					215.5	14.37	Site ≤ BG	NO	
Banca (Muoranthune up/s C 1500 360.0 2100 92.00000 510 210 NO MAX + RSL And A + RSL		Benzo(b)fluoranthene	µg/kg C	150	365.7	3400	YES	MAX > BG and RSL	-	895	YES	MAX > BG and RSL	NO					173.3	1.16	Site ≤ BG	NO	BAKER-03 is Outlier (see Table E.13)
Betrony function Index		Benzo(g,h,i)perylene	µg/kg	NS	331.5	244	NO	MAX < BG														SV-BAKER-03 is
Bis/2-ethy/hexp/1 µykg C 3500 1478 131 NO MAX < BG and RSL Image and										377	NO	MAX < RSL										Outlier (see Table E.13)
phrblate Chrysenpurple phrblateC350014'9'13'NONAX < BG and RSLCCC<																						
Diberz(a,h)anthracene $\mu g/kg$ C 15 510 1100 YES MAX > BG and RSL Remaining data all ND, but max was more removed sample ND DL < BG		phthalate																				
And A A <td></td> <td>NO</td> <td>DL < BG</td> <td></td>											NO	DL < BG										
Fluorantene µg/kg NC 23000 699.9 4200 NO MAX < RSL Image																						
Indende grade grade grade State <																						
Prenantmene pg/kg NS 407.4 2000 YES MAX > BG SV-BAKER-03 327 NO MAX < BG MAX < BG Image: Comparise of the co		Indeno(1,2,3-c,d)								273	NO	MAX < BG										BAKER-03 is Outlier (see Table E.13)
A USEPA May 2013 RSLs. NC adjusted downward by factor of 10 C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL software (minimum of 5 samples) C. Calculated using EPA's ProUCL two-sample hypothesis test to determine if site results greater than background (minimum of 5 samples) I. A not applicable, NC non-carcinogen, C carcinogen, NS none specified I. A not applicable, NC non-carcinogen, C carcinogen, NS none specified I. May fulligrams per kilogram, µg/kg micrograms per kilogram I. May milingrams per kilogram, µg/kg micrograms per kilogram									-	327	NO	MAX < BG										SV-BAKER-03 is Outlier (see Table E.13
Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated using EPA's ProUCL software (minimum of 5 samples) Image: Calculated RSL; Drop out COPC if < or = 1. If insufficient sample number, then risk ratio is max value divided by adjusted RSL						5500	NO	MAX < RSL														
8. EPC divided by adjusted RSL; Drop out COPC if < or = 1. If insufficient sample number, then risk ratio is max value divided by adjusted RSL = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =			•																			
Item set is start as lockground comparisons using ProUCL two-sample hypothesis test to determine if site results greater than background (minimum of 5 samples) Item set is ite results greater than background (minimum of 5 samples) Item set is the set		2. Calculated using EPA's ProUCL software (minimum of 5 samples) 3. EPC divided by adjusted RSL; Drop out COPC if < or = 1. If insufficient sample number, then risk ratio is max value divided by adjusted RSL																				
ng/kg milligrams per kilogram, µg/kg micrograms per kilogram		4. Statistical background comparisons using ProUCL two-sample hypothesis test to determine if site results greater than background (minimum of 5 samples)																				
If detected in the old risk assessment data set, but not a Provisional COPC (from Pre-2005 HHRA Review document), chemical is not shown on this table unless more recent sample also contains a detection of that chemical																						
	rng/Kg_m * If detec	ingrarns per kilogram, µg	µку_тістодгат ment data set	is per Kilogram	isional COPC (1	from Pre-2004	5 HHRA Review de	Coument), chemical is no	t shown on this table unle	ess more re	Lecent sample also contair	s a detection of that ch	nemical.									

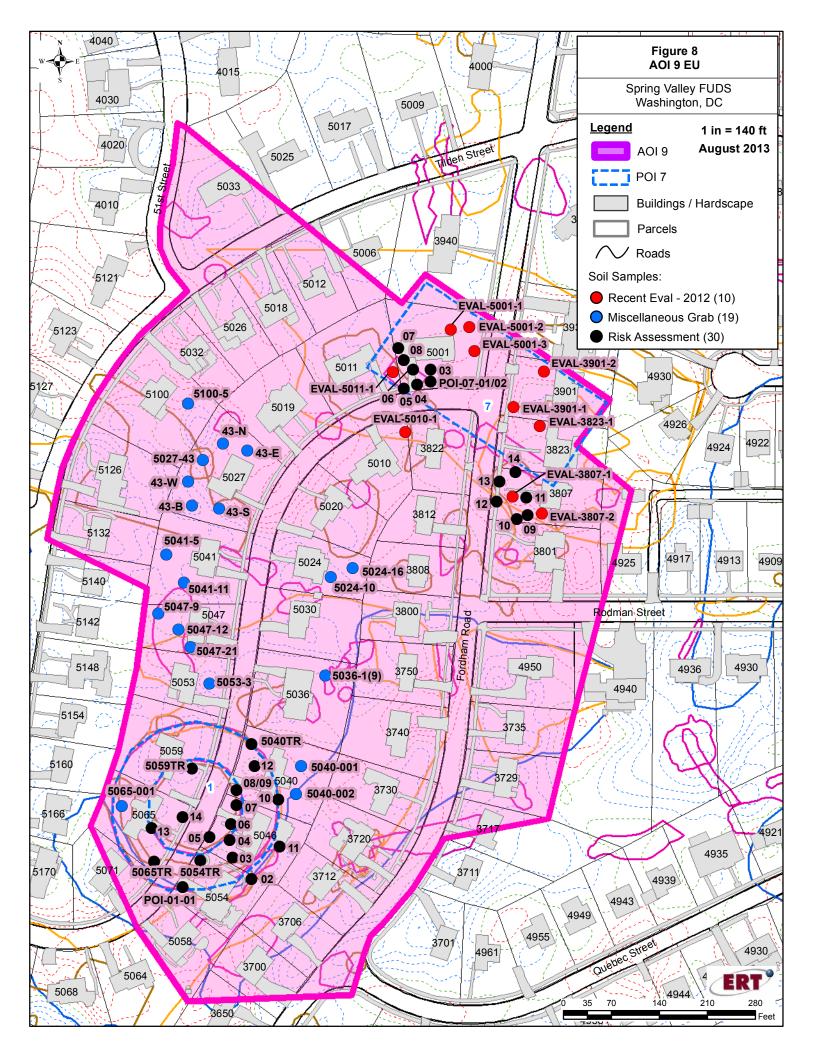


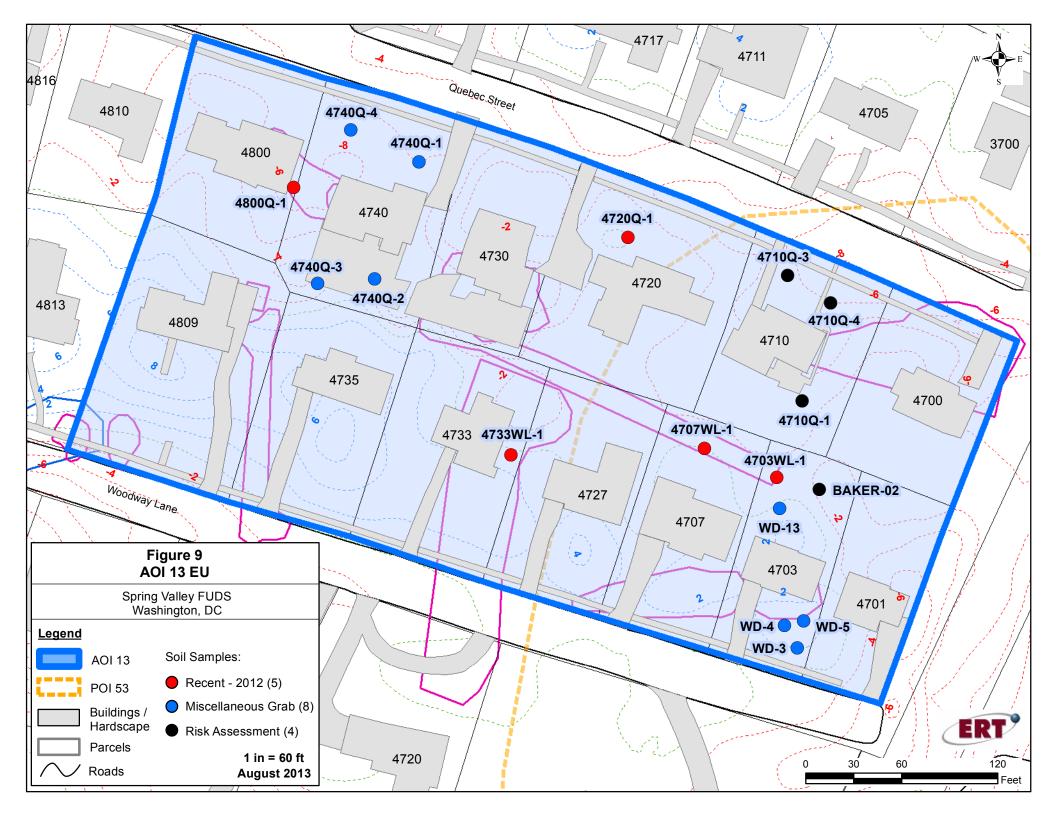
APPENDIX B: FIGURES

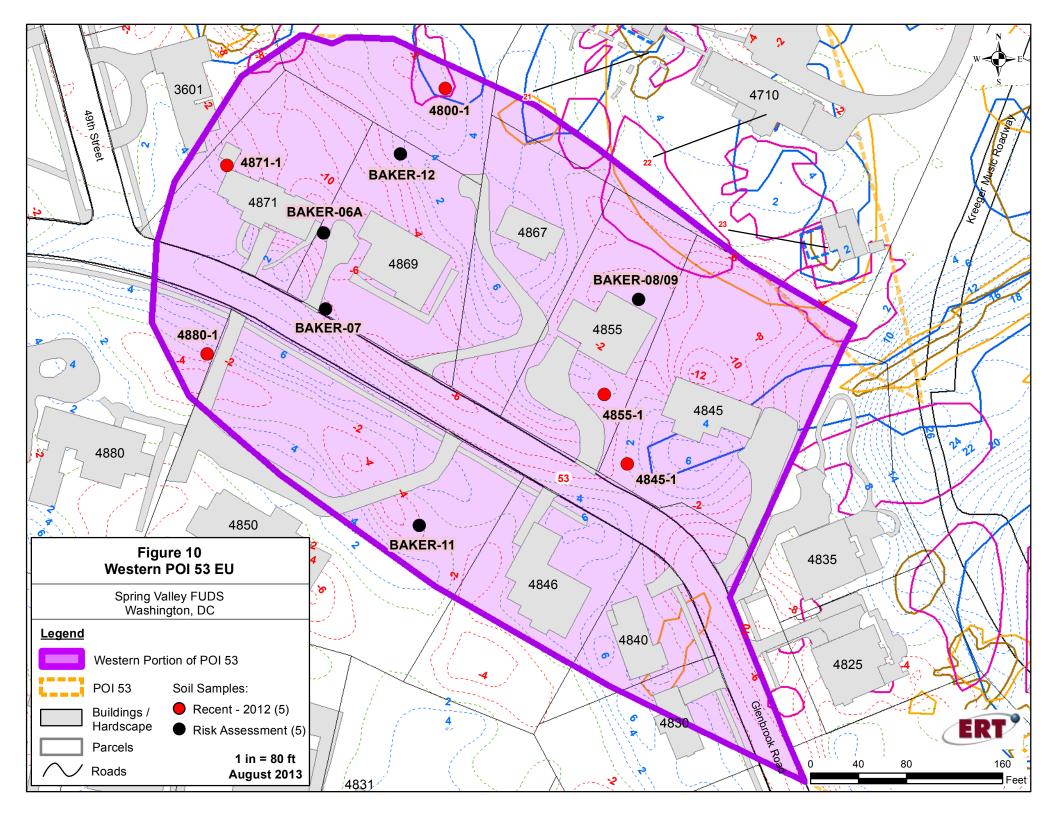

- Figure 1: Site Location Map
- Figure 2: All Areas Screened
- Figure 3: Individual Properties Screened
- Figure 4: POI 39 Exposure Unit
- Figure 5: Dalecarlia Woods Exposure Unit
- Figure 6: AOI 8 Exposure Unit
- Figure 7: AOI 11 Exposure Unit
- Figure 8: AOI 9 Exposure Unit
- Figure 9: AOI 13 Exposure Unit
- Figure 10: Western POI 53 Exposure Unit
- Figure 11: Spaulding-Rankin Exposure Unit
- Figure 12: Southern AU Exposure Unit
- Figure 13: Southern AU Exposure Unit Outlier Locations
- Figure 14: Areas Recommended for Human Health Risk Assessment

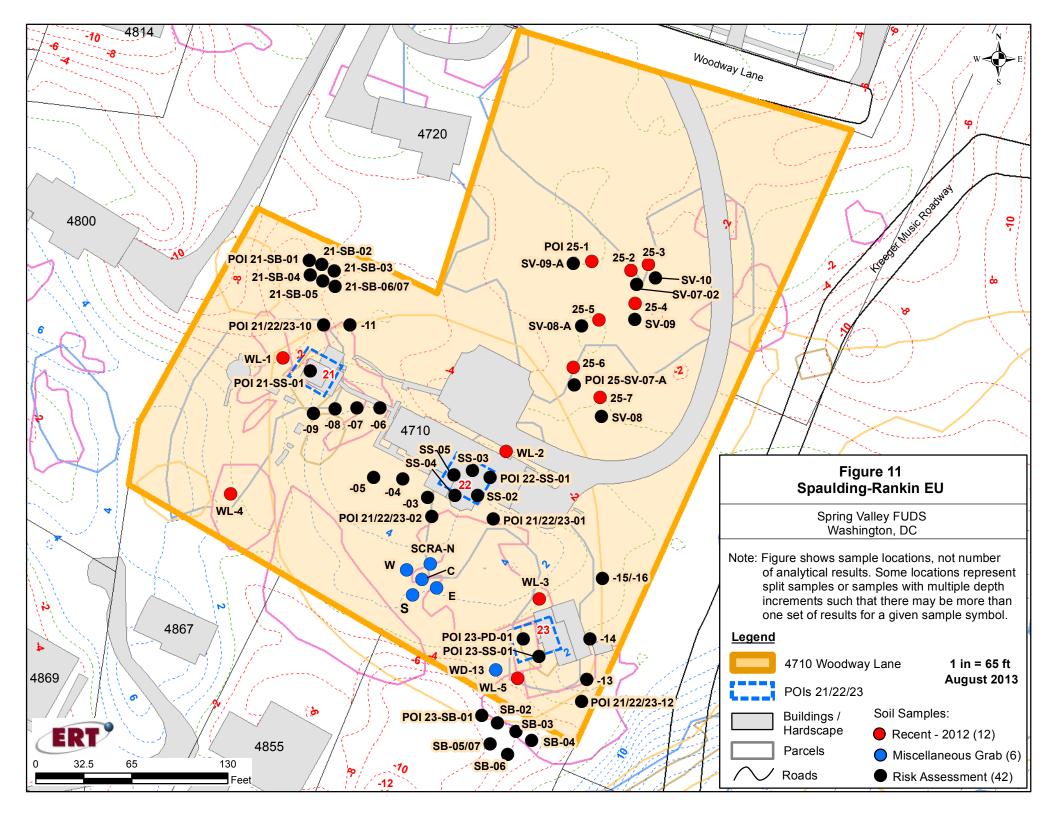


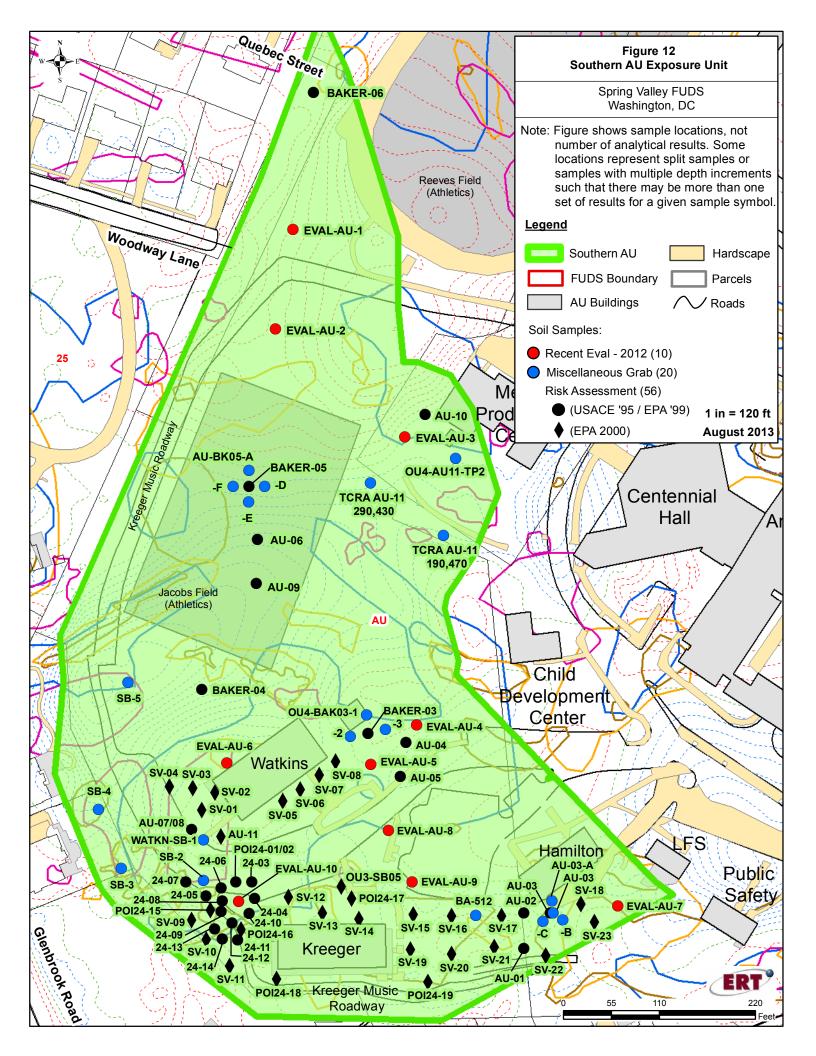


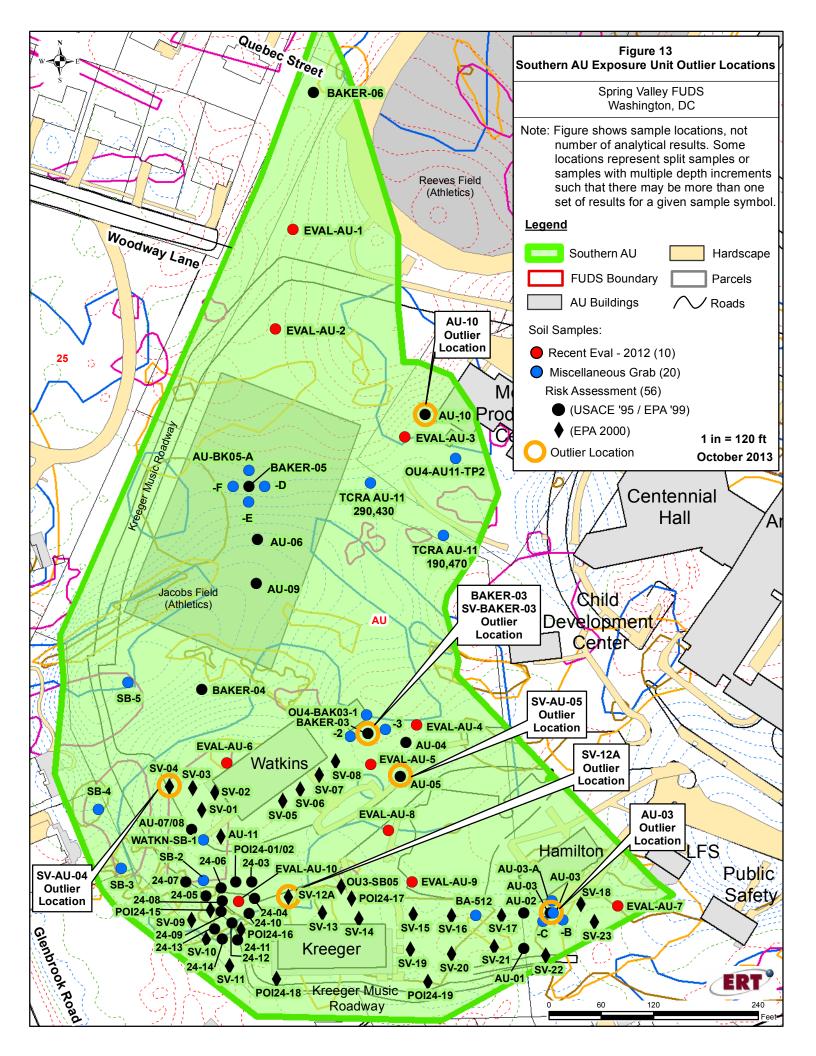


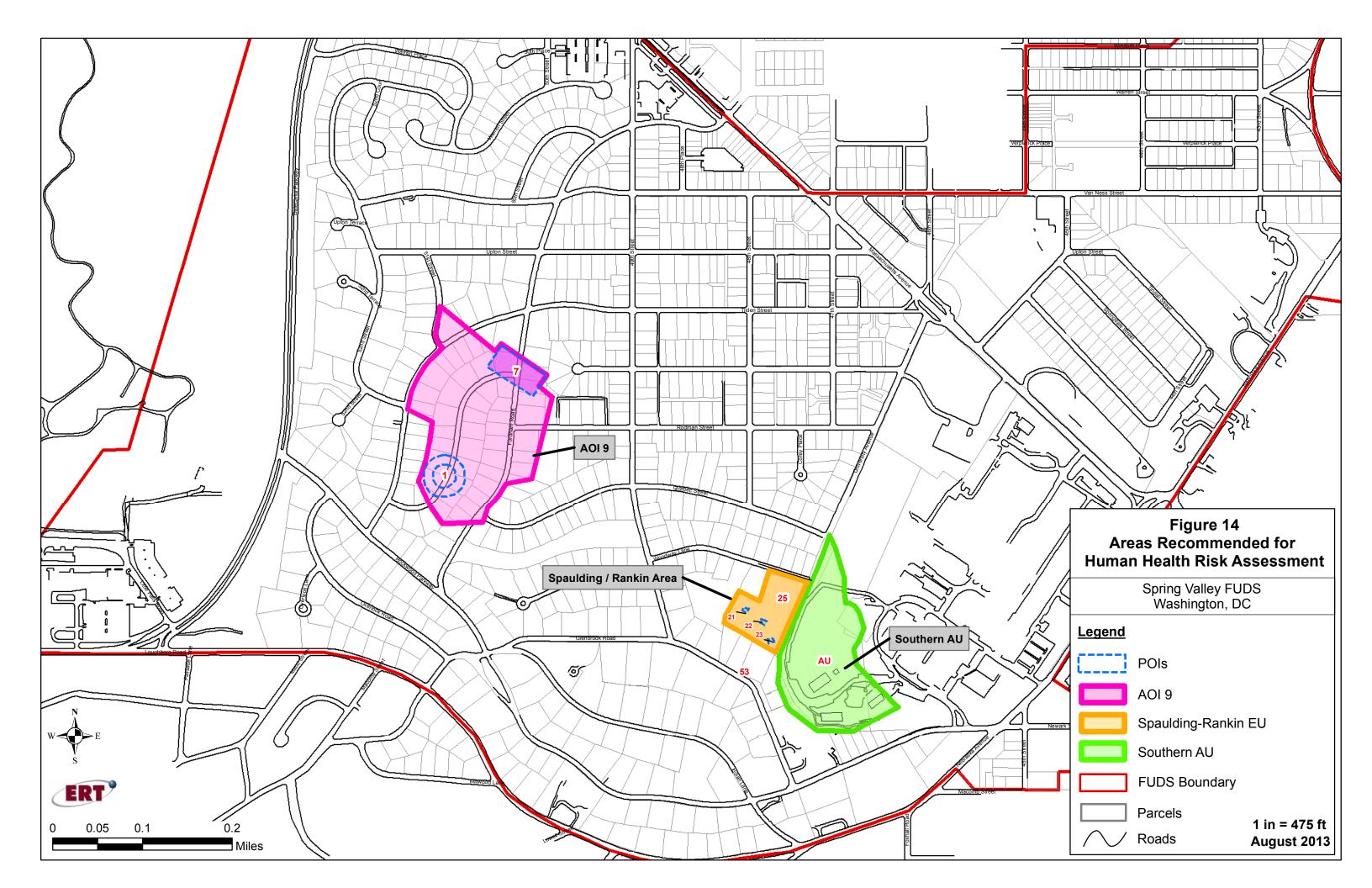












APPENDIX C: SCREENING STEPS PROCEDURE - MEMORANDUM

This Page Intentionally Left Blank

Screening of Exposure Units (EUs) for Addendum 1 Follow-on Screen

A. Initial Screen for all Detected Chemicals

Initial Screen: Compare to higher of RSL and Background

- 1. Compare the maximum detected concentration to the risk-based screening level (RSL) (adjusted down by 10 if based on non-cancer effects) and
- 2. For inorganics, compare the maximum detected concentrations to the 2008 background concentration

Initial Screen (for Sample Sets with All NDs)

 Check the Detection Limit (DL). If the DL is greater than the screening level (SL), the analyte is selected as a Provisional COPC (whether DL is greater than or less than background). [Based on the concept that these chemicals with high DLs could exist on a site with concentrations greater than SLs.]

Conclusions of Initial Screen:

If the maximum detected concentration is greater than the higher of the current RSL or the 2008 background, or for data sets with all NDs the DL<SL, it is selected as a Provisional COPC.

B. Additional Screen for Provisional COPCs

Additional Screen Step 1: Calculate Risk Ratio:

- 1. Assuming sufficient quantity of samples (5 or greater),¹ ProUCL is used to calculate the exposure point concentration (EPC), which is the 95% upper confidence limit (UCL) of the mean.
 - If a data set consists of all ND results, the EPC is assumed to be ½ of the *average* DL.
 - If there is only one detect, the EPC is the detected value.
 - If a data set consists of fewer than 5 samples, the EPC is the maximum detected concentration.
 - If the ProUCL-calculated EPC is greater than the maximum detected value, then the maximum detected value is used as the EPC in the risk ratio.

¹ ProUCL will not compute any decision statistics such as UCLs and UPLs, UTLs for data sets of size less than 5 (without NDs). Moreover, for data sets with NDs of at least 5, no decision statistics will be computed when not more than one detected observation is present in the data set. For small data sets of size less than 5, ProUCL provides warning messages informing the user about the potential deficiencies present in the data set.

2. Calculate Risk Ratio: compare EPCs to the most current RSLs (adjusted down by 10 if based on non-cancer endpoint)²

Conclusions of Additional Screen Step 1:

If the risk ratio is less than or equal to one, EPC does not exceed RSL, and that COPC drops out.

If the risk ratio is greater than one, EPC exceeds the RSL, go to next step (statistical comparison to background).

Additional Screen Step 2. Background Comparison: Assuming sufficient quantity of samples (<u>5 or greater</u>),³ a two-sample hypothesis test comparing site concentrations to background concentrations is done using ProUCL- recommended procedures:⁴

- For sample sets without NDs (all results are detected values), use the Student's t (pooled test) (assumes equal variances), or the Welch-Satterthwaite (W-S) test (assumes unequal variances), as described below (ProUCL provides both).
 - Use Student's t (pooled test), which assumes <u>equal</u> variances, as long as this assumption is consistent with the Test of Equality of Variances.
 - When variances are found by the Test of Equality of Variances to be <u>unequal</u>, two things could occur:
 - The conclusions of the Student's t test and the W-S test are the <u>same</u>, and this conclusion is listed in the results.
 - The conclusions of the Student's t test and the W-S test are <u>different</u>. Then, if the Test of Equality of Variances shows that the data set has <u>unequal variances</u>, the W-S results are used.
- 2. For sample sets with any nondetects (either some or all non-detects), use the Wilcoxon-Mann-Whitney (WMW) test (ProUCL enters in the minimum detection limit and the maximum detection limit to do the comparison).
 - For data sets with all NDs and DL>SL, if the result of the statistical comparison to background is site<BG, this means that, even with the elevated detection limits, if this COPC was found on the site at these DL concentrations, the concentrations would be less than background, so the COPC drops out.

² Risk ratio defined as EPC/RSL (RSL adjusted down by 10 for non-cancer-based RSLs).

 $^{^3}$ ProUCL recommends a minimum data set of 8 to 10 samples, however, does perform background calculations for sample sets of as low as 5; reduced statistical power is associated with calculations based on the bare minimum number of samples. For locations with <5 samples, the background comparison is not done.

⁴ These tests are appropriate for site-versus-background comparisons of the means, and compare: site parameters (e.g., mean, shape, distribution, variability) to background parameters (e.g., mean, shape, distribution, variability). According to ProUCL User's Guide, two-sample hypothesis tests are preferably used for site-versus-background comparisons.

Notes:

In some cases, the listed site mean and maximum concentrations are higher than the background mean and maximums, but the ProUCL tests still conclude that site < BG. This is because the mean, shape, distribution, and variability of the data, as well as the number of non-detects, are taken into account in the ProUCL statistical tests.⁵ ProUCL concludes that the differences are consistent with the random variation observed (and expected) in the samples. Therefore the sample results do not constitute "statistically significant evidence of a difference." That is, this 'small' difference is thoroughly consistent with chance variations predicted by statistical theory and therefore it would be invalid to conclude there is any difference in means. In effect, ProUCL concludes that there is insufficient evidence that site is greater than BG.

Conclusions of Additional Screen Step 2:

If ProUCL determines that Site concentrations are less than or equal to background, the COPC drops out.

If ProUCL determines that Site concentrations are greater than background, the COPC is retained.

Excavated and Backfilled Areas:

The sub-steps of re-analyzing data after removing samples that represent excavated soil and then reanalyzing data after the backfill data have been included in the Step 1 and 2 analysis above. For details on those steps (previously Steps 3a and 3b) see Appendix C in the Final Pre-2005 document.

EU Dilution – Outlier Testing

The following approach is used to confirm that the EUs are appropriate with respect to the detected concentrations and that the identified EUs do not dilute higher concentrations over a too large area. (areas of higher concentrations within an EU may be considered outliers or hot spots).

This procedure is be to applied to an EU that consists of multiple individual properties. Individual residences are assumed to constitute an EU as it is impractical to further subdivide a property (yard) into multiple EUs.

⁵ For the WMW test, the ProUCL Technical Guide states: "The WMW test does not place enough weight on the larger site and background measurements. This means, a WMW may lead to the conclusion that two populations are comparable even when the observations in the right tail of one distribution (e.g., site) are significantly larger than the right tail observations of other population (e.g., background)." For the t test, this may occur because the test is not robust to outliers because sample means and standard deviations are sensitive to outliers.

For an EU comprising multiple properties, check for outliers as follows:

- 1. Identify provisional COPCs (max > higher of RSL or BG) in that EU.
- Check max for each COPC against the average of the rest of the sample points in the EU. Example: AOI-9 EU has 60 samples. Compare max aluminum concentration to the average of the other 59 aluminum data points.
 - If max is less than 10 times the average, it is not an outlier--proceed to next screening step
 - If max is more than 10 or more times the average, then aluminum in the max sample is an outlier. Then, the procedure must be repeated for the next highest aluminum data point, etc.—iterative process to identify outliers.
- 3. Remove the max aluminum sample from the data set and call this **Location A** (defined by that single sample). Continue the COPC screen for the AOI-9 EU with only 59 samples.
- 4. If another COPC (e.g., barium) is shown to be an outlier, remove the max barium sample from the data set and call this **Location B**; AOI-9 EU now only has 58 samples for the screen, and so on.
- 5. At the end of the screening step, COPCs are identified for AOI-9 EU and the additional separate locations of the outliers. For example, aluminum might be the only COPC at Location A and barium might be the only COPC at Location B.

Addressing the outliers

At the Follow-on screening stage, assess the outliers using the screening process above. If COPCs posing potential risk result, then the outlier area or location moves to the full Risk Assessment stage and the details will be provided for that particular HHRA.

APPENDIX D: ProUCL STATISTICAL TESTING OUTPUT (provided on CD only)

Note:

Output is organized by 'A' tables in Appendix A.

- 95%UCLs from Step 1 of the 'A' tables presented first
- Background testing from Step 2 of the 'A' tables presented next

This Page Intentionally Left Blank

(General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
	95%			
Number of Bootstrap Operations	2000			
			BEGIN T	ABLE A
	N	lercury 490	00 Quebec	
		General S	Nation	
Numbr	er of Valid Observations		Number of Distinct Observations	12
		15		15
Raw Sta	atistics		Log-transformed Statistics	
	Minimum	0.0062	Minimum of Log Data	-5.083
	Maximum	2.61	Maximum of Log Data	
	Mean	0.721	Mean of log Data	
	Geometric Mean	0.323	SD of log Data	1.868
	Median	0.66		
	SD	0.687		
	Std. Error of Mean	0.191		
	Coefficient of Variation	0.954		
	Skewness	1.761		
		<u>_</u>		
		Relevant UC	CL Statistics	
Normal Distri			Lognormal Distribution Test	
	apiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	apiro Wilk Critical Value	0.866	Shapiro Wilk Critical Value	0.866
Sha Data not Normal at 59	-	0.866	Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level	0.866
Data not Normal at 59	% Significance Level	0.866	Data not Lognormal at 5% Significance Level	0.866
	% Significance Level		Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution	
Data not Normal at 59 Assuming Norm	 Significance Level nal Distribution 95% Student's-t UCL 		Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL	20.75
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness)	1.06	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	20.75 4.902
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted	Significance Level nal Distribution 95% Student's-t UCL sted for Skewness) I-CLT UCL (Chen-1995)	1.06	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	20.75 4.902 6.419
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness)	1.06	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL	20.75 4.902 6.419
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified	 Significance Level nal Distribution 95% Student's-t UCL sted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) 	1.06	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	20.75 4.902 6.419
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted	 Significance Level al Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) ribution Test 	1.06 1.134 1.076	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified	 Significance Level nal Distribution 95% Student's-t UCL sted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) 	1.06 1.134 1.076 0.626	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified	 Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) ribution Test k star (bias corrected) 	1.06 1.134 1.076 0.626 1.151	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr	 Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star 	1.06 1.134 1.076 0.626 1.151 0.721	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr	 Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) ribution Test k star (bias corrected) Theta Star MLE of Mean 	1.06 1.134 1.076 0.626 1.151 0.721 0.911	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri	 Significance Level nal Distribution 95% Student's-t UCL sted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) ibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation 	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr ML1 Approximate	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Distribution	20.75 4.902 6.419 9.398
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) "ibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05)	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data appear Gamma Distributed at 5% Significance I Nonparametric Statistics Nonparametric Statistics	20.75 4.902 6.419 9.398 _evel
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) red Level of Significance	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data Distribution Data appear Gamma Distributed at 5% Significance I 95% CLT UCL	20.75 4.902 6.419 9.398 _evel 1.034 1.06
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste Adjuste Adjuste	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ted Level of Significance usted Chi Square Value on-Darling Test Statistic	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 024a Distribution Data Distributed at 5% Significance I 025% Chebyshev (MVUE) UCL 95% CLT UCL	20.75 4.902 6.419 9.398 evel 1.034 1.034 1.023
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste Adjuste Adjuste	Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star chi Square Value (.05) ted Level of Significance usted Chi Square Value	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 0 Data Distribution Data Distributed at 5% Significance I Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Standard Bootstrap UCL	20.75 4.902 6.419 9.398 evel 1.034 1.034 1.06 1.023 1.195
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste Adj	 Significance Level Significance Level Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ed Level of Significance usted Chi Square Value on-Darling Test Statistic Darling 5% Critical Value v-Smirnov Test Statistic 	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 0 Data Distribution Data appear Gamma Distributed at 5% Significance I 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr Gamma Distr Adjuste	 Significance Level al Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ted Level of Significance usted Chi Square Value on-Darling Test Statistic oarling 5% Critical Value v-Smirnov Test Statistic 	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 0 Data Distribution Data appear Gamma Distributed at 5% Significance I 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	20.75 4.902 6.419 9.398 _evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distr MLI Approximate Adjuste Adj	 Significance Level al Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ted Level of Significance usted Chi Square Value on-Darling Test Statistic oarling 5% Critical Value v-Smirnov Test Statistic 	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Standard Bootstrap UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.103
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri MLI Approximate Adjuste Ad	 Significance Level al Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ed Level of Significance usted Chi Square Value on-Darling Test Statistic Darling 5% Critical Value v-Smirnov Test Statistic 	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 95% Significance I 0	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.552 1.911
Data not Normal at 59 Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri MLI Approximate Adjuste Adjuste Adjuste Adjuste Adjuste Anderson-D Kolmogorov-Sm Data appear Gamma Distribut Assuming Gamma	 Significance Level al Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star Chi Square Value (.05) ed Level of Significance usted Chi Square Value on-Darling Test Statistic oarling 5% Critical Value v-Smirnov Test Statistic mirnov 5% Critical Value ted at 5% Significance I 	1.06 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246 .evel	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Standard Bootstrap UCL 95% Percentile Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.552 1.911
Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri MLI Approximate Adjuste Adjuste Adjuste Adjuste Anderson-D Kolmogorov-Sm Data appear Gamma Distribut Assuming Gamma U	% Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ted Level of Significance usted Chi Square Value on-Darling Test Statistic Darling 5% Critical Value v-Smirnov Test Statistic Darling 5% Critical Value ted at 5% Significance I ma Distribution	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246 evel 1.438	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 95% Significance I 0	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.552 1.911
Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri MLI Approximate Adjuste Adjuste Adjuste Adjuste Anderson-D Kolmogorov-Sm Data appear Gamma Distribut Assuming Gamma U	 Significance Level al Distribution 95% Student's-t UCL ated for Skewness) I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978) at UCL (Johnson-1978) at (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star at Chi Square Value (.05) at Level of Significance usted Chi Square Value on-Darling Test Statistic oarling 5% Critical Value v-Smirnov Test Statistic mirnov 5% Critical Value ted at 5% Significance I 	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246 evel 1.438	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 95% Significance I 0	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.552 1.911
Assuming Norm 95% UCLs (Adjust 95% Adjusted 95% Modified Gamma Distri MLI Approximate Adjuste Adjuste Adjuste Adjuste Anderson-D Kolmogorov-Sm Data appear Gamma Distribut Assuming Gamma U	% Significance Level nal Distribution 95% Student's-t UCL ted for Skewness) I-CLT UCL (Chen-1995) d-t UCL (Johnson-1978) tibution Test k star (bias corrected) Theta Star MLE of Mean E of Standard Deviation nu star e Chi Square Value (.05) ed Level of Significance usted Chi Square Value on-Darling Test Statistic Darling 5% Critical Value v-Smirnov Test Statistic nirnov 5% Critical Value ted at 5% Significance I ma Distribution JCL (Use when n >= 40) UCL (Use when n < 40)	1.06 1.134 1.076 1.134 1.076 0.626 1.151 0.721 0.911 16.28 8.164 0.0301 7.358 0.61 0.771 0.173 0.246 evel 1.438	Data not Lognormal at 5% Significance Level Assuming Lognormal Distribution 95% H-UCL 95% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 95% Significance I Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	20.75 4.902 6.419 9.398 .evel 1.034 1.06 1.023 1.195 2.518 1.03 1.103 1.552 1.911 2.617

	General UCL Statistics	for Full Data	Sets	
User Selected Options				TABLE A.
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Aluminu	m POI39	
		Osnaral	Otatiotics	
Num	per of Valid Observations		Statistics Number of Distinct Observations	1/
Nulli		14		14
Raw S	tatistics		Log-transformed Statistics	
	Minimum	14400	Minimum of Log Data	9.575
	Maximum		Maximum of Log Data	
	Mean	22393	Mean of log Data	9.998
	Geometric Mean	21976	SD of log Data	
	Median	22500		
	SD	4319		
	Std. Error of Mean	1154		
	Coefficient of Variation			
	Skewness	-0.412		
		Relevant U	CL Statistics	
Normal Dist	ribution Test		Lognormal Distribution Test	
	hapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
SI	hapiro Wilk Critical Value	0.874	Shapiro Wilk Critical Value	0.874
Data appear Normal a	t 5% Significance Level		Data appear Lognormal at 5% Significance Level	
A ·				
Assuming Non	mal Distribution 95% Student's-t UCL	24427	Assuming Lognormal Distribution 95% H-UCL	24000
95% LICLs (Adiu	sted for Skewness)	24437	95% Chebyshev (MVUE) UCL	
	d-CLT UCL (Chen-1995)	24156	97.5% Chebyshev (MVUE) UCL	
	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL	
		21110		01702
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	21.06	Data appear Normal at 5% Significance Level	
	Theta Star	1063		
	MLE of Mean	22393		
М	LE of Standard Deviation	4879		
	nu star	589.8		
Approximat	e Chi Square Value (.05)	534.4	Nonparametric Statistics	
Adjus	sted Level of Significance	0.0312	95% CLT UCL	24292
Ac	djusted Chi Square Value	527.5	95% Jackknife UCL	24437
			95% Standard Bootstrap UCL	24254
Anders	son-Darling Test Statistic	0.355	95% Bootstrap-t UCL	24259
Anderson-	Darling 5% Critical Value	0.734	95% Hall's Bootstrap UCL	24037
Kolmogor	ov-Smirnov Test Statistic	0.169	95% Percentile Bootstrap UCL	24186
	mirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distrib	uted at 5% Significance	Level	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
	nma Distribution		99% Chebyshev(Mean, Sd) UCL	33878
95% Approximate Gamma				
95% Adjusted Gamma	a UCL (Use when n < 40)	25039		
				04/07
Potential U	JCL to Use		Use 95% Student's-t UCL	24437

	s with Non-Detects	Data Sets	General UCL Statistics f	
			ProUCL upload.wst	From File
			OFF	Full Precision
			95%	Confidence Coefficient
			2000	Number of Bootstrap Operations
	y POI39	<mark>Antimon</mark>		
	Statistics	General		
3	Number of Detected Data	14	Number of Valid Data	
11	Number of Non-Detect Data	3	of Distinct Detected Data	Number
78.57%	Percent Non-Detects			
	Log-transformed Statistics		tatistics	Raw S
2.416	Minimum Detected	11.2	Minimum Detected	
2.603	Maximum Detected	13.5	Maximum Detected	
2.496	Mean of Detected	12.17	Mean of Detected	
0.0964	SD of Detected	1.193	SD of Detected	
0.742	Minimum Non-Detect	2.1	Minimum Non-Detect	
2.442	Maximum Non-Detect	11.5	Maximum Non-Detect	
12	Number treated as Non-Detect	ed		Note: Data have multiple DLs - Use of
2	Number treated as Detected			For all methods (except KM, DL/2, a
85.71%	Single DL Non-Detect Percentage		ed as NDs	Observations < Largest ND are treat
lv.	Lognormal Distribution Test with Detected Values On	UCL St	with Detected Values Onl	Normal Distribution Test
v יי 0.939	Shapiro Wilk Test Statistic	0.929	Shapiro Wilk Test Statistic	
0.767	5% Shapiro Wilk Critical Value	0.767	hapiro Wilk Critical Value	
0.707	Data appear Lognormal at 5% Significance Level	0.707	t 5% Significance Level	
	Assuming Lognormal Distribution		mal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	-
1.735	Mean	6.5	Mean	
0.599	SD	3.316	SD	
9.772	95% H-Stat (DL/2) UCL	8.07	95% DL/2 (t) UCL	
	Log ROS Method	N/A	d Estimate(MLE) Method	Maximum Likelihoo
2.195	Mean in Log Scale		to converge properly	MLE method failed
0.174	SD in Log Scale			
9.113	Mean in Original Scale			
1.764	SD in Original Scale			
9.947	95% t UCL			
9.875	95% Percentile Bootstrap UCL			
10.1	95% BCA Bootstrap UCL			
9.94	95% H-UCL			
	Data Distribution Test with Detected Values Only		with Detected Values On	Gamma Distribution Test
	Data appear Normal at 5% Significance Level	N/A	k star (bias corrected)	
		N/A	Theta Star	
		N/A	nu star	
	Nonparametric Statistics	N/A	A-D Test Statistic	
	Kaplan-Meier (KM) Method	N/A	5% A-D Critical Value	
11.41	Mean	N/A	K-S Test Statistic	
0.601	SD	N/A	5% K-S Critical Value	_
0.197	SE of Mean		ed at 5% Significance Lev	Data not Gamma Distribut
11.76	95% KM (t) UCL			
11.73	95% KM (z) UCL		nma Distribution	=
11.85	95% KM (jackknife) UCL	N1/A	s using Extrapolated Data	Gamma ROS Statistics
11.8	95% KM (bootstrap t) UCL	N/A	Minimum	
13.5	95% KM (BCA) UCL	N/A	Maximum	
13.5	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	N/A N/A	Mean	
12.26	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	N/A N/A	Median SD	
12.63	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	N/A N/A	SD k star	
13.30		N/A	Theta star	
		N/A	Nu star	
	Potential LICL e to Lloo	IN/A	inu star	
	Potential UCLs to Use		AnnChi2	
11.8 13.5	Potential UCLs to Use 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL	N/A N/A	AppChi2	95% Gamma Approximate

	General UCL Statistics	for Full Data	a Sets
User Selected Options	8		
From File	ProUCL upload.wst		
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
		Mangane	ese POI39
		General	Statistics
Num	ber of Valid Observations		Number of Distinct Observations 12
	lumber of Missing Values		
Raw S	statistics		Log-transformed Statistics
	Minimum	233	Minimum of Log Data 5.451
	Maximum	2580	Maximum of Log Data 7.856
	Mean	845.5	Mean of log Data 6.539
	Geometric Mean	691.8	SD of log Data 0.625
	Median		
		649.7	
	Std. Error of Mean		
	Coefficient of Variation		
	Skewness	2.025	
		Polovont II	CL Statistics
Normal Dis	tribution Test		Lognormal Distribution Test
	Shapiro Wilk Test Statistic	0.741	Shapiro Wilk Test Statistic 0.932
	hapiro Wilk Critical Value		Shapiro Wilk Critical Value 0.866
Data not Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level
A			Accuming Lognormal Distribution
Assuming Nor	mal Distribution 95% Student's-t UCL	1107	Assuming Lognormal Distribution 95% H-UCL 1266
95% LICLs (Adiu	isted for Skewness)	1107	95% Chebyshev (MVUE) UCL 1475
	ed-CLT UCL (Chen-1995)	1250	97.5% Chebyshev (MVUE) UCL 1755
	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL 2306
Gamma Dis	tribution Test		Data Distribution
	k star (bias corrected)	2.087	Data Follow Appr. Gamma Distribution at 5% Significance Level
	Theta Star	405.1	
	MLE of Mean	845.5	
Ν	ILE of Standard Deviation	585.2	
	nu star		
	te Chi Square Value (.05)		Nonparametric Statistics
Adju	sted Level of Significance		95% CLT UCL 1142
			95% Jackknife UCL 1167
A	djusted Chi Square Value	36.44	
	<u> </u>		95% Standard Bootstrap UCL 1134
Ander	son-Darling Test Statistic	0.759	95% Bootstrap-t UCL 1649
Ander Anderson-	son-Darling Test Statistic Darling 5% Critical Value	0.759 0.741	95% Bootstrap-t UCL 1649 95% Hall's Bootstrap UCL 2773
Ander Anderson- Kolmogor	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	0.759 0.741 0.208	95% Bootstrap-t UCL 1649 95% Hall's Bootstrap UCL 2773 95% Percentile Bootstrap UCL 1147
Ander Anderson- Kolmogor Kolmogorov-S	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.759 0.741 0.208 0.239	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL1251
Ander Anderson- Kolmogor	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.759 0.741 0.208 0.239	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL125195% Chebyshev(Mean, Sd) UCL1631
Ander Anderson- Kolmogor Kolmogorov-S Data follow Appr. Gamma Dist	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significanc	0.759 0.741 0.208 0.239	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL125195% Chebyshev(Mean, Sd) UCL163197.5% Chebyshev(Mean, Sd) UCL1971
Ander Anderson- Kolmogor Kolmogorov-S Data follow Appr. Gamma Dist	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance	0.759 0.741 0.208 0.239 ce Level	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL125195% Chebyshev(Mean, Sd) UCL1631
Ander Anderson- Kolmogor Kolmogorov-S Data follow Appr. Gamma Dist Assuming Gam 95% Approximate Gamma	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance nma Distribution UCL (Use when n >= 40)	0.759 0.741 0.208 0.239 ce Level 1197	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL125195% Chebyshev(Mean, Sd) UCL163197.5% Chebyshev(Mean, Sd) UCL1971
Ander Anderson- Kolmogor Kolmogorov-S Data follow Appr. Gamma Dist Assuming Gam 95% Approximate Gamma	son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance	0.759 0.741 0.208 0.239 ce Level 1197	95% Bootstrap-t UCL164995% Hall's Bootstrap UCL277395% Percentile Bootstrap UCL114795% BCA Bootstrap UCL125195% Chebyshev(Mean, Sd) UCL163197.5% Chebyshev(Mean, Sd) UCL1971

	General UCL Statistics	for Full Data	a Sets
User Selected Options			BEGIN TABLE
From File	ProUCL Upload.wst		
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000	Aluminu	m AQI 11
		Aluminu	
		General	Statistics
Num	ber of Valid Observations		Number of Distinct Observations 6
Raw S	Statistics		Log-transformed Statistics
	Minimum	16300	Minimum of Log Data 9.699
	Maximum	21000	Maximum of Log Data 9.952
	Mean	18167	Mean of log Data 9.804
	Geometric Mean	18112	SD of log Data 0.0842
	Median		
		1574	
	Std. Error of Mean		
	Coefficient of Variation		
	Skewness	1.215	
		Relevant I I	CL Statistics
Normal Dis	tribution Test		Lognormal Distribution Test
	Shapiro Wilk Test Statistic	0.904	Shapiro Wilk Test Statistic 0.924
	hapiro Wilk Critical Value		Shapiro Wilk Critical Value 0.788
	t 5% Significance Level		Data appear Lognormal at 5% Significance Level
Assuming Nor	mal Distribution		Assuming Lognormal Distribution
	95% Student's-t UCL	19462	95% H-UCL N/A
95% UCLs (Adju	usted for Skewness)		95% Chebyshev (MVUE) UCL 20888
95% Adjuste	ed-CLT UCL (Chen-1995)	19564	97.5% Chebyshev (MVUE) UCL 22066
95% Modifi	ed-t UCL (Johnson-1978)	19515	99% Chebyshev (MVUE) UCL 24379
		I	
Gamma Dis	stribution Test		Data Distribution
	k star (bias corrected)		Data appear Normal at 5% Significance Level
	Theta Star		
	MLE of Mean		
Ν	ILE of Standard Deviation		
. .	nu star		
	te Chi Square Value (.05)		Nonparametric Statistics 95% CLT UCL 19224
	sted Level of Significance djusted Chi Square Value		95% CL1 OCL 19224 95% Jackknife UCL 19462
A		301.1	95% Standard Bootstrap UCL 19133
	son-Darling Test Statistic	0.371	95% Bootstrap-t UCL 20119
Ander			95% Hall's Bootstrap UCL 25881
	Darling 5% Critical Value	0.696	95% Percentile Bootstrap UCL 19117
Anderson-	Darling 5% Critical Value		
Anderson- Kolmogor	rov-Smirnov Test Statistic	0.23	
Anderson- Kolmogor	rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.23 0.332	95% BCA Bootstrap UCL 19433 95% Chebyshev(Mean, Sd) UCL 20968
Anderson- Kolmogor Kolmogorov-S	rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.23 0.332	95% BCA Bootstrap UCL 19433
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.23 0.332	95% BCA Bootstrap UCL 19433 95% Chebyshev(Mean, Sd) UCL 20968
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance I nma Distribution	0.23 0.332 _evel	95% BCA Bootstrap UCL 19433 95% Chebyshev(Mean, Sd) UCL 20968 97.5% Chebyshev(Mean, Sd) UCL 22181
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma	rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance I nma Distribution	0.23 0.332 _evel 19585	95% BCA Bootstrap UCL 19433 95% Chebyshev(Mean, Sd) UCL 20968 97.5% Chebyshev(Mean, Sd) UCL 22181
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma	rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance I nma Distribution UCL (Use when n >= 40)	0.23 0.332 _evel 19585	95% BCA Bootstrap UCL 19433 95% Chebyshev(Mean, Sd) UCL 20968 97.5% Chebyshev(Mean, Sd) UCL 22181

	General UCL Statistics	for Full Data	I Sets	
User Selected Options	3			
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Magnesiu	Im AOI 11	
N			Statistics	
Num	ber of Valid Observations	6	Number of Distinct Observations 6)
Raw S	itatistics		Log-transformed Statistics	
	Minimum	5350	Minimum of Log Data 8	8.585
	Maximum		Maximum of Log Data 8	
	Mean		Mean of log Data 8	
	Geometric Mean		SD of log Data 0	
	Median			
	SD	619.6		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
			<u> </u>	
		Relevant U	CL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
S	Shapiro Wilk Test Statistic	0.765	Shapiro Wilk Test Statistic 0	.792
S	hapiro Wilk Critical Value	0.788	Shapiro Wilk Critical Value 0	.788
Data not Normal at {	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	6358	95% H-UCL N	
	isted for Skewness)		95% Chebyshev (MVUE) UCL 6	
	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL 7	
	ed-t UCL (Johnson-1978)	6392	99% Chebyshev (MVUE) UCL 8	3212
95% Modifi		0002		
	,	0002		
	tribution Test		Data Distribution	
	tribution Test k star (bias corrected)	58.27		• Level
	tribution Test k star (bias corrected) Theta Star	58.27 100.4	Data Distribution	• Level
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean	58.27 100.4 5848	Data Distribution	• Level
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation	58.27 100.4 5848 766.1	Data Distribution	Level
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star	58.27 100.4 5848 766.1 699.3	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance) Level
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	58.27 100.4 5848 766.1 699.3 638.9	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics	
Gamma Dis Gamma Dis M Approxima Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	58.27 100.4 5848 766.1 699.3 638.9 0.0122	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 6	6264
Gamma Dis Gamma Dis M Approxima Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	58.27 100.4 5848 766.1 699.3 638.9 0.0122	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	5264 5358
Gamma Dis M Approxima Adjus Ad	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	5264 5358 5221
Gamma Dis Gamma Dis M Approxima Adjus Adjus Ad	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	5264 5358 5221 7058
Gamma Dis Gamma Dis M Approxima Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 6 95% Jackknife UCL 6 95% Standard Bootstrap UCL 6 95% Bootstrap-t UCL 7 95% Hall's Bootstrap UCL 8	5264 5358 5221 7058 8146
Gamma Dis Gamma Dis M Approxima Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	6264 6358 6221 7058 8146 6267
Gamma Dis Gamma Dis M Approxima Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 6 95% Jackknife UCL 6 95% Standard Bootstrap UCL 6 95% Bootstrap-t UCL 7 95% Hall's Bootstrap UCL 6 95% Percentile Bootstrap UCL 6 95% BCA Bootstrap UCL 6	2264 3358 3221 7058 3146 3267 3367
Gamma Dis Gamma Dis M Approxima Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% CLT UCL 95% CLT UCL	2264 3358 2221 7058 3146 5267 5367 5951
Gamma Dis Gamma Dis Approxima Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	5264 5358 5221 7058 8146 5267 5367 5951 7428
Gamma Dis Gamma Dis Approxima Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Approxima Adjus Ad	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.696 0.327 0.332 xe Level	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% CLT UCL 95% CLT UCL	2264 3358 3221 7058 3146 5267 5367 5367 5951 7428
Gamma Dis Gamma Dis Approxima Adjus Adjus Adjus Adjus Adjus Adjus Data follow Appr. Gamma Distr Assuming Gam 95% Approximate Gamma	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance nma Distribution UCL (Use when n >= 40)	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332 22 Level 6401	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	2264 3358 3221 7058 3146 5267 5367 5367 5951 7428
Gamma Dis Gamma Dis Approxima Adjus Adjus Adjus Adjus Adjus Adjus Data follow Appr. Gamma Disti	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332 22 Level 6401	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	2264 3358 3221 7058 3146 5267 5367 5367 5951 7428
Gamma Dis Gamma Dis Approxima Adjus Adjus Adjus Anderson- Kolmogor Kolmogorov-S Data follow Appr. Gamma Distr Assuming Gam 95% Approximate Gamma	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ribution at 5% Significance nma Distribution UCL (Use when n >= 40)	58.27 100.4 5848 766.1 699.3 638.9 0.0122 617.9 0.696 0.696 0.327 0.332 22 Level 6401	Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	2264 3358 5221 7058 3146 5267 5367 5951 7428 3365

	General UCL Statistics	for Full Data	Sets	
User Selected Options			BEGIN 1	ABLE A
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Aluminu	m AOI 9	
		General	Statistics	
Num	ber of Valid Observations		Number of Distinct Observations 4	4
Raw S	tatistics		Log-transformed Statistics	
	Minimum	4007	Minimum of Log Data 8	296
	Maximum		Maximum of Log Data 1	
		18842	Mean of log Data 9	
	Geometric Mean		SD of log Data 0	
	Median			
		9152		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
	Skewness	1.377		
		Relevant U	CL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
S	hapiro Wilk Test Statistic	0.902	Shapiro Wilk Test Statistic 0	.949
S	hapiro Wilk Critical Value	0.947	Shapiro Wilk Critical Value 0	.947
Data not Normal at !	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	21059	95% H-UCL 2	1821
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL 2	5200
95% Adjuste	ed-CLT UCL (Chen-1995)	21296	97.5% Chebyshev (MVUE) UCL 2	7887
95% Modifi	ed-t UCL (Johnson-1978)	21103	99% Chebyshev (MVUE) UCL 3	3167
		L		
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	4.34	Data appear Gamma Distributed at 5% Significance Le	evel
	Theta Star	4341		
	MLE of Mean	18842		
М	LE of Standard Deviation	9044		
	nu star	416.7		
Approxima	te Chi Square Value (.05)	370.3	Nonparametric Statistics	
Adju	sted Level of Significance	0.045	95% CLT UCL 2	1015
A	djusted Chi Square Value	369	95% Jackknife UCL 2	1059
			95% Standard Bootstrap UCL 2	0996
Ander	son-Darling Test Statistic	0.577	95% Bootstrap-t UCL 2	1531
Anderson-	Darling 5% Critical Value	0.753	95% Hall's Bootstrap UCL 2	1484
Kolmogor	ov-Smirnov Test Statistic	0.102	95% Percentile Bootstrap UCL 2	1003
-	Smirnov 5% Critical Value		95% BCA Bootstrap UCL 2	1290
Data appear Gamma Distrib			95% Chebyshev(Mean, Sd) UCL 2	
	-		97.5% Chebyshev(Mean, Sd) UCL 2	
Assuming Gan	nma Distribution		99% Chebyshev(Mean, Sd) UCL 3	
95% Approximate Gamma		21199		
	a UCL (Use when n < 40)			
	UCL to Use		Use 95% Approximate Gamma UCL 2	

	with Non-Detects	or Data Sets	General UCL Statistics	
			ProUCL upload.wst	From File
			OFF	Full Precision
			95%	Confidence Coefficient
			2000	Number of Bootstrap Operations
		Antimon		
		General		
19	Number of Detected Data	58	Number of Valid Data	
39	Number of Non-Detect Data	19	of Distinct Detected Data	Number
67.24%	Percent Non-Detects			
	Log-transformed Statistics		tatistics	Raw S
-1.64	Minimum Detected	0.194	Minimum Detected	
3.78	Maximum Detected	44.2	Maximum Detected	
1.61	Mean of Detected	13.06	Mean of Detected	
1.874	SD of Detected	12.69	SD of Detected	
-1.4	Minimum Non-Detect	0.23	Minimum Non-Detect	
2.38	Maximum Non-Detect Number treated as Non-Detect	10.9	Maximum Non-Detect	ote: Data have multiple DLs - Use
4	Number treated as Non-Detect	lueu		or all methods (except KM, DL/2, a
84.48%	Single DL Non-Detect Percentage			bservations < Largest ND are treat
04.407		UCL St		
niv	Lognormal Distribution Test with Detected Values Or		with Detected Values On	Normal Distribution Test
0.82	Shapiro Wilk Test Statistic	0.883	Shapiro Wilk Test Statistic	
0.90	5% Shapiro Wilk Critical Value	0.901	hapiro Wilk Critical Value	
	Data not Lognormal at 5% Significance Level		5% Significance Level	
	Assuming Lognormal Distribution		mal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
0.78	Mean	5.795	Mean	
1.45	SD	8.918	SD	
11.3	95% H-Stat (DL/2) UCL	7.753	95% DL/2 (t) UCL	
	Log ROS Method	N/A	d Estimate(MLE) Method	Maximum Likelihoo
-0.0812	Mean in Log Scale		negative mean	MLE yields a
1.70	SD in Log Scale			
4.62	Mean in Original Scale			
9.28	SD in Original Scale			
6.6	95% t UCL			
6.79	95% Percentile Bootstrap UCL			
7.12	95% BCA Bootstrap UCL			
8.43	95% H-UCL			
	Data Distribution Test with Detected Values Only	•		Gamma Distribution Test
)	Data do not follow a Discernable Distribution (0.05)	0.575	k star (bias corrected)	
		22.71	Theta Star	
	Nonnersensetrie Otetieties	21.86	nu star	
	Nonparametric Statistics Kaplan-Meier (KM) Method	0.862	A-D Test Statistic 5% A-D Critical Value	
4.62	Kapian-Meler (KW) Method Mean	0.789	K-S Test Statistic	
9.2	SD	0.789	5% K-S Critical Value	
1.25	SE of Mean			Data not Gamma Distribut
6.73	95% KM (t) UCL			
6.69	95% KM (z) UCL		nma Distribution	Assuming Gar
6.68	95% KM (jackknife) UCL		s using Extrapolated Data	
7.27	95% KM (bootstrap t) UCL	0.000001	Minimum	
6.942	95% KM (BCA) UCL	44.2	Maximum	
6.75	95% KM (Percentile Bootstrap) UCL	4.586	Mean	
10.12	95% KM (Chebyshev) UCL	0.000001	Median	
12.4	97.5% KM (Chebyshev) UCL	9.355	SD	
17.1	99% KM (Chebyshev) UCL	0.1	k star	
		45.81	Theta star	
	Potential UCLs to Use	11.61	Nu star	
10.12	95% KM (Chebyshev) UCL	4.974	AppChi2	
		10.71	UCL (Use when n >= 40)	95% Gamma Approximate
		10.95	a UCL (Use when n < 40)	95% Adjusted Gamm

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Cobalt	AOI 9	
		General	Statistics	
Numb	per of Valid Observations	24	Number of Distinct Observations 23	\$
Raw St	tatistics		Log-transformed Statistics	
	Minimum	4.33	Minimum of Log Data 1.4	
	Maximum	69.2	Maximum of Log Data 4.2	237
	Mean	22.52	Mean of log Data 2.9	946
	Geometric Mean	19.03	SD of log Data 0.6	519
	Median	19.35		
		13.95		
	Std. Error of Mean	2.847		
	Coefficient of Variation	0.619		
	Skewness	1.87		
		Relevant UC		
	ribution Test		Lognormal Distribution Test	
	hapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0.9	
	hapiro Wilk Critical Value	0.916	Shapiro Wilk Critical Value 0.9	916
Data not Normal at 5	% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	27.4	95% H-UCL 30.	
	sted for Skewness)		95% Chebyshev (MVUE) UCL 36.	
	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL 41.	
95% Modifie	ed-t UCL (Johnson-1978)	27.58	99% Chebyshev (MVUE) UCL 53.	.28
Gamma Dist	tribution Test		Data Distribution	
	k star (bias corrected)		Data appear Gamma Distributed at 5% Significance Leve	rel
	Theta Star			
	MLE of Mean			
M	LE of Standard Deviation			
	nu star			
••	e Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL 27.	
Ac	ljusted Chi Square Value	105.1	95% Jackknife UCL 27.	
			95% Standard Bootstrap UCL 27.	
	son-Darling Test Statistic		95% Bootstrap-t UCL 29	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL 32.	
=	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 27	
	mirnov 5% Critical Value		95% BCA Bootstrap UCL 28	
Data appear Gamma Distribu	uted at 5% Significance I	Level	95% Chebyshev(Mean, Sd) UCL 34	
			97.5% Chebyshev(Mean, Sd) UCL 40.	
-	ma Distribution		99% Chebyshev(Mean, Sd) UCL 50.	1.85
95% Approximate Gamma	· · · · · · · · · · · · · · · · · · ·			
0 = 0 / 1 / 1 / 0	$ C (c_0 w b_0 n < 40)$	28.35		
95% Adjusted Gamma	a UCL (USE WHEN II < 40)	_0.00		
	JCL to Use		Use 95% Approximate Gamma UCL 27.	

	General UCL Statistics	for Full Data	Sets	
User Selected Options	\$			
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Magnesi	um AOI 9	
		0		
Num	ber of Valid Observations		Statistics Number of Distinct Observations	8
Raws	Statistics		Log-transformed Statistics	
naw c	Minimum	534 5	Minimum of Log Data	6 281
	Maximum		Maximum of Log Data	
	Mean		Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			
		2727		
	Std. Error of Mean			
	Coefficient of Variation	0.558		
	Skewness	-0.893		
		Relevant U	CL Statistics	
	tribution Test		Lognormal Distribution Test	
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	hapiro Wilk Critical Value	0.829	Shapiro Wilk Critical Value	0.829
Data appear Normal a	t 5% Significance Level		Data not Lognormal at 5% Significance Level	
Accuming No.			Accurring Logner Plateitution	
Assuming Nor	mal Distribution 95% Student's-t UCL	0570	Assuming Lognormal Distribution 95% H-UCL	22402
05% LICLA (Adi	usted for Skewness)	8100	95% Chebyshev (MVUE) UCL	
•	ed-CLT UCL (Chen-1995)	6094	97.5% Chebyshev (MVUE) UCL	
-	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL	
		0000		27255
Gamma Dis	stribution Test		Data Distribution	
	k star (bias corrected)	1.176	Data appear Normal at 5% Significance Level	
	Theta Star			
	MLE of Mean	4888		
N	MLE of Mean ILE of Standard Deviation			
N		4507		
	ILE of Standard Deviation	4507 21.17	Nonparametric Statistics	
Approxima	ILE of Standard Deviation nu star	4507 21.17 11.72	Nonparametric Statistics 95% CLT UCL	6383
Approxima Adju	ILE of Standard Deviation nu star te Chi Square Value (.05)	4507 21.17 11.72 0.0231	-	
Approxima Adju	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	4507 21.17 11.72 0.0231	95% CLT UCL	6578
Approxima Adju A	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	4507 21.17 11.72 0.0231 10.26	95% CLT UCL 95% Jackknife UCL	6578 6316
Approxima Adju A Ander	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	4507 21.17 11.72 0.0231 10.26 1.193	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	6578 6316 6321
Approxima Adju A A Ander Anderson-	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic	4507 21.17 11.72 0.0231 10.26 1.193 0.733	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	6578 6316 6321 6101
Approxima Adju A Ander Anderson Kolmogo	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	6578 6316 6321 6101 6269
Approxima Adju A Ander Anderson Kolmogo	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	6578 6316 6321 6101 6269 6156
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	6578 6316 6321 6101 6269 6156 8850 10564
Approxima Adju A Ander Anderson- Kolmogorov-S Data not Gamma Distribut Assuming Gar	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	6578 6316 6321 6101 6269 6156 8850 10564
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	6578 6316 6321 6101 6269 6156 8850 10564
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	6578 6316 6321 6101 6269 6156 8850 10564
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma 95% Adjusted Gamm	ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	4507 21.17 11.72 0.0231 10.26 1.193 0.733 0.328 0.284 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	6578 6316 6321 6101 6269 6156 8850 10564 13931

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Mangane	ese AOI 9	
		General	Statistics	
Numl	per of Valid Observations	48	Number of Distinct Observations	46
Raw S	tatistics		Log-transformed Statistics	
	Minimum	89	Minimum of Log Data	4.489
	Maximum	2040	Maximum of Log Data	7.621
	Mean	593.3	Mean of log Data	6.242
	Geometric Mean	513.8	SD of log Data	0.569
	Median	514		
		338.2		
	Std. Error of Mean			
	Coefficient of Variation	0.57		
	Skewness	2.089		
		Relevant UC		
	ribution Test		Lognormal Distribution Test	
	hapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	hapiro Wilk Critical Value	0.947	Shapiro Wilk Critical Value	0.947
Data not Normal at 5	i% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nori	mal Distribution 95% Student's-t UCL	075.0	Assuming Lognormal Distribution	700.0
		675.2	95% H-UCL	
	sted for Skewness)	690.4	95% Chebyshev (MVUE) UCL	
-	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978)		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	
55 % Woulle	eu-l UCL (JUIIISUII-1978)	077.7		1125
Commo Dio				
	tribution Tost		Data Distribution	
Gainina Dis	tribution Test	2 / 19	Data Distribution	
	k star (bias corrected)		Data Distribution Data Follow Appr. Gamma Distribution at 5% Significance	e Level
	k star (bias corrected) Theta Star	173.6		e Level
	k star (bias corrected) Theta Star MLE of Mean	173.6 593.3		ce Level
	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation	173.6 593.3 320.9		ce Level
M	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star	173.6 593.3 320.9 328.1	Data Follow Appr. Gamma Distribution at 5% Significand	e Level
M Approximat	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05)	173.6 593.3 320.9 328.1 287.2	Data Follow Appr. Gamma Distribution at 5% Significance	
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star	173.6 593.3 320.9 328.1 287.2 0.045	Data Follow Appr. Gamma Distribution at 5% Significand	673.6
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance	173.6 593.3 320.9 328.1 287.2 0.045	Data Follow Appr. Gamma Distribution at 5% Significant Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	673.6 675.2
M Approximat Adjus Ad	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance	173.6 593.3 320.9 328.1 287.2 0.045 286	Data Follow Appr. Gamma Distribution at 5% Significance	673.6 675.2 672.8
M Approximat Adjus Adjus Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance tjusted Chi Square Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	673.6 675.2 672.8 694.3
M Approximat Adjus Adjus Adjus Adjus Anders	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754	Data Follow Appr. Gamma Distribution at 5% Significant Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	673.6 675.2 672.8 694.3 722.4
Approximat Approximat Adjus Adjus Adore Anderson- Kolmogor	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	673.6 675.2 672.8 694.3 722.4 676.6
Approximat Approximat Adjus Adjus Adore Anderson- Kolmogor	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorov-S	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv-S Data follow Appr. Gamma Distr	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% CA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1 898.2
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv-S Data follow Appr. Gamma Distr	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ibution at 5% Significance	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.128 0.129 xe Level	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1 898.2
M Approximat Adjus Adjus Adjus Anderson- Kolmogorv Kolmogorv-S Data follow Appr. Gamma Distr Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ibution at 5% Significance	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129 xe Level 678	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1 898.2
M Approximat Adjus Adjus Adjus Anderson- Kolmogorv Kolmogorv-S Data follow Appr. Gamma Distr Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ibution at 5% Significance ma Distribution UCL (Use when n >= 40)	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129 xe Level 678	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1 898.2
M Approximat Adjus Adjus Adjus Anderson- Kolmogorov-S Data follow Appr. Gamma Distr 95% Approximate Gamma 95% Adjusted Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star e Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ibution at 5% Significance ma Distribution UCL (Use when n >= 40)	173.6 593.3 320.9 328.1 287.2 0.045 286 0.987 0.754 0.128 0.129 xe Level 678	Data Follow Appr. Gamma Distribution at 5% Significance Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	673.6 675.2 672.8 694.3 722.4 676.6 693.5 806.1 898.2 1079

	General UCL Statistics	for Full Data	a Sets	
User Selected Options	3			
From File	ProUCL Upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Vanadi	um AOI 9	
			Statistics	
Num	ber of Valid Observations	56	Number of Distinct Observations	53
Raw S	Statistics Minimum	0.00	Log-transformed Statistics	0.410
	-		Minimum of Log Data	
	Maximum		Maximum of Log Data	
		43.82	Mean of log Data	
	Geometric Mean		SD of log Data	0.948
	Median	29.1 48.51		
	Std. Error of Mean Coefficient of Variation			
		-		
	Skewness	3.836		
		Relevant U	ICL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.305	Lilliefors Test Statistic	0.267
	Lilliefors Critical Value		Lilliefors Critical Value	
Data not Normal at !	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	54.67	95% H-UCL	64.57
95% UCLs (Adju	usted for Skewness)		95% Chebyshev (MVUE) UCL	78.48
95% Adjuste	ed-CLT UCL (Chen-1995)	58.04	97.5% Chebyshev (MVUE) UCL	91.77
95% Modifi	ed-t UCL (Johnson-1978)	55.22	99% Chebyshev (MVUE) UCL	117.9
			· · · · · · · · · · · · · · · · · · ·	
Gamma Dis	stribution Test		Data Distribution	
	k star (bias corrected)	1.493	Data do not follow a Discernable Distribution (0.05	A
)
	Theta Star)
	Theta Star MLE of Mean)
M	MLE of Mean	43.82 35.87)
	MLE of Mean ILE of Standard Deviation nu star	43.82 35.87 167.2)
Approxima	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	43.82 35.87 167.2 138.3	Nonparametric Statistics	
Approxima Adju	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	43.82 35.87 167.2 138.3 0.0457	95% CLT UCL	54.49
Approxima Adju	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	43.82 35.87 167.2 138.3 0.0457	95% CLT UCL 95% Jackknife UCL	54.49 54.67
Approxima Adju A	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	43.82 35.87 167.2 138.3 0.0457 137.6	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	54.49 54.67 54.26
Approxima Adju A	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic	43.82 35.87 167.2 138.3 0.0457 137.6 3.956	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	54.49 54.67 54.26 63.52
Approxima Adju A A Ander Anderson-	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	54.49 54.67 54.26 63.52 68.11
Approxima Adju A Ander Anderson- Kolmogor	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	54.49 54.67 54.26 63.52 68.11 55.54
Approxima Adju A A Ander Anderson- Kolmogor Kolmogorov-S	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35
Approxima Adju A Ander Anderson- Kolmogor	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic -Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08 84.31
Approxima Adju A A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08 84.31
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121 vel 52.98	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08 84.31
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121 vel 52.98	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08 84.31
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma 95% Adjusted Gamm	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	43.82 35.87 167.2 138.3 0.0457 137.6 3.956 0.768 0.222 0.121 vel 52.98	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	54.49 54.67 54.26 63.52 68.11 55.54 58.35 72.08 84.31 108.3

	General UCL Statistics	for Full Data Se		
User Selected Options From File	ProUCL upload.wst		BEGIN T	ABLE A.1
Full Precision				
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	2000	Aluminum		
		Auminum		
		General Sta	atistics	
Num	ber of Valid Observations	15	Number of Distinct Observations	14
Raw S	tatistics		Log-transformed Statistics	
	Minimum	9260	Minimum of Log Data	9 133
	Maximum		Maximum of Log Data	
		17857	Mean of log Data	
	Geometric Mean		SD of log Data	
			SD of log Data	0.343
	Median			
		6112		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness	0.554		
		Relevant UCL	Statistics	
Normal Dist	tribution Test		Lognormal Distribution Test	
S	hapiro Wilk Test Statistic	0.949	Shapiro Wilk Test Statistic	0.976
	hapiro Wilk Critical Value		Shapiro Wilk Critical Value	
	t 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	20637	95% H-UCL	21384
95% UCLs (Adiu	sted for Skewness)		95% Chebyshev (MVUE) UCL	24863
	d-CLT UCL (Chen-1995)	20694	97.5% Chebyshev (MVUE) UCL	
	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL	
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	7.511	Data appear Normal at 5% Significance Level	
	Theta Star			
	MLE of Mean			
М	LE of Standard Deviation			
	nu star			
Annrovimat	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	20/152
-	djusted Chi Square Value		95% Jackknife UCL	
A	ajusteu oni square value	107.0		
Λ Ι	oon Dorling Tast Otation	0.215	95% Standard Bootstrap UCL	
	son-Darling Test Statistic		95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
=	mirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distrib	uted at 5% Significance I	_evel	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
	nma Distribution		99% Chebyshev(Mean, Sd) UCL	33559
95% Approximate Gamma				
95% Adjusted Gamma	a UCL (Use when n < 40)	21431		
	JCL to Use	•	Use 95% Student's-t UCL	

	General UCL Statistics	for Full Data	Sets		
User Selected Options					
From File	ProUCL upload.wst				
Full Precision	OFF				
Confidence Coefficient	95%				
Number of Bootstrap Operations	2000				
	1	Cobalt	AOI 13		
		General	Statistics		
Numl	per of Valid Observations	15	Number of Distinct Observations	14	
Raw S	tatistics		Log-transformed Statistics		
	Minimum	0.66	Minimum of Log Data	-0.416	
	Maximum	30.7	Maximum of Log Data	3.424	
	Mean	17.43	Mean of log Data	2.5	
	Geometric Mean	12.18	SD of log Data	1.222	
	Median	17.1			
	SD	8.995			
	Std. Error of Mean	2.323			
	Coefficient of Variation	0.516			
	Skewness	-0.528			
		1			
		Relevant U	CL Statistics		
Normal Dist	ribution Test		Lognormal Distribution Test		
S	hapiro Wilk Test Statistic	0.945	Shapiro Wilk Test Statistic	0.646	
SI	hapiro Wilk Critical Value	0.881	Shapiro Wilk Critical Value	0.881	
Data appear Normal a	t 5% Significance Level	L	Data not Lognormal at 5% Significance Level		
Assuming Nor	mal Distribution		Assuming Lognormal Distribution		
	95% Student's-t UCL	21.53	95% H-UCL	71.03	
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	60.35	
95% Adjuste	d-CLT UCL (Chen-1995)	20.92	97.5% Chebyshev (MVUE) UCL	76.18	
95% Modifie	ed-t UCL (Johnson-1978)	21.47	99% Chebyshev (MVUE) UCL	107.3	
Gamma Dis	tribution Test		Data Distribution		
	k star (bias corrected)	1.276	Data appear Normal at 5% Significance Level		
	Theta Star	13.66			
	MLE of Mean	17.43			
М	LE of Standard Deviation	15.43			
	nu star				
	e Chi Square Value (.05)		Nonparametric Statistics		
	sted Level of Significance		95% CLT UCL	21.25	
Ac	ljusted Chi Square Value	23.8	95% Jackknife UCL		
			95% Standard Bootstrap UCL		
			95% Bootstrap-t UCL	21.15	
	son-Darling Test Statistic			21.1	
	son-Darling Test Statistic Darling 5% Critical Value		95% Hall's Bootstrap UCL	21.1	
Anderson- Kolmogor	Darling 5% Critical Value ov-Smirnov Test Statistic	0.753 0.269	95% Percentile Bootstrap UCL	20.97	
Anderson- Kolmogor Kolmogorov-S	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	0.753 0.269 0.225	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	20.97 20.77	
Anderson- Kolmogor	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	0.753 0.269 0.225	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56	
Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribute	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ed at 5% Significance Le	0.753 0.269 0.225	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56 31.94	
Anderson- Kolmogorov-S Data not Gamma Distributo Assuming Gam	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ad at 5% Significance Le	0.753 0.269 0.225 vel	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56 31.94	
Anderson- Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ed at 5% Significance Le ma Distribution UCL (Use when n >= 40)	0.753 0.269 0.225 vel 26.58	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56 31.94	
Anderson- Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ad at 5% Significance Le	0.753 0.269 0.225 vel 26.58	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56 31.94	
Anderson- Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ed at 5% Significance Le ma Distribution UCL (Use when n >= 40)	0.753 0.269 0.225 vel 26.58	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	20.97 20.77 27.56 31.94	

	General UCL Statistics	for Full Data	a Sets		
User Selected Options					
From File	ProUCL upload.wst				
Full Precision	OFF				
Confidence Coefficient	95%				
Number of Bootstrap Operations	2000				
		Iron A	AOI 13		
Numb	per of Valid Observations		Statistics Number of Distinct Observations	6	
		,		0	
Raw St	tatistics		Log-transformed Statistics		
	Minimum		Minimum of Log Data		
	Maximum		Maximum of Log Data		
		32733	Mean of log Data		
	Geometric Mean		SD of log Data	0.147	
	Median				
		4754			
	Std. Error of Mean	-			
	Coefficient of Variation				
	Skewness				
		Relevant U	CL Statistics		
	ribution Test	0.000	Lognormal Distribution Test		
	hapiro Wilk Test Statistic		Shapiro Wilk Test Statistic		
	napiro Wilk Critical Value	0.803	Shapiro Wilk Critical Value		
Data appear Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level		
Assuming Norr	mal Distribution		Assuming Lognormal Distribution		
	95% Student's-t UCL	36225	95% H-UCL	36801	
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	40680	
95% Adjuste	d-CLT UCL (Chen-1995)	35638	97.5% Chebyshev (MVUE) UCL	44118	
95% Modifie	ed-t UCL (Johnson-1978)	36217	99% Chebyshev (MVUE) UCL	50870	
Commo Diel	ribution Test		Data Distribution		
Gamma Dist		21.02			
	k star (bias corrected) Theta Star		Data appear Normal at 5% Significance Level		
	MLE of Mean				
54	LE of Standard Deviation				
		0000			
	nuctor	137.2			
Annovimat	nu star		Nonnarametria Statistica		
	e Chi Square Value (.05)	389.7	Nonparametric Statistics	35680	
Adjus	e Chi Square Value (.05) ted Level of Significance	389.7 0.0158	95% CLT UCL		
Adjus	e Chi Square Value (.05)	389.7 0.0158	95% CLT UCL 95% Jackknife UCL	36225	
Adjus Ac	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value	389.7 0.0158 376.1	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	36225 35386	
Adjus Ad Ad	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic	389.7 0.0158 376.1 0.407	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	36225 35386 36505	
Adjus Ad Anders Anderson-I	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	389.7 0.0158 376.1 0.407 0.708	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	36225 35386 36505 34906	
Adjus Ad Anders Anderson-I Kolmogoro	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic	389.7 0.0158 376.1 0.407 0.708 0.24	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	36225 35386 36505 34906 35424	
Adjus Ad Anders Anderson-I Kolmogoro Kolmogorov-S	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	389.7 0.0158 376.1 0.407 0.708 0.24 0.311	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	36225 35386 36505 34906 35424 35424	
Adjus Ad Anders Anderson-I Kolmogoro	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value	389.7 0.0158 376.1 0.407 0.708 0.24 0.311	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566	
Adjus Ac Anders Anderson-I Kolmogoro Kolmogorov-S Data appear Gamma Distribu	e Chi Square Value (.05) ted Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value uted at 5% Significance I	389.7 0.0158 376.1 0.407 0.708 0.24 0.311	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566 43955	
Adjus Ad Anders Anderson-I Kolmogorov-S Data appear Gamma Distribu Assuming Gam	e Chi Square Value (.05) ited Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value uted at 5% Significance I	389.7 0.0158 376.1 0.407 0.708 0.24 0.311 _evel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566 43955	
Adjus Adjus Anders Anderson-I Kolmogorov-S Data appear Gamma Distribu Assuming Gam	e Chi Square Value (.05) ited Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value uted at 5% Significance I ma Distribution UCL (Use when n >= 40)	389.7 0.0158 376.1 0.407 0.708 0.24 0.311 _evel 36721	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566 43955	
Adjus Adjus Anders Anderson-I Kolmogorov-S Data appear Gamma Distribu Assuming Gam	e Chi Square Value (.05) ited Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value uted at 5% Significance I	389.7 0.0158 376.1 0.407 0.708 0.24 0.311 _evel 36721	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566 43955	
Adjus Ac Anders Anderson-I Kolmogorov-S Data appear Gamma Distribu Assuming Gam 95% Approximate Gamma 95% Adjusted Gamma	e Chi Square Value (.05) ited Level of Significance ljusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value uted at 5% Significance I ma Distribution UCL (Use when n >= 40)	389.7 0.0158 376.1 0.407 0.708 0.24 0.311 _evel 36721	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	36225 35386 36505 34906 35424 35424 40566 43955 50612	

	General UCL Statistics	for Full Data	a Sets		
User Selected Options					
From File	ProUCL upload.wst				
Full Precision	OFF	OFF			
Confidence Coefficient	95%				
Number of Bootstrap Operations	2000				
		Magnesi	um AOI 13		
			Statistics		
Num	ber of Valid Observations	/	Number of Distinct Observations	6	
Raw S	tatistics		Log-transformed Statistics		
Minimum		425.5	Minimum of Log Data	6.053	
	Maximum		Maximum of Log Data		
	Mean	5867	Mean of log Data		
	Geometric Mean	3354	SD of log Data		
	Median	6630			
	SD	4458			
	Std. Error of Mean	1685			
	Coefficient of Variation	0.76			
	Skewness	0.187			
		1			
		Relevant U	CL Statistics		
	tribution Test	1	Lognormal Distribution Test		
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic 0.761		
	hapiro Wilk Critical Value			0.803	
Data appear Normal a	t 5% Significance Level		Data not Lognormal at 5% Significance Level		
Ain No	wal Distribution		Accuraine Leanermal Distribution		
Assuming Nor	Assuming Normal Distribution 95% Student's-t UCL 9141		Assuming Lognormal Distribution 95% H-UCL 176170		
95% LICI s (Adiu	isted for Skewness)	5141	95% Chebyshev (MVUE) UCL		
	ed-CLT UCL (Chen-1995)	8765	97.5% Chebyshev (MVUE) UCL		
	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL		
	()				
Gamma Dis	tribution Test		Data Distribution		
	k star (bias corrected)	0.683	Data appear Normal at 5% Significance Level		
	Theta Star	8590			
	MLE of Mean	5867			
Μ	LE of Standard Deviation	7099			
	nu star	9.563			
Approxima	te Chi Square Value (.05)	3.671	Nonparametric Statistics		
Adju	sted Level of Significance	0.0158	95% CLT UCL	8639	
A	djusted Chi Square Value	2.656	95% Jackknife UCL	9141	
			95% Standard Bootstrap UCL	8381	
Ander	son-Darling Test Statistic	0.723	95% Bootstrap-t UCL	9238	
Anderson-	Darling 5% Critical Value	0.727	95% Hall's Bootstrap UCL	9044	
=	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL		
	Smirnov 5% Critical Value		95% BCA Bootstrap UCL		
Data appear Gamma Distrib	uted at 5% Significance	Level	95% Chebyshev(Mean, Sd) UCL		
			97.5% Chebyshev(Mean, Sd) UCL		
Assuming Gan	nma Distribution		99% Chebyshev(Mean, Sd) UCL	22631	
	UCL (Use when $n \ge 40$)	15286			
95% Approximate Gamma					
	a UCL (Use when n < 40)	21121			
95% Adjusted Gamm		21121	Use 95% Student's-t UCL		

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Mangane	se AOI 13	
			Statistics	
Num	ber of Valid Observations	16	Number of Distinct Observations	15
Paws	tatistics		Log-transformed Statistics	
	Minimum	9 637	Minimum of Log Data	2 266
	Maximum		Maximum of Log Data	
	Mean		Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			-
		253.4		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
		Relevant U	CL Statistics	
	tribution Test		Lognormal Distribution Test	
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	hapiro Wilk Critical Value	0.887	Shapiro Wilk Critical Value	0.887
Data appear Normal a	t 5% Significance Level		Data not Lognormal at 5% Significance Level	
Accuming No.	mal Distribution		Accuming Lognormal Distribution	
Assuming Nor	95% Student's-t UCL	636 1	Assuming Lognormal Distribution 95% H-UCL	3336
95% LICLs (Adiu	isted for Skewness)	030.1	95% Chebyshev (MVUE) UCL	
	ed-CLT UCL (Chen-1995)	617.3	97.5% Chebyshev (MVUE) UCL	
	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL	
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	1.134	Data appear Normal at 5% Significance Level	
	Theta Star	463		
	MLE of Mean	525		
N/				
IV	LE of Standard Deviation	493		
	LE of Standard Deviation nu star			
		36.29	Nonparametric Statistics	
Approxima Adju	nu star te Chi Square Value (.05) sted Level of Significance	36.29 23.5 0.0335	Nonparametric Statistics 95% CLT UCL	629.2
Approxima Adju	nu star te Chi Square Value (.05)	36.29 23.5 0.0335	95% CLT UCL 95% Jackknife UCL	636.1
Approxima Adju A	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	36.29 23.5 0.0335 22.33	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	636.1 624.7
Approxima Adju A	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic	36.29 23.5 0.0335 22.33 2.478	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	636.1 624.7 625.2
Approxima Adju A A Ander Anderson-	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	36.29 23.5 0.0335 22.33 2.478 0.757	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	636.1 624.7 625.2 621.8
Approxima Adju A Ander Anderson- Kolmogor	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	36.29 23.5 0.0335 22.33 2.478 0.757 0.345	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	636.1 624.7 625.2 621.8 618.6
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	636.1 624.7 625.2 621.8 618.6 617
Approxima Adju A Ander Anderson- Kolmogor	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2 920.7
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2 920.7
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le nma Distribution UCL (Use when n >= 40)	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22 vel 810.7	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2 920.7
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22 vel 810.7	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2 920.7
Approxima Adju: A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma 95% Adjusted Gamm	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le nma Distribution UCL (Use when n >= 40)	36.29 23.5 0.0335 22.33 2.478 0.757 0.345 0.22 vel 810.7	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	636.1 624.7 625.2 621.8 618.6 617 801.2 920.7 1155

	General UCL Statistics f	Jaia 0618		
	ProUCL upload.wst			
	OFF			
	95%			
umber of Bootstrap Operations	2000		10140	
		Thallium		
		General S		
	Number of Valid Data	15	Number of Detected Data	
Number o	of Distinct Detected Data	7	Number of Non-Detect Data	
			Percent Non-Detects	46.679
Raw St			Log-transformed Statistics	
	Minimum Detected	0.17	Minimum Detected	-1.77
	Maximum Detected	3.2	Maximum Detected	1.16
	Mean of Detected	1.541	Mean of Detected	0.01
	SD of Detected	1.131	SD of Detected	1.13
	Minimum Non-Detect	0.11	Minimum Non-Detect	-2.20
	Maximum Non-Detect	1.2	Maximum Non-Detect	0.18
e: Data have multiple DLs - Use of	KM Method is recommer	nded	Number treated as Non-Detect	1
all methods (except KM, DL/2, and			Number treated as Detected	
ervations < Largest ND are treated	d as NDs		Single DL Non-Detect Percentage	66.67
		UCL Sta	atistics	
Normal Distribution Test w	vith Detected Values Onl	у	Lognormal Distribution Test with Detected Values On	ly
SI	hapiro Wilk Test Statistic	0.902	Shapiro Wilk Test Statistic	0.84
5% Sh	napiro Wilk Critical Value	0.818	5% Shapiro Wilk Critical Value	0.81
Data appear Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Norn	nal Distribution		Assuming Lognormal Distribution	
C	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	0.956	Mean	-0.71
	SD	1.037	SD	1.29
	95% DL/2 (t) UCL	1.428	95% H-Stat (DL/2) UCL	3.49
Maximum Likelihood	d Estimate(MLE) Method		Log ROS Method	
	Mean	2.323	Mean in Log Scale	-0.93
	SD	0.53	SD in Log Scale	1.37
	95% MLE (t) UCL	2.564	Mean in Original Scale	0.89
	95% MLE (Tiku) UCL	2.738	SD in Original Scale	1.07
			95% t UCL	1.38
			95% Percentile Bootstrap UCL	1.35
			95% BCA Bootstrap UCL	1.43
			95% H UCL	3.53
Gamma Distribution Test v	with Detected Values On	v	Data Distribution Test with Detected Values Only	
	k star (bias corrected)	•	Data appear Normal at 5% Significance Level	
	k star (bias corrected) A-D Test Statistic	0.917	Data appear Normal at 5% Significance Level Nonparametric Statistics	
	k star (bias corrected) A-D Test Statistic 5% A-D Critical Value	•	Nonparametric Statistics	
	A-D Test Statistic 5% A-D Critical Value	0.917 0.603 0.731		0.92
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	0.917 0.603 0.731 0.731	Nonparametric Statistics Kaplan-Meier (KM) Method	0.92
Data appear Gamma Distribu	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.917 0.603 0.731 0.731 0.3	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	1.01
Data appear Gamma Distribu	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.917 0.603 0.731 0.731 0.3	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	1.01
	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Ited at 5% Significance L	0.917 0.603 0.731 0.731 0.3	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	1.01 0.28 1.42
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Ited at 5% Significance L ma Distribution	0.917 0.603 0.731 0.731 0.3	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	1.01 0.28 1.42 1.38
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value tted at 5% Significance L ma Distribution using Extrapolated Data	0.917 0.603 0.731 0.731 0.3 evel	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	1.01 0.28 1.42 1.38 1.38
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Inted at 5% Significance L ma Distribution using Extrapolated Data Minimum	0.917 0.603 0.731 0.731 0.3 evel 0.000001	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	1.0° 0.28 1.42 1.38 1.38 1.50
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Ited at 5% Significance L ma Distribution using Extrapolated Data Minimum Maximum	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	1.01 0.28 1.42 1.38 1.38 1.50 1.72
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Inted at 5% Significance L Ima Distribution Using Extrapolated Data Minimum Maximum Mean	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	1.0° 0.28 1.42 1.38 1.38 1.50 1.72 1.50
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Ited at 5% Significance L ma Distribution using Extrapolated Data Minimum Maximum Mean Median	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	1.0 0.23 1.42 1.33 1.33 1.50 1.72 1.50 2.15
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance L ma Distribution using Extrapolated Data Minimum Maximum Mean Median SD	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213 1.118	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	1.0 0.2 1.4 1.3 1.3 1.5 1.5 2.1 2.6
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Inted at 5% Significance L Inted at 5% Signific	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213 1.118 0.158	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	1.0° 0.28 1.42 1.38 1.50 1.72 1.50 2.18 2.68
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value tted at 5% Significance L ma Distribution using Extrapolated Data Minimum Maximum Median SD k star	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213 1.118 0.158 5.284	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.01 0.28 1.42 1.38 1.38 1.50 1.72 1.50 2.15 2.68
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Inted at 5% Significance L Ima Distribution Using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213 1.118 0.158 5.284 4.748	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.01 0.28 1.42 1.38 1.50 1.72 1.50 2.15 2.68 3.72
Assuming Gam	A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Inted at 5% Significance L Inted at 5% Significance L Inted at 5% Significance L Integration Integration Integration Maximum Maximum Maximum Mean Median SD k star Theta star Nu star AppChi2	0.917 0.603 0.731 0.731 0.3 evel 0.000001 3.2 0.836 0.213 1.118 0.158 5.284	Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	1.01

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options	5			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Vanadiu	IM AOI 13	
		Genera	I Statistics	
Num	ber of Valid Observations		Number of Distinct Observations	14
		1		
Raw S	statistics	-	Log-transformed Statistics	
	Minimum		Minimum of Log Data	
	Maximum		Maximum of Log Data	
	Mean	63.18	Mean of log Data	4.056
	Geometric Mean	57.74	SD of log Data	0.444
	Median	63.8		
		27.12		
	Std. Error of Mean			
	Coefficient of Variation	0.429		
	Skewness	0.311		
		Relevant U	JCL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	0.88
S	hapiro Wilk Critical Value	0.881	Shapiro Wilk Critical Value	0.881
Data not Normal at	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	75.52	95% H-UCL	
	isted for Skewness)		95% Chebyshev (MVUE) UCL	
•	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Modifi	ed-t UCL (Johnson-1978)	75.61	99% Chebyshev (MVUE) UCL	137.2
Gamma Dis	stribution Test	4.045	Data Distribution	
	k star (bias corrected)		Data appear Gamma Distributed at 5% Significance I	-evei
	Theta Star			
	MLE of Mean			
IV	LE of Standard Deviation			
A	nu star		Normanna atria Otatiatian	
	te Chi Square Value (.05)		Nonparametric Statistics	747
	sted Level of Significance djusted Chi Square Value		95% CLT UCL 95% Jackknife UCL	
A	ujusteu Chi Square value	109.4	95% Jackknife UCL 95% Standard Bootstrap UCL	
- ام حد ۸	son-Darling Test Statistic	0 722	95% Standard Bootstrap UCL 95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	
	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	
Data appear Gamma Distrib			95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	
	ateu at 5% Signinicance		95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	
Accuming Cor	nma Distribution		97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma		77 02		102.3
	a UCL (Use when n >= 40)			
วว /o กันเมอเซน Gallilli		73.33		
Dotontial	UCL to Use		Line 05% Approximate Oppose UO	77.02
FUteritidi			Use 95% Approximate Gamma UCL	11.92

	General UCL Statistics	for Full Data	a Sets	
User Selected Options			BEGIN	ABLE A.1
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Aluminum	Western 53	
			Statistics	
Numb	er of Valid Observations	5	Number of Distinct Observations	5
Raw St		11000	Log-transformed Statistics	0.004
	Minimum		Minimum of Log Data	
	Maximum		Maximum of Log Data	
	Geometric Mean	16560	Mean of log Data SD of log Data	
			SD of log Data	0.303
	Median			
	SD Std. Error of Mean	5729		
	Std. Error of Mean Coefficient of Variation			
	Coefficient of Variation Skewness			
	SKEWNESS	1.033		
		Relevant U	CL Statistics	
Normal Dist	ribution Test		Lognormal Distribution Test	
	hapiro Wilk Test Statistic	0.779	Shapiro Wilk Test Statistic	0.853
	hapiro Wilk Critical Value		Shapiro Wilk Critical Value	
Data appear Normal at	•		Data appear Lognormal at 5% Significance Leve	
	•			
Assuming Norr	nal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	22022	95% H-UCL	23997
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	26220
95% Adjuste	d-CLT UCL (Chen-1995)	23098	97.5% Chebyshev (MVUE) UCL	30425
95% Modifie	d-t UCL (Johnson-1978)	22384	99% Chebyshev (MVUE) UCL	38687
		I		
Gamma Dist	ribution Test		Data Distribution	
	k star (bias corrected)	5.18	Data appear Normal at 5% Significance Level	
	Theta Star	3197		
	MLE of Mean	16560		
M	E of Standard Deviation	7276		
	nu star			
	e Chi Square Value (.05)		Nonparametric Statistics	
	ted Level of Significance		95% CLT UCL	
Ad	justed Chi Square Value	30.69	95% Jackknife UCL	
			95% Standard Bootstrap UCL	
	on-Darling Test Statistic		95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
	mirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distribu	Ited at 5% Significance I	_evel	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gam		I	99% Chebyshev(Mean, Sd) UCL	42051
95% Approximate Gamma	,			
95% Adjusted Gamma	UCL (Use when n < 40)	27950		
Potential L			Use 95% Student's-t UCL	

	General UCL Statistics	for Full Data	a Sets	
User Selected Options	5			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Manganese	e Western 53	
			Statistics	
Num	ber of Valid Observations	5	Number of Distinct Observations	5
Baw S	itatistics		Log-transformed Statistics	
	Minimum	128	Minimum of Log Data	4.852
	Maximum		Maximum of Log Data	
		604.8	Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			
		612.9		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness	0.672		
		Relevant U	CL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
ç	Shapiro Wilk Test Statistic	0.77	Shapiro Wilk Test Statistic	0.808
S	hapiro Wilk Critical Value	0.762	Shapiro Wilk Critical Value	0.762
Data appear Normal a	t 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution	I	Assuming Lognormal Distribution	
	95% Student's-t UCL	1189	95% H-UCL	
95% UCLs (Adjı	isted for Skewness)		95% Chebyshev (MVUE) UCL	
95% Adjuste	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Adjuste	ed-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978)		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	
95% Adjuste 95% Modifi	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL	
95% Adjuste 95% Modifi	ed-t UCL (Johnson-1978)	1203	99% Chebyshev (MVUE) UCL Data Distribution	
95% Adjuste 95% Modifi	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected)	1203 0.581	99% Chebyshev (MVUE) UCL	
95% Adjuste 95% Modifi	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star	1203 0.581 1042	99% Chebyshev (MVUE) UCL Data Distribution	
95% Adjuste 95% Modifi Gamma Dis	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean	1203 0.581 1042 604.8	99% Chebyshev (MVUE) UCL Data Distribution	
95% Adjuste 95% Modifi Gamma Dis	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation	1203 0.581 1042 604.8 793.7	99% Chebyshev (MVUE) UCL Data Distribution	
95% Adjuste 95% Modifi Gamma Dis	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star	1203 0.581 1042 604.8 793.7 5.807	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level	
95% Adjuste 95% Modifi Gamma Dis	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	1203 0.581 1042 604.8 793.7 5.807 1.542	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics	3471
95% Adjuste 95% Modifi Gamma Dis M Approxima Adju	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL	3471
95% Adjuste 95% Modifi Gamma Dis M Approxima Adju	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	3471 1056 1189
95% Adjuste 95% Modifi Gamma Dis M Approxima Adju A	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	3471 1056 1189 1010
95% Adjuste 95% Modifi Gamma Dis M Approxima Adju A	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	3471 1056 1189 1010 8076
95% Adjuste 95% Modifi Gamma Dis Gamma Dis Approxima Adju Adju Adju Adju	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	3471 1056 1189 1010 8076 8629
95% Adjuste 95% Modifi Gamma Dis Gamma Dis Approxima Adju Adju Adju Adju Adju Kolmogo	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	3471 1056 1189 1010 8076 8629 1042
95% Adjuste 95% Modifi Gamma Dis Gamma Dis Approxima Adju Adju Adju Adju Adju Kolmogo	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	3471 1056 1189 1010 8076 8629 1042 1046
95% Adjuste 95% Modifi Gamma Dis Gamma Dis Approxima Adju Adju Adju Adju Adju Kolmogorov-S	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	3471 1056 1189 1010 8076 8629 1042 1046 1799
95% Adjuste 95% Modifi Gamma Dis Gamma Dis M Approxima Adju Adju A Adju A Adju Adju Kolmogorov-S Kolmogorov-S Data appear Gamma Distrib	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	3471 1056 1189 1010 8076 8629 1042 1046 1799 2316
95% Adjuste 95% Modifi Gamma Dis Gamma Dis M Approxima Adju Adju A Adju A Adju Adju Kolmogorov-S Kolmogorov-S Data appear Gamma Distrib	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance I nma Distribution	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364 _evel	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3471 1056 1189 1010 8076 8629 1042 1046 1799 2316
95% Adjuste 95% Modifi Gamma Dis Gamma Dis M Approxima Adju Adju A Ander Ander Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance I nma Distribution	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364 _evel 2278	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3471 1056 1189 1010 8076 8629 1042 1046 1799 2316
95% Adjuste 95% Modifi Gamma Dis Gamma Dis M Approxima Adju Adju A Ander Ander Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	ed-t UCL (Johnson-1978) stribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance I nma Distribution UCL (Use when n >= 40)	1203 0.581 1042 604.8 793.7 5.807 1.542 0.0086 0.773 0.645 0.69 0.335 0.364 _evel 2278	99% Chebyshev (MVUE) UCL Data Distribution Data appear Normal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3471 1056 1189 1010 8076 8629 1042 1046 1799 2316

	s with Non-Detects	or Data Sets		
			From File ProUCL upload.wst	
			Full Precision OFF	
			Confidence Coefficient 95%	
			Number of Bootstrap Operations 2000	
	Vestern 53	Thallium V		
		General		
	Number of Detected Data	10	Number of Valid Data	
	Number of Non-Detect Data	5	Number of Distinct Detected Data	
50.009	Percent Non-Detects			
	Log-transformed Statistics		Raw Statistics	
0.63	Minimum Detected	1.88	Minimum Detected	
1.22	Maximum Detected	3.41	Maximum Detected	
0.86	Mean of Detected	2.428	Mean of Detected	
0.22	SD of Detected	0.586	SD of Detected	
-0.16	Minimum Non-Detect	0.85	Minimum Non-Detect	
-0.072	Maximum Non-Detect	0.93	Maximum Non-Detect	
	Number treated as Non-Detect	nded	ote: Data have multiple DLs - Use of KM Method is recomme	
	Number treated as Detected		or all methods (except KM, DL/2, and ROS Methods),	
50.009	Single DL Non-Detect Percentage		bservations < Largest ND are treated as NDs	
	atistics	UCL St		
ly	Lognormal Distribution Test with Detected Values Onl	У	Normal Distribution Test with Detected Values On	
0.91	Shapiro Wilk Test Statistic	0.861	Shapiro Wilk Test Statistic	
0.76	5% Shapiro Wilk Critical Value	0.762	5% Shapiro Wilk Critical Value	
	Data appear Lognormal at 5% Significance Level		Data appear Normal at 5% Significance Level	
	Assuming Lognormal Distribution		Assuming Normal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
0.026	Mean	1.436	Mean	
0.89	SD	1.116	SD	
3.65	95% H-Stat (DL/2) UCL	2.083	95% DL/2 (t) UCL	
	Log ROS Method		Maximum Likelihood Estimate(MLE) Method	
0.53	Mean in Log Scale	1.114	Mean	
0.37	SD in Log Scale	1.498	SD	
1.82	Mean in Original Scale	1.982	95% MLE (t) UCL	
0.74	SD in Original Scale	2.182	95% MLE (Tiku) UCL	
2.25	95% t UCL	_		
2.23	95% Percentile Bootstrap UCL			
2.26	95% BCA Bootstrap UCL			
2.38	95% H UCL			
2.00	Data Distribution Test with Detected Values Only	lv.	Gamma Distribution Test with Detected Values Or	
	Data appear Normal at 5% Significance Level	9.746	k star (bias corrected)	
	Nonparametric Statistics	0.39	A-D Test Statistic	
	Kaplan-Meier (KM) Method	0.679	5% A-D Critical Value	
2.15	Mean	0.679	K-S Test Statistic	
2.10		0.0/3		
0.46			5% K C Critical Valua	
0.46	SD	0.357	5% K-S Critical Value	
0.16	SD SE of Mean	0.357	5% K-S Critical Value Data appear Gamma Distributed at 5% Significance	
0.16	SD SE of Mean 95% KM (t) UCL	0.357	Data appear Gamma Distributed at 5% Significance	
0.16 2.45 2.42	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	0.357	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution	
0.16 2.45 2.42 2.42	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	0.357 .evel	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data	
0.16 2.45 2.42 2.42 2.42 2.61	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.357 .evel 0.000001	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum	
0.16 2.45 2.42 2.42 2.42 2.61 2.65	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	0.357 .evel 0.000001 3.41	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum	
0.16 2.45 2.42 2.42 2.61 2.65 2.53	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	0.357 .evel 0.000001 3.41 1.214	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean	
0.16 2.42 2.42 2.61 2.65 2.53 2.86	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean	
0.16 2.45 2.42 2.42 2.65 2.53 2.86 3.17	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94 1.338	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean SD	
0.16 2.45 2.42 2.42 2.65 2.53 2.86 3.17	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94 1.338 0.15	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean SD k star	
0.16 2.45 2.42 2.42 2.61 2.65 2.53 2.86 3.17	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94 1.338 0.15 8.093	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean SD k star Theta star	
0.16 2.45 2.42 2.61 2.65 2.53 2.86 3.17 3.77	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94 1.338 0.15 8.093 3	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean SD k star Theta star Nu star	
	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.357 .evel 0.000001 3.41 1.214 0.94 1.338 0.15 8.093	Data appear Gamma Distributed at 5% Significance Assuming Gamma Distribution Gamma ROS Statistics using Extrapolated Data Minimum Maximum Mean SD k star Theta star	

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Vanadium	Western 53	
		General		
Num	ber of Valid Observations	10	Number of Distinct Observations	10
Raw S	Statistics		Log-transformed Statistics	
	Minimum	45.1	Minimum of Log Data	3.809
	Maximum		Maximum of Log Data	
		70.37	Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			
		23.32		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
		Relevant UC	CL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
S	Shapiro Wilk Test Statistic	0.805	Shapiro Wilk Test Statistic	0.913
S	hapiro Wilk Critical Value	0.842	Shapiro Wilk Critical Value	0.842
Data not Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	83.89	95% H-UCL	85.14
95% UCLs (Adju	usted for Skewness)		95% Chebyshev (MVUE) UCL	98.28
95% Adjuste	ed-CLT UCL (Chen-1995)	87.27	97.5% Chebyshev (MVUE) UCL	110.4
95% Modifi	ed-t UCL (Johnson-1978)	84.63	99% Chebyshev (MVUE) UCL	134.4
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	8.765	Data appear Gamma Distributed at 5% Significance L	evel.
	Theta Star	8.028		
	MLE of Mean	70.37		
M	ILE of Standard Deviation	23.77		
	nu star			
	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	
A	djusted Chi Square Value	141	95% Jackknife UCL	83.89
			95% Standard Bootstrap UCL	
		0.540	95% Bootstrap-t UCL	
Ander	son-Darling Test Statistic	0.513		100.0
	son-Darling Test Statistic		95% Hall's Bootstrap UCL	139.8
Anderson- Kolmogoi	Darling 5% Critical Value	0.725 0.205	95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	
Anderson- Kolmogoi	-Darling 5% Critical Value	0.725 0.205		82.06
Anderson- Kolmogoi	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.725 0.205 0.267	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5
Anderson- Kolmogor Kolmogorov-S	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.725 0.205 0.267	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5 116.4
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	0.725 0.205 0.267	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5 116.4
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance	0.725 0.205 0.267 Level	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5 116.4
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance	0.725 0.205 0.267 Level 84.68	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5 116.4
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma 95% Adjusted Gamm	Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value outed at 5% Significance mma Distribution UCL (Use when n >= 40)	0.725 0.205 0.267 Level 84.68	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	82.06 87.65 102.5 116.4 143.7

	General UCL Statistics	for Full Data	Sets	
User Selected Options	\$		BEGIN 1	ABLE A.12
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	A	luminum Spa	ulding Rankin	
N		General		0.4
Num	ber of Valid Observations	66	Number of Distinct Observations	64
Baw S	itatistics		Log-transformed Statistics	
	Minimum	2530	Minimum of Log Data	7.836
	Maximum		Maximum of Log Data	
		15639	Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			U. 101
		6068		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
		0.477		
		Relevant UC	CL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.062	Lilliefors Test Statistic	0.102
	Lilliefors Critical Value	0.109	Lilliefors Critical Value	0.109
Data appear Normal a	t 5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	16885	95% H-UCL	17613
95% UCLs (Adju	isted for Skewness)		95% Chebyshev (MVUE) UCL	19884
95% Adjuste	ed-CLT UCL (Chen-1995)	16914	97.5% Chebyshev (MVUE) UCL	21627
95% Modifi	ed-t UCL (Johnson-1978)	16892	99% Chebyshev (MVUE) UCL	25051
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	5.626	Data appear Normal at 5% Significance Level	
	Theta Star	2780		
	MLE of Mean			
N	ILE of Standard Deviation			
	nu star			
	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	
A	djusted Chi Square Value	679.1	95% Jackknife UCL	
			95% Standard Bootstrap UCL	
	son-Darling Test Statistic		95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	rov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
	Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data appear Gamma Distrib	uted at 5% Significance	Level	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
			99% Chebyshev(Mean, Sd) UCL	23070
Assuming Gar	nma Distribution	1		
Assuming Gar 95% Approximate Gamma	UCL (Use when n >= 40)			
Assuming Gar 95% Approximate Gamma				
Assuming Gar 95% Approximate Gamma 95% Adjusted Gamm	UCL (Use when n >= 40)		Use 95% Student's-t UCL	

	with Non-Detects	or Data Sets	General UCL Statistics	
			5	User Selected Options
			ProUCL upload.wst	
			OFF	Full Precision
			95%	
	Life e Divide		2000	Number of Bootstrap Operations
	Iding Rankin	General S	A	
27	Number of Detected Data	General 3 54	Number of Valid Data	
27	Number of Non-Detect Data	24	r of Distinct Detected Data	Number
50.00%	Percent Non-Detects			Tumber
	Log-transformed Statistics		Statistics	Raw St
-0.79	Minimum Detected	0.454	Minimum Detected	
2.918	Maximum Detected	18.5	Maximum Detected	
1.076	Mean of Detected	4.947	Mean of Detected	
1.06	SD of Detected	5.062	SD of Detected	
1.179	Minimum Non-Detect	3.25	Minimum Non-Detect	
2.688	Maximum Non-Detect	14.7	Maximum Non-Detect	
52	Number treated as Non-Detect	nded		Note: Data have multiple DLs - Use o
2	Number treated as Detected			For all methods (except KM, DL/2, an
96.30%	Single DL Non-Detect Percentage	UCL St	ted as NDs	Observations < Largest ND are treate
nly	Lognormal Distribution Test with Detected Values Or		with Detected Values On	Normal Distribution Test v
0.885	Shapiro Wilk Test Statistic	y 0.787	Shapiro Wilk Test Statistic	
0.923	5% Shapiro Wilk Critical Value	0.923	Shapiro Wilk Critical Value	
	Data not Lognormal at 5% Significance Level		5% Significance Level	
	Assuming Lognormal Distribution		rmal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
1.108	Mean	4.205	Mean	
0.813	SD	3.783	SD	
5.342	95% H-Stat (DL/2) UCL	5.067	95% DL/2 (t) UCL	
	Log ROS Method	N/A	od Estimate(MLE) Method	
0.813	Mean in Log Scale		to converge properly	MLE method failed t
0.798	SD in Log Scale			
3.355	Mean in Original Scale SD in Original Scale			
4.243	95% t UCL			
4.297	95% Percentile Bootstrap UCL			
4.448	95% BCA Bootstrap UCL			
3.911	95% H-UCL			
,	Data Distribution Test with Detected Values Only	у	with Detected Values On	Gamma Distribution Test
5)	Data do not follow a Discernable Distribution (0.05)	0.995	k star (bias corrected)	
	Nonparametric Statistics	1.716	A-D Test Statistic	
	Kaplan-Meier (KM) Method	0.771	5% A-D Critical Value	
3.425	Mean	0.771	K-S Test Statistic	
4.03	SD	0.173	5% K-S Critical Value	
0.593	SE of Mean	vel	ted at 5% Significance Le	Data not Gamma Distribute
4.418	95% KM (t) UCL			
4.4	95% KM (z) UCL		mma Distribution	-
4.412	95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	0.454	s using Extrapolated Data Minimum	Gamma RUS Statistics
4.579	95% KM (BCA) UCL	18.5	Maximum	
4.382	95% KM (Percentile Bootstrap) UCL	3.759	Maximum	
6.009	95% KM (Chebyshev) UCL	2.268	Median	
7.127	97.5% KM (Chebyshev) UCL	3.804	SD	
9.324	99% KM (Chebyshev) UCL	1.48	k star	
		2.539	Theta star	
	Potential UCLs to Use	159.9	Nu star	
4.492	95% KM (BCA) UCL	131.7	AppChi2	
		4.566	e UCL (Use when n >= 40)	95% Gamma Approximate
		4.59	na UCL (Use when n < 40)	95% Adjusted Gamma

	n-Detects	or Data Sets	General UCL Statistics f	
			ProUCL upload.wst	From File
			OFF	Full Precision
			95%	Confidence Coefficient
			2000	Number of Bootstrap Operations
	ıkin	<mark>rsenic Spau</mark>	A	
		General		
50	Number of Detected Data	64	Number of Valid Data	
1	Number of Non-Detect Data	49	of Distinct Detected Data	Number
12.50%	Percent Non-Detects			
	Log-transformed Statistics		tatistics	Raw S
-1.60	Minimum Detected	0.2	Minimum Detected	
4.87	Maximum Detected	131	Maximum Detected	
0.94	Mean of Detected	7.35	Mean of Detected	
1.20	SD of Detected	19.34	SD of Detected	
-1.38	Minimum Non-Detect	0.25	Minimum Non-Detect	
0.74	Maximum Non-Detect	2.1	Maximum Non-Detect	
34	Number treated as Non-Detect	ded	of KM Method is recommer	lote: Data have multiple DLs - Use c
30	Number treated as Detected		nd ROS Methods),	For all methods (except KM, DL/2, ar
53.13%	Single DL Non-Detect Percentage		ed as NDs	Observations < Largest ND are treate
		UCL St		
/	ognormal Distribution Test with Detected Values Only	/	with Detected Values Onl	Normal Distribution Test
0.187	Lilliefors Test Statistic	0.356	Lilliefors Test Statistic	
0.118	5% Lilliefors Critical Value	0.118	% Lilliefors Critical Value	5
	Data not Lognormal at 5% Significance Level		5% Significance Level	Data not Normal at 5
	Assuming Lognormal Distribution		mal Distribution	Assuming Nor
	DL/2 Substitution Method		DL/2 Substitution Method	
0.766	Mean	6.526	Mean	
1.248	SD	18.2	SD	
6.629	95% H-Stat (DL/2) UCL	10.32	95% DL/2 (t) UCL	
	Log ROS Method	N/A	d Estimate(MLE) Method	Maximum Likelihoo
0.751	Mean in Log Scale		negative mean	MLE yields a
1.265	SD in Log Scale			
6.52	Mean in Original Scale			
18.2	SD in Original Scale			
10.32	95% t UCL			
10.64	95% Percentile Bootstrap UCL			
13.3	95% BCA Bootstrap UCL			
6.706	95% H-UCL			
	Data Distribution Test with Detected Values Only	у	with Detected Values On	Gamma Distribution Test
	Data do not follow a Discernable Distribution (0.05)	0.569	k star (bias corrected)	
	Nonparametric Statistics	5.868	A-D Test Statistic	
	Kaplan-Meier (KM) Method	0.807	5% A-D Critical Value	
6.53	Mean	0.807	K-S Test Statistic	
18.06	SD	0.125	5% K-S Critical Value	
2.278	SE of Mean	el	ed at 5% Significance Lev	Data not Gamma Distribut
10.33	95% KM (t) UCL			
10.28	95% KM (z) UCL		nma Distribution	Assuming Gan
10.33	95% KM (jackknife) UCL		s using Extrapolated Data	
17 (95% KM (bootstrap t) UCL	0.000001	Minimum	
17.8	95% KM (BCA) UCL	131	Maximum	
		6.434	Mean	
11.00	95% KM (Percentile Bootstrap) UCL		Median	
11.0	95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	1.66		
11.0 10.5 16.4		1.66 18.23	SD	
11.0 10.5 16.4 20.7	95% KM (Chebyshev) UCL		SD k star	
11.0 10.5 16.4 20.7	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	18.23	_	
11.00 10.59 16.40 20.79	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	18.23 0.27	k star	
11.00 10.59 16.40 20.79 29.19	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	18.23 0.27 23.83	k star Theta star	
17.8 11.06 10.59 16.46 20.75 29.19 16.46	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use	18.23 0.27 23.83 34.56	k star Theta star Nu star AppChi2	95% Gamma Approximate

	General UCL Statistics	for Full Data	Sets	
User Selected Options	;			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	C		aulding Rankin	
			Statistics	
Numl	ber of Valid Observations	55	Number of Distinct Observations	52
Raw S	tatistics		Log-transformed Statistics	
	Minimum	49.3	Minimum of Log Data	3.898
	Maximum	15867	Maximum of Log Data	9.672
	Mean	907.7	Mean of log Data	6.313
	Geometric Mean	551.5	SD of log Data	0.826
	Median	544		
	SD	2091		
	Std. Error of Mean	281.9		
	Coefficient of Variation	2.304		
·	Skewness	7.031		
		I		
		Relevant U	CL Statistics	
Normal Dist		0.050	Lognormal Distribution Test	
	Lilliefors Test Statistic		Lilliefors Test Statistic	
	Lilliefors Critical Value	0.119	Lilliefors Critical Value	0.119
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	1380	95% H-UCL	987.3
95% UCLs (Adju	isted for Skewness)	I	95% Chebyshev (MVUE) UCL	1191
95% Adjuste	ed-CLT UCL (Chen-1995)	1657	97.5% Chebyshev (MVUE) UCL	1374
95% Modifie	ed-t UCL (Johnson-1978)	1424	99% Chebyshev (MVUE) UCL	1733
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	1 091	Data do not follow a Discernable Distribution (0.05	3
		1.001	Data do not follow a Discontable Discibution (0.00	
	Theta Star	831.9		,
	Theta Star MI F of Mean			,
N	MLE of Mean	907.7		,
M	MLE of Mean	907.7 869		,
	MLE of Mean LE of Standard Deviation nu star	907.7 869 120	Nonparametric Statistics	,
Approximat	MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05)	907.7 869 120 95.72	Nonparametric Statistics	·
Approximat Adjus	MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	907.7 869 120 95.72 0.0456	95% CLT UCL	1371
Approximat Adjus	MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05)	907.7 869 120 95.72 0.0456	95% CLT UCL 95% Jackknife UCL	1371 1380
Approximat Adjus Ad	MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	907.7 869 120 95.72 0.0456 95.14	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	1371 1380 1386
Approximat Adjus Ad	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic	907.7 869 120 95.72 0.0456 95.14 4.627	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	1371 1380 1386 3036
Approximat Adjus Ad Ad Anderson-	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	907.7 869 120 95.72 0.0456 95.14 4.627 0.776	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	1371 1380 1386 3036 3166
Approximat Adjus Ad Ad Anders Anderson- Kolmogor	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	1371 1380 1386 3036 3166 1468
Approximat Adjus Adjus Ad Anders Anderson- Kolmogor Kolmogorov-S	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	1371 1380 1386 3036 3166 1468 1817
Approximat Adjus Ad Ad Anders Anderson- Kolmogor	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	1371 1380 1386 3036 3166 1468 1817 2137
Approximat Adjus Ad Ad Anders Anderson- Kolmogor Kolmogorv-S Data not Gamma Distribut	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1371 1380 1386 3036 3166 1468 1817 2137 2668
Approximat Adjus Ad Ad Anders Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	1371 1380 1386 3036 3166 1468 1817 2137 2668
Approximat Adjus Adjus Adjus Anders Anderson- Kolmogor Kolmogorv-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1371 1380 1386 3036 3166 1468 1817 2137 2668
Approximat Adjus Adjus Adjus Anders Anderson- Kolmogor Kolmogorv-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma	MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	907.7 869 120 95.72 0.0456 95.14 4.627 0.776 0.235 0.123 vel	95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1371 1380 1386 3036 3166 1468 1817 2137 2668

	General UCL Statistics	for Full Dat	ta Sets	
User Selected Options	5			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Cobalt Spa	ulding Rankin	
		Genera	I Statistics	
Num	ber of Valid Observations	37	Number of Distinct Observations	37
Raw S	statistics		Log-transformed Statistics	
	Minimum		Minimum of Log Data	
	Maximum		Maximum of Log Data	
		80.34	Mean of log Data	
	Geometric Mean Median		SD of log Data	0.737
	SD Std. Error of Mean	83.51		
	Coefficient of Variation			
	Skewness			
	Skewness	2.774		
		Relevant I	JCL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Shapiro Wilk Test Statistic	0.646	Shapiro Wilk Test Statistic	0.943
	hapiro Wilk Critical Value		Shapiro Wilk Critical Value	
	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	103.5	95% H-UCL	99.95
95% UCLs (Adju	isted for Skewness)		95% Chebyshev (MVUE) UCL	120.6
95% Adjuste	ed-CLT UCL (Chen-1995)	109.6	97.5% Chebyshev (MVUE) UCL	139.7
95% Modifi	ed-t UCL (Johnson-1978)	104.6	99% Chebyshev (MVUE) UCL	177.3
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)		Data appear Lognormal at 5% Significance Level	
	Theta Star			
	MLE of Mean			
Ν	LE of Standard Deviation			
	nu star			
	te Chi Square Value (.05)		Nonparametric Statistics	100.0
	sted Level of Significance		95% CLT UCL	
A	djusted Chi Square Value	94.91	95% Jackknife UCL	
• •		2.017	95% Standard Bootstrap UCL	
	son-Darling Test Statistic		95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	rov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
	Smirnov 5% Critical Value		95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	
Data not Gamma Distribut	eu at 5% Significance Le			
Acquiming Oct	nma Distribution		97.5% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	
Assuming Gan 95% Approximate Gamma		100 7	39% Chebysnev(Mean, Sd) UCL	210.9
•••	a UCL (Use when $n \ge 40$)			
95% Aujustea Gamm	a UCL (USE when n < 40)	101.7		
Potential			Use 95% H-UCL	

	General UCL Statistics	for Full Dat	a Sets
User Selected Options	\$		
From File	ProUCL upload.wst		
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
		Copper Spa	aulding Rankin
		Genera	I Statistics
Num	ber of Valid Observations	30	Number of Distinct Observations 29
Raw S	Statistics		Log-transformed Statistics
	Minimum	15.1	Minimum of Log Data 2.715
	Maximum	481	Maximum of Log Data 6.176
		58.32	Mean of log Data 3.618
	Geometric Mean	37.27	SD of log Data 0.793
	Median	30.7	
		89.44	
	Std. Error of Mean		
	Coefficient of Variation	1.534	
	Skewness	4.034	
		Relevant l	JCL Statistics
Normal Dis	tribution Test		Lognormal Distribution Test
S	Shapiro Wilk Test Statistic	0.474	Shapiro Wilk Test Statistic 0.846
S	hapiro Wilk Critical Value	0.927	Shapiro Wilk Critical Value 0.927
Data not Normal at	5% Significance Level		Data not Lognormal at 5% Significance Level
Assuming Nor	mal Distribution		Assuming Lognormal Distribution
	95% Student's-t UCL	86.06	95% H-UCL 70.95
	usted for Skewness)	00.00	95% Chebyshev (MVUE) UCL 85.42
	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL 100.6
95% Modifi	ed-t UCL (Johnson-1978)	88.07	99% Chebyshev (MVUE) UCL 130.4
Gamma Dis	stribution Test		Data Distribution
	k star (bias corrected)	1.154	Data do not follow a Discernable Distribution (0.05)
	Theta Star	50.55	
	MLE of Mean	58.32	
Μ	ILE of Standard Deviation	54.29	
	nu star	69.22	
Approxima	te Chi Square Value (.05)	51.07	Nonparametric Statistics
Adju	sted Level of Significance	0.041	95% CLT UCL 85.18
A	djusted Chi Square Value	50.17	95% Jackknife UCL 86.06
			95% Standard Bootstrap UCL 84.13
Ander	son-Darling Test Statistic	2.874	95% Bootstrap-t UCL 130.3
Anderson-	Darling 5% Critical Value	0.769	95% Hall's Bootstrap UCL 188.5
Kolmogor	rov-Smirnov Test Statistic	0.246	95% Percentile Bootstrap UCL 87.12
Kolmogorov-S	Smirnov 5% Critical Value	0.164	95% BCA Bootstrap UCL 105.4
Data not Gamma Distribut	ed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL 129.5
			97.5% Chebyshev(Mean, Sd) UCL 160.3
Assuming Gan	nma Distribution	1	99% Chebyshev(Mean, Sd) UCL 220.8
95% Approximate Gamma	UCL (Use when n >= 40)	79.05	
	a UCL (Use when n < 40)		
	UCL to Use		Use 95% Chebyshev (Mean, Sd) UCL 129.5

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Iron Spauld	ing Rankin	
		General S	Statistics	
Numl	ber of Valid Observations	29	Number of Distinct Observations	29
Raw S	tatistics		Log-transformed Statistics	
	Minimum	26308	Minimum of Log Data	10.18
	Maximum		Maximum of Log Data	
	Mean	56232	Mean of log Data	
	Geometric Mean	52536	SD of log Data	
	Median			
	SD	22985		
	Std. Error of Mean	4268		
	Coefficient of Variation			
	Skewness	1.826		
Normal Dia		Relevant UC		
	tribution Test	0.000	Lognormal Distribution Test	0.001
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	hapiro Wilk Critical Value 5% Significance Level	0.926	Shapiro Wilk Critical Value Data appear Lognormal at 5% Significance Level	
Data not normal at a	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	63493	95% H-UCL	63864
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	73089
	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Modifie	ed-t UCL (Johnson-1978)	63734	99% Chebyshev (MVUE) UCL	94942
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	6.763	Data appear Gamma Distributed at 5% Significance L	evel
	Theta Star			
	MLE of Mean	56232		
М	LE of Standard Deviation	21623		
	nu star	392.3		
Approximat	te Chi Square Value (.05)	347.4	Nonparametric Statistics	
Adjus	sted Level of Significance	0.0407	95% CLT UCL	63252
Ad	djusted Chi Square Value	344.8	95% Jackknife UCL	63493
			95% Standard Bootstrap UCL	63022
		1	95% Bootstrap-t UCL	65319
	son-Darling Test Statistic			
Anderson-	Darling 5% Critical Value	0.747	95% Hall's Bootstrap UCL	
Anderson- Kolmogor	Darling 5% Critical Value ov-Smirnov Test Statistic	0.747 0.0977	95% Percentile Bootstrap UCL	63461
Anderson- Kolmogor Kolmogorov-S	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	0.747 0.0977 0.163	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	63461 64307
Anderson- Kolmogor	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	0.747 0.0977 0.163	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	63461 64307 74837
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance	0.747 0.0977 0.163	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	63461 64307 74837 82887
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distribu Assuming Gam	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance	0.747 0.0977 0.163 Level	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	63461 64307 74837 82887
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance mma Distribution UCL (Use when n >= 40)	0.747 0.0977 0.163 Level 63501	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	63461 64307 74837 82887
Anderson- Kolmogor Kolmogorov-S Data appear Gamma Distrib Assuming Gam 95% Approximate Gamma	Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value uted at 5% Significance	0.747 0.0977 0.163 Level 63501	95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	63461 64307 74837 82887

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options	;			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Lead Spau	ılding Rankin	
			I Statistics	
Num	ber of Valid Observations	60	Number of Distinct Observations	59
	A - 4 - 4			
Raws	Statistics Minimum	0.92	Log-transformed Statistics	0 100
	Maximum		Minimum of Log Data Maximum of Log Data	
		53.08	Maximum of Log Data Mean of log Data	
			-	
	Geometric Mean Median		SD of log Data	1.271
		19.45		
	SD Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
	Skewness	5.776		
		Relevant L	ICL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.331	Lilliefors Test Statistic	0.0878
	Lilliefors Critical Value	0.114	Lilliefors Critical Value	0.114
Data not Normal at !	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	78.86	95% H-UCL	78.93
95% UCLs (Adju	usted for Skewness)		95% Chebyshev (MVUE) UCL	91.26
95% Adjuste	ed-CLT UCL (Chen-1995)	90.74	97.5% Chebyshev (MVUE) UCL	110.1
95% Modifi	ed-t UCL (Johnson-1978)	80.77	99% Chebyshev (MVUE) UCL	147
Gamma Dis	stribution Test	0.050	Data Distribution	1
	k star (bias corrected)		Data appear Lognormal at 5% Significance Level	
	Theta Star			
	MLE of Mean			
Ν	ILE of Standard Deviation			
	nu star			
	te Chi Square Value (.05)		Nonparametric Statistics	70.45
	sted Level of Significance		95% CLT UCL	
A	djusted Chi Square Value	59.21	95% Jackknife UCL	
• ·		0.000	95% Standard Bootstrap UCL	
	son-Darling Test Statistic		95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	rov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
-	Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distribut	eu at 5% Significance Le		95% Chebyshev(Mean, Sd) UCL	
	Distrik di		97.5% Chebyshev(Mean, Sd) UCL	
	nma Distribution	70 11	99% Chebyshev(Mean, Sd) UCL	206.5
95% Approximate Gamma				
95% Adjusted Gamm	a UCL (Use when n < 40)	70.93		
Distant 1	UCL to Use		Use 95% H-UCL	70.00

	General UCL Statistics	for Full Data	a Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Ma	<mark>agnesium S</mark>	paulding Rankin	
		General	Statistics	
Num	ber of Valid Observations	30	Number of Distinct Observations	30
Raw S	itatistics		Log-transformed Statistics	
	Minimum	1278	Minimum of Log Data	7.153
	Maximum	14900	Maximum of Log Data	
	Mean	4600	Mean of log Data	8.239
	Geometric Mean	3787	SD of log Data	
	Median	4291		
	SD	3047		
	Std. Error of Mean	556.4		
	Coefficient of Variation	0.662		
	Skewness	1.816		
		Relevant U	CL Statistics	
	tribution Test	1	Lognormal Distribution Test	
	Shapiro Wilk Test Statistic		Shapiro Wilk Test Statistic	
	hapiro Wilk Critical Value	0.927	Shapiro Wilk Critical Value	0.927
Data not Normal at	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	5545	95% H-UCL	6012
95% UCLs (Adju	isted for Skewness)		95% Chebyshev (MVUE) UCL	7203
95% Adjuste	ed-CLT UCL (Chen-1995)	5712	97.5% Chebyshev (MVUE) UCL	8314
95% Modifi	ed-t UCL (Johnson-1978)	5576	99% Chebyshev (MVUE) UCL	10496
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	2.475	Data Follow Appr. Gamma Distribution at 5% Significance	e Level
	Theta Star	1858		
	MLE of Mean			
M	LE of Standard Deviation	2924		
	nu star	148.5		
Approxima	te Chi Square Value (.05)	121.3	Nonparametric Statistics	
Adju	sted Level of Significance	0.041	95% CLT UCL	5515
A	djusted Chi Square Value	119.9	95% Jackknife UCL	5545
			95% Standard Bootstrap UCL	5480
Ander	son-Darling Test Statistic	0.783	95% Bootstrap-t UCL	5929
Anderson-	Darling 5% Critical Value	0.754	95% Hall's Bootstrap UCL	6725
Kolmogoi	rov-Smirnov Test Statistic	0.139	95% Percentile Bootstrap UCL	5586
Kolmogorov-S	Smirnov 5% Critical Value	0.161	95% BCA Bootstrap UCL	5709
Data follow Appr. Gamma Dist	ribution at 5% Significand	ce Level	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	8074
Assuming Gan	nma Distribution		99% Chebyshev(Mean, Sd) UCL	10135
95% Approximate Gamma	UCL (Use when n >= 40)	5630		
95% Adjusted Gamm	a UCL (Use when n < 40)	5696		
		1		
	UCL to Use		Use 95% Approximate Gamma UCL	F000

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Ma		paulding Rankin	
		-	Statistics	
Num	ber of Valid Observations	66	Number of Distinct Observations	64
Raw S	tatistics		Log-transformed Statistics	
	Minimum	222	Minimum of Log Data	5.403
	Maximum	3248	Maximum of Log Data	
	Mean	1123	Mean of log Data	6.813
	Geometric Mean	909.3	SD of log Data	0.66
	Median	901		
	SD	764.9		
	Std. Error of Mean	94.15		
	Coefficient of Variation	0.681		
	Skewness	1.332		
		1		
Normal Dia		Relevant U	CL Statistics	
Normal Dis	tribution Test	0.015	Lognormal Distribution Test	0.0040
	Lilliefors Test Statistic		Lilliefors Test Statistic	
Data not Normal at I	Lilliefors Critical Value	0.109	Lilliefors Critical Value Data appear Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	1280	95% H-UCL	1330
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL	1561
95% Adjuste	d-CLT UCL (Chen-1995)	1294	97.5% Chebyshev (MVUE) UCL	1749
95% Modifi	ed-t UCL (Johnson-1978)	1283	99% Chebyshev (MVUE) UCL	2119
Gamma Dis	tribution Test		Data Distribution	
Gainina Dis	k star (bias corrected)	2 / 10	Data Follow Appr. Gamma Distribution at 5% Significance	
	Theta Star			
	MLE of Mean			
Μ	LE of Standard Deviation			
	nu star			
Approxima	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	1278
	djusted Chi Square Value		95% Jackknife UCL	
			95% Standard Bootstrap UCL	
Ander	son-Darling Test Statistic	0.747	95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
	Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data follow Appr. Gamma Dist			95% Chebyshev(Mean, Sd) UCL	
	-		97.5% Chebyshev(Mean, Sd) UCL	1711
Assuming Gan	nma Distribution	1	99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma		1286		
	a UCL (Use when n < 40)			
	UCL to Use		Use 95% Approximate Gamma UCL	1000

	General UCL Statistics	for Data Sets	s with Non-Detects	
From File	ProUCL upload.wst			
Confidence Coefficient	95% 2000			
Number of Bootstrap Operations			della a Basalda	
	N	General Space	ulding Rankin Statistics	
	Number of Valid Data	45	Number of Detected Data	29
Number	of Distinct Detected Data	19	Number of Non-Detect Data	16
			Percent Non-Detects	35.56%
Raw S	tatistics		Log-transformed Statistics	
	Minimum Detected	0.03	Minimum Detected	-3.507
	Maximum Detected	2.5	Maximum Detected	0.916
	Mean of Detected	0.27	Mean of Detected	-1.92
	SD of Detected	0.472	SD of Detected	1.01
	Minimum Non-Detect	0.055	Minimum Non-Detect	-2.9
	Maximum Non-Detect	0.13	Maximum Non-Detect	-2.04
Note: Data have multiple DLs - Use c	of KM Method is recommen	nded	Number treated as Non-Detect	28
For all methods (except KM, DL/2, ar	nd ROS Methods),		Number treated as Detected	17
Observations < Largest ND are treated	ed as NDs		Single DL Non-Detect Percentage	62.22%
		UCL St	atistics	
Normal Distribution Test	with Detected Values On	y	Lognormal Distribution Test with Detected Values Or	nly
S	Shapiro Wilk Test Statistic	0.462	Shapiro Wilk Test Statistic	0.92
5% S	hapiro Wilk Critical Value	0.926	5% Shapiro Wilk Critical Value	0.926
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	0.189	Mean	-2.391
	SD	0.392	SD	1.05
	95% DL/2 (t) UCL	0.287	95% H-Stat (DL/2) UCL	0.233
	d Estimate(MLE) Method	N/A	Log ROS Method	
MLE yields a	negative mean		Mean in Log Scale	-2.417
			SD in Log Scale	1.081
			Mean in Original Scale	0.188
			SD in Original Scale	0.393
			95% t UCL	0.286
			95% Percentile Bootstrap UCL	0.296
			95% BCA Bootstrap UCL	0.349
			95% H-UCL	0.239
Gamma Distribution Test		•	Data Distribution Test with Detected Values Only	
	k star (bias corrected) Theta Star	0.869 0.31	Data do not follow a Discernable Distribution (0.05))
		50.41		
	nu star A-D Test Statistic	1.993	Nonparametric Statistics	
	5% A-D Critical Value	0.776	Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.776	Kapian-Melei (KW) Method Mean	0.188
	5% K-S Critical Value	0.168	SD	0.388
Data not Gamma Distribut			SE of Mean	0.0589
			95% KM (t) UCL	0.287
Assumina Gan	nma Distribution		95% KM (z) UCL	0.285
	s using Extrapolated Data		95% KM (jackknife) UCL	0.287
	Minimum	0.000001	95% KM (bootstrap t) UCL	0.467
		2.5	95% KM (BCA) UCL	0.309
	Maximum		95% KM (Percentile Bootstrap) UCL	0.293
	Maximum Mean	0.176		
		0.176 0.09	95% KM (Chebyshev) UCL	0.445
	Mean		· · · · ·	
	Mean Median	0.09	95% KM (Chebyshev) UCL	0.556
	Mean Median SD	0.09 0.398	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.556
	Mean Median SD k star	0.09 0.398 0.183	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	0.445 0.556 0.775
	Mean Median SD k star Theta star	0.09 0.398 0.183 0.966	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	0.556
95% Gamma Approximate	Mean Median SD k star Theta star Nu star AppChi2	0.09 0.398 0.183 0.966 16.44	95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL Potential UCLs to Use	0.556

	General UCL Statistics	for Full Data	a Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Nickel Spar	ulding Rankin	
			Statistics	
Numl	ber of Valid Observations		Number of Distinct Observations	63
	tatistics		Log-transformed Statistics	
	Minimum	35.9	Minimum of Log Data	3.581
	Maximum		Maximum of Log Data	
		116.2	Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			0.007
		73.08		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
	SKEWNESS	1.403		
		<u></u>		
Normal Dist	uibution Toot	Relevant U	CL Statistics	
	tribution Test Lilliefors Test Statistic	0 101	Lognormal Distribution Test	0 101
			Lilliefors Test Statistic	
	Lilliefors Critical Value	0.111	Lilliefors Critical Value	
Data not Normal at 5	5% Significance Level		Data appear Lognormal at 5% Significance Level	
Assuming Nori	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	131.5	95% H-UCL	
	sted for Skewness)		95% Chebyshev (MVUE) UCL	
	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Modifie	ed-t UCL (Johnson-1978)	131 7	99% Chebyshev (MVUE) UCL	202.1
		10117		
		10117		
Gamma Dist	tribution Test		Data Distribution	
Gamma Dis	k star (bias corrected)	3.037		
Gamma Dis	k star (bias corrected) Theta Star	3.037 38.27	Data Distribution	
	k star (bias corrected) Theta Star MLE of Mean	3.037 38.27 116.2	Data Distribution	
	k star (bias corrected) Theta Star	3.037 38.27 116.2	Data Distribution	
M	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star	3.037 38.27 116.2 66.69 388.7	Data Distribution	
M	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05)	3.037 38.27 116.2 66.69 388.7 344	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics	
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	3.037 38.27 116.2 66.69 388.7 344 0.0463	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL	131.2
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05)	3.037 38.27 116.2 66.69 388.7 344 0.0463	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics	131.2
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	3.037 38.27 116.2 66.69 388.7 344 0.0463	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL	131.2
Mi Approximat Adjus Ac	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	3.037 38.27 116.2 66.69 388.7 344 0.0463 343	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	131.2 131.5 131.6
Mi Approximat Adjus Ac	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	131.2 131.5 131.6 134.1
Mi Approximat Adjus Adjus Adjus Anders Anderson-	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	131.2 131.5 131.6 134.1 133.6
Mi Approximat Adjus Ac Anders Anderson- Kolmogor	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136	Data Distribution Data appear Lognormal at 5% Significance Level Image: Data appear Lognormal at 5%	131.2 131.5 131.6 134.1 133.6 131.6
Mi Approximat Adjus Adjus Adjus Anderson- Kolmogore	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	131.2 131.5 131.6 134.1 133.6 131.6 132.9
M Approximat Adjus Adjus Adjus Anderson- Kolmogoru Kolmogoru-S	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112	Data Distribution Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	131.2 131.5 131.6 134.1 133.6 131.6 132.9 156
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv Kolmogorv-S Data not Gamma Distribute	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112	Data Distribution Data appear Lognormal at 5% Significance Level Image: Data appear Lognormal at 5%	131.2 131.5 131.6 134.1 133.6 131.6 131.6 132.9 156 173.3
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv Kolmogorv-S Data not Gamma Distribute	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112 vel	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	131.2 131.5 131.6 134.1 133.6 131.6 132.9 156 173.3
Mi Approximat Adjus Adjus Adjus Anderson- Kolmogoro-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112 vel 131.3	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	131.2 131.5 131.6 134.1 133.6 131.6 131.6 132.9 156 173.3
Mi Approximat Adjus Adjus Adjus Anderson- Kolmogoro-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	3.037 38.27 116.2 66.69 388.7 344 0.0463 343 1.179 0.757 0.136 0.112 vel 131.3	Data Distribution Data appear Lognormal at 5% Significance Level Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	131.2 131.5 131.6 134.1 133.6 131.6 131.6 132.9 156 173.3

	General UCL Statistics f			
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Se	elenium Spai	ulding Rankin	
		General S	Statistics	
	Number of Valid Data	37	Number of Detected Data	2
Number	of Distinct Detected Data	22	Number of Non-Detect Data	1
			Percent Non-Detects	40.54
Raw S	Statistics		Log-transformed Statistics	
	Minimum Detected	5.92	Minimum Detected	1.7
	Maximum Detected	47.1	Maximum Detected	3.8
	Mean of Detected	17.33	Mean of Detected	2.5
	SD of Detected	13.97	SD of Detected	0.7
	Minimum Non-Detect	6.74	Minimum Non-Detect	1.9
	Maximum Non-Detect	18.73	Maximum Non-Detect	2.9
ote: Data have multiple DLs - Use		nded	Number treated as Non-Detect	
or all methods (except KM, DL/2, a			Number treated as Detected	
oservations < Largest ND are treat	ed as NDs		Single DL Non-Detect Percentage	81.08
		UCL Sta		
	with Detected Values Onl	•	Lognormal Distribution Test with Detected Values On	-
	Shapiro Wilk Test Statistic	0.737	Shapiro Wilk Test Statistic	0.77
	Shapiro Wilk Critical Value	0.911	5% Shapiro Wilk Critical Value	0.9
	5% Significance Level		Data not Lognormal at 5% Significance Level	
	rmal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	12.59	Mean	2.19
	SD	12.23	SD	0.7
	95% DL/2 (t) UCL	10.00		
		15.98	95% H-Stat (DL/2) UCL	15.9
	od Estimate(MLE) Method	15.98 N/A	Log ROS Method	
			Log ROS Method Mean in Log Scale	2.2
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale	
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale	2.2 (12.
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale	2.2 (12. 12.
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL	2.2 (12. 12.
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale	2.2
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL	2.2 (12. 12. 16. 16.
	od Estimate(MLE) Method		Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL	2.2 (12. 12. 16. 16. 16.
MLE yields a	od Estimate(MLE) Method	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	2.2 (12. 12. 12. 16.
MLE yields a	od Estimate(MLE) Method negative mean	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL	2.2 (12. 12. 16. 16. 16.
MLE yields a	od Estimate(MLE) Method negative mean	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL 95% H-UCL	2.2 (12. 12. 16. 16. 16.
MLE yields a	od Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected)	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05)	2.2 (12. 12. 16. 16. 16.
MLE yields a	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics	2.2 (12. 12. 16. 16. 16. 15.
MLE yields a	with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method	2.2 (12. 16. 16. 16. 15. 13.
MLE yields a	with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean	2.2 (12. 12. 16. 16. 15. 15. 13. 13.
MLE yields a	with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD	2.2 (12. 12. 16. 16. 16.
MLE yields a Gamma Distribution Test Data not Gamma Distribut	with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean	2.2 (12. 16. 16. 16. 15. 13. 13. 11. 1.9 16.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Level	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	2.2 (12. 16. 16. 16. 15. 13. 11. 1.9 16. 16.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL	2.2 (12. 16. 16. 16. 15. 13. 13. 11. 1.9 16. 16. 16.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data	N/A N/A 1.657 2.564 0.757 0.757 0.188 /el	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	2.2 (12. 16. 16. 16. 15. 13. 11. 1.9 16. 16. 16. 16. 17.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum	N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	2.2 12. 12. 16. 16. 16. 15. 13. 11. 1.9 16. 16. 16. 16. 16. 16. 17. 16. 16. 16. 16. 15. 16. 16. 16. 16. 16. 16. 16. 16
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ad Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum	N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (jackknife) UCL	2.2 12 12 16 16 16 15 15 13 11 1.1 1.9 16 16 16 16 16 16 16
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Maximum	N/A N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	2.2 12 12 16 16 16 15 15 15 15 16 16 16 16 16 16 17 16 16 16 16 16 17
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Maximum	N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL	2.2 12. 12. 16. 16. 16. 15. 13. 13. 13. 11. 1.9 16. 16. 16. 16. 16. 16. 21. 25.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ed Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Maximum Meain SD	N/A N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	2.2 12. 12. 16. 16. 16. 15. 13. 13. 13. 11. 1.9 16. 16. 16. 16. 16. 16. 21. 25.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ad Estimate(MLE) Method negative mean equive mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD k star	N/A N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL	2.2 (12. 12. 16. 16. 16. 15. 13. 13. 11. 1.9 16. 16. 16. 16. 16. 16. 16. 21. 25.
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ad Estimate(MLE) Method negative mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Median SD k star	N/A N/A N/A N/A N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL 0ata Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (t) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	2.2 (12. 16. 16. 16. 15. 13. 13. 11. 1.9
MLE yields a Gamma Distribution Test Data not Gamma Distribut Assuming Gar	ad Estimate(MLE) Method negative mean equive mean with Detected Values On k star (bias corrected) A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value ted at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Maximum Mean Median SD k star Theta star Nu star	N/A	Log ROS Method Mean in Log Scale SD in Log Scale Mean in Original Scale SD in Original Scale 95% t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% H-UCL Data Distribution Test with Detected Values Only Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics Kaplan-Meier (KM) Method Mean SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL	2.2 (12. 16. 16. 16. 15. 13. 11. 1.9 16. 16. 16. 16. 16. 16. 21. 25. 32.

	Non-Detects	or Data Sets wi	General UCL Statistics f	
			ProUCL upload.wst	From File
			OFF	Full Precision
			95%	Confidence Coefficient
			2000	Number of Bootstrap Operations
	g Rankin	hallium Spauldii	Т	
	stics	General Stat		
3	Number of Detected Data	70	Number of Valid Data	
3	Number of Non-Detect Data	30	of Distinct Detected Data	Number
55.71%	Percent Non-Detects	1	umber of Missing Values	Ν
	Log-transformed Statistics		tatistics	Raw S
-1.38	Minimum Detected	0.25	Minimum Detected	
4.32	Maximum Detected	75.72	Maximum Detected	
1.86	Mean of Detected	14.18	Mean of Detected	
1.30	SD of Detected	19.26	SD of Detected	
-1.51	Minimum Non-Detect	0.22	Minimum Non-Detect	
2.64	Maximum Non-Detect	14.03	Maximum Non-Detect	
6	Number treated as Non-Detect	nded	f KM Method is recommer	Note: Data have multiple DLs - Use c
,	Number treated as Detected		d ROS Methods),	For all methods (except KM, DL/2, ar
90.00%	Single DL Non-Detect Percentage		ed as NDs	Observations < Largest ND are treate
	CS	UCL Statis		
у	Lognormal Distribution Test with Detected Values Onl	у	with Detected Values Onl	Normal Distribution Test
0.860	Shapiro Wilk Test Statistic	0.643	hapiro Wilk Test Statistic	S
0.929	5% Shapiro Wilk Critical Value	0.929	hapiro Wilk Critical Value	5% S
	Data not Lognormal at 5% Significance Level		% Significance Level	Data not Normal at 5
	Assuming Lognormal Distribution		mal Distribution	Assuming Nor
	DL/2 Substitution Method		DL/2 Substitution Method	
1.02	Mean	7.797	Mean	
1.538	SD	14.04	SD	
14.0	95% H-Stat (DL/2) UCL	10.6	95% DL/2 (t) UCL	
	Log ROS Method		d Estimate(MLE) Method	Maximum Likelihoo
0.74	Mean in Log Scale	1.145	Mean	
1.419	SD in Log Scale	41.17	SD	
6.86	Mean in Original Scale	9.349	95% MLE (t) UCL	
14.3	SD in Original Scale	24.54	95% MLE (Tiku) UCL	
9.710	95% t UCL			
9.81	95% Percentile Bootstrap UCL			
10.52	95% BCA Bootstrap UCL			
8.38	95% H UCL			
	Data Distribution Test with Detected Values Only	ly	with Detected Values On	Gamma Distribution Test
	Data do not follow a Discernable Distribution (0.05)	0.71	k star (bias corrected)	
	Nonparametric Statistics	2.947	A-D Test Statistic	
	Kaplan-Meier (KM) Method	0.787	5% A-D Critical Value	
7.12	Mean	0.787	K-S Test Statistic	
14.1	SD	0.164	5% K-S Critical Value	
1.73	SE of Mean	/el	ed at 5% Significance Lev	Data not Gamma Distribute
10.0	95% KM (t) UCL			
9.9	95% KM (z) UCL		ma Distribution	Assuming Gan
9.95	95% KM (jackknife) UCL		using Extrapolated Data	Gamma ROS Statistics
10.82	95% KM (bootstrap t) UCL	0.000001	Minimum	
10.4	95% KM (BCA) UCL	75.72	Maximum	
10.3	95% KM (Percentile Bootstrap) UCL	6.299	Mean	
14.6	95% KM (Chebyshev) UCL	0.000001	Median	
17.9	97.5% KM (Chebyshev) UCL	14.54	SD	
24.3	99% KM (Chebyshev) UCL	0.103	k star	
	· · · ·	61.13	Theta star	
	Potential UCLs to Use	14.43	Nu star	
	95% KM (BCA) UCL	6.864	AppChi2	
10.4	95% KM (BCA) UCL			
10.4	55% KM (BCK) UCL	13.24	UCL (Use when n >= 40)	95% Gamma Approximate

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options	\$			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	V	<mark>anadium Sp</mark>	aulding Rankin	
		Genera	Statistics	
Num	ber of Valid Observations	71	Number of Distinct Observations	70
Raw S	Statistics		Log-transformed Statistics	
	Minimum	24	Minimum of Log Data	3.178
	Maximum	195	Maximum of Log Data	5.273
	Mean	94.85	Mean of log Data	4.477
	Geometric Mean	87.94	SD of log Data	0.404
	Median	90.9		
		36.55		
	Std. Error of Mean	4.338		
	Coefficient of Variation			
	Skewness			
		Relevant U	ICL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.101	Lilliefors Test Statistic	0.1
	Lilliefors Critical Value	0.105	Lilliefors Critical Value	0.105
Data appear Normal a	t 5% Significance Level		Data appear Lognormal at 5% Significance Level	
	-			
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	102.1	95% H-UCL	104
95% UCLs (Adju	usted for Skewness)		95% Chebyshev (MVUE) UCL	115.9
95% Adjuste	ed-CLT UCL (Chen-1995)	102.4	97.5% Chebyshev (MVUE) UCL	124.8
95% Modifi	ed-t UCL (Johnson-1978)	102.1	99% Chebyshev (MVUE) UCL	142.3
Gamma Dis	stribution Test		Data Distribution	
Gamma Die	k star (bias corrected)	6 4 9 7	Data appear Normal at 5% Significance Level	
	Theta Star			
	MLE of Mean			
Ν/	ILE of Standard Deviation			
IV	nu star			
Δηριτοχίατο	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	102
	djusted Chi Square Value		95% Jackknife UCL	
A		001.0	95% Jackknie UCL 95% Standard Bootstrap UCL	
- ام د. ۸	son-Darling Test Statistic	0 272	95% Standard Boolstrap UCL 95% Bootstrap-t UCL	
	-Darling 5% Critical Value		95% Boolstrap-t UCL 95% Hall's Bootstrap UCL	
	rov-Smirnov Test Statistic		95% Parcentile Bootstrap UCL 95% Percentile Bootstrap UCL	
	Smirnov 5% Critical Value		95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	
Noimogorov-S			95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	
Data appear Commo Distrib	uteu at 5% Significance			
Data appear Gamma Distrib			97.5% Chebyshev(Mean, Sd) UCL	
	nma Diatributian			
Assuming Gar		102 6	99% Chebyshev(Mean, Sd) UCL	138
Assuming Gar 95% Approximate Gamma	UCL (Use when n >= 40)		99% Chebyshev(Mean, Sd) UCL	138
Assuming Gar 95% Approximate Gamma			99% Chebyshev(Mean, Sd) UCL	138
Assuming Gar 95% Approximate Gamma 95% Adjusted Gamm	UCL (Use when n >= 40)		99% Chebyshev(Mean, Sd) UCL	

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Zinc Spau	lding Rankin	
			Statistics	
Numl	ber of Valid Observations	30	Number of Distinct Observations	30
Raw S	tatistics	40.47	Log-transformed Statistics	0.740
	Minimum Maximum		Minimum of Log Data	
		537.2	Maximum of Log Data Mean of log Data	
	Geometric Mean		SD of log Data	
	Median			1.009
		2467		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
		Relevant U	ICL Statistics	
Normal Dist	ribution Test		Lognormal Distribution Test	
S	hapiro Wilk Test Statistic	0.198	Shapiro Wilk Test Statistic	0.523
S	hapiro Wilk Critical Value	0.927	Shapiro Wilk Critical Value	0.927
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution	-	Assuming Lognormal Distribution	
	95% Student's-t UCL	1303	95% H-UCL	
	sted for Skewness)		95% Chebyshev (MVUE) UCL	
	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Modifie	ed-t UCL (Johnson-1978)	1378	99% Chebyshev (MVUE) UCL	481.1
Commo Die	tribution Test		Data Distribution	
Gainina Dis	k star (bias corrected)	0 367	Data do not follow a Discernable Distribution (0.05	5)
	Theta Star			"
	MLE of Mean			
Μ	LE of Standard Deviation			
	nu star			
Approximat	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	1278
Ac	djusted Chi Square Value	11.94	95% Jackknife UCL	1303
			95% Standard Bootstrap UCL	1253
Ander	son-Darling Test Statistic	8.959	95% Bootstrap-t UCL	43867
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	17490
-	ov-Smirnov Test Statistic		· · · · ·	1436
	mirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distribute	ed at 5% Significance Le	vel	95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
		057 5	99% Chebyshev(Mean, Sd) UCL	5020
95% Approximate Gamma				
95% Adjusted Gamma	a UCL (Use when n < 40)	991		
Detertiol	JCL to Use		Lies 050/ Chebrishey (Mass. 64) 101	2501
Potential			Use 95% Chebyshev (Mean, Sd) UCL	2001

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options			BEGIN TA	BLE A.13
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	A		Southern AU	
Num	ber of Valid Observations		Number of Distinct Observations	42
		I		
Raw S	Statistics	0710	Log-transformed Statistics	0.007
	Minimum		Minimum of Log Data	
	Maximum		Maximum of Log Data	
		18932	Mean of log Data	
	Geometric Mean		SD of log Data	0.473
	Median			
		9269		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness	1.541		
		Relevant U	ICL Statistics	
Normal Dis	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.166	Lilliefors Test Statistic	0.101
	Lilliefors Critical Value	0.103	Lilliefors Critical Value	0.103
Data not Normal at	5% Significance Level		Data appear Lognormal at 5% Significance Leve	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	20727	95% H-UCL	21045
95% UCLs (Adjı	usted for Skewness)		95% Chebyshev (MVUE) UCL	23745
95% Adjuste	ed-CLT UCL (Chen-1995)	20911	97.5% Chebyshev (MVUE) UCL	25808
95% Modifi	ed-t UCL (Johnson-1978)	20760	99% Chebyshev (MVUE) UCL	29860
Gamma Dis	tribution Test		Data Distribution	
	k star (bias corrected)	4.614	Data appear Lognormal at 5% Significance Level	
	Theta Star	4103		
	MLE of Mean	18932		
Μ	ILE of Standard Deviation	8814		
	nu star	682.8		
Approxima	te Chi Square Value (.05)	623.2	Nonparametric Statistics	
Adju	sted Level of Significance	0.0468	95% CLT UCL	20705
	djusted Chi Square Value		95% Jackknife UCL	20727
			95% Standard Bootstrap UCL	20679
Ander	son-Darling Test Statistic	1.131	95% Bootstrap-t UCL	
	-Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	rov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
-	Smirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distribut			95% Chebyshev(Mean, Sd) UCL	
			97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gan	nma Distribution		99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma		20744		
	a UCL (Use when n < 40)			
Potential	UCL to Use		Use 95% Student's-t UCL	20727
- Cichildi			Use 55% Student S-LUCL	LUILI

	General UCL Statistics f	or Data Sets	s with Non-Detects	
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	A	ntimony S	outhern AU	
		General		
	Number of Valid Data	77	Number of Detected Data	41
Number	of Distinct Detected Data	29	Number of Non-Detect Data	36
			Percent Non-Detects	46.75%
Raw St	tatistics		Log-transformed Statistics	
	Minimum Detected	0.367	Minimum Detected	-1.002
	Maximum Detected	19.1	Maximum Detected	2.95
	Mean of Detected	2.781	Mean of Detected	0.166
	SD of Detected	4.803	SD of Detected	1.108
	Minimum Non-Detect	0.24	Minimum Non-Detect	-1.427
	Maximum Non-Detect	16.88	Maximum Non-Detect	2.826
Note: Data have multiple DLs - Use o	f KM Method is recommer	nded	Number treated as Non-Detect	76
For all methods (except KM, DL/2, an	d ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treate	ed as NDs		Single DL Non-Detect Percentage	98.70%
		UCL St	atistics	
Normal Distribution Test	with Detected Values Onl	у	Lognormal Distribution Test with Detected Values O	nly
S	hapiro Wilk Test Statistic	0.526	Shapiro Wilk Test Statistic	0.707
5% SI	hapiro Wilk Critical Value	0.941	5% Shapiro Wilk Critical Value	0.941
Data not Normal at 5	% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Norr	nal Distribution		Assuming Lognormal Distribution	
[DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	2.579	Mean	0.0629
	SD	3.992	SD	1.289
	95% DL/2 (t) UCL	3.337	95% H-Stat (DL/2) UCL	3.57
Maximum Likelihoo	d Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed	to converge properly		Mean in Log Scale	-0.307
			SD in Log Scale	1.095
			Mean in Original Scale	1.741
			SD in Original Scale	3.668
			95% t UCL	2.437
			95% Percentile Bootstrap UCL	2.485
			95% BCA Bootstrap UCL	2.616
			95% H-UCL	1.802
Gamma Distribution Test		ly	Data Distribution Test with Detected Values Only	
	k star (bias corrected)	0.669	Data do not follow a Discernable Distribution (0.05)
	Theta Star	4.155		
	nu star	54.88		
	A-D Test Statistic	7.191	Nonparametric Statistics	
	5% A-D Critical Value	0.794	Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.794	Mean	1.823
	5% K-S Critical Value	0.144	SD	3.702
Data not Gamma Distribute	ed at 5% Significance Lev	/el	SE of Mean	0.438
			95% KM (t) UCL	2.552
-	ma Distribution		95% KM (z) UCL	2.543
Gamma ROS Statistics	using Extrapolated Data	0.045	95% KM (jackknife) UCL	2.541
	Minimum	0.000001	95% KM (bootstrap t) UCL	2.829
	Maximum	19.1	95% KM (BCA) UCL	2.539
	Mean	1.791	95% KM (Percentile Bootstrap) UCL	2.581
	Median	0.657	95% KM (Chebyshev) UCL	3.732
	SD	3.722	97.5% KM (Chebyshev) UCL	4.558
	k star	0.213	99% KM (Chebyshev) UCL	6.18
	Theta star	8.416		
	Nu star	32.77	Potential UCLs to Use	
0.521 5	AppChi2	20.69	95% KM (Chebyshev) UCL	3.732
95% Gamma Approximate	· · · · · ·	2.838		
95% Adjusted Gamma	a UCL (Use when n < 40)	2.863		

	General UCL Statistics f	or Data Sets	with Non-Detects	
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	<u> </u>	Arsenic So	uthern AU	
	Number of Valid Data	74	Number of Detected Data	71
Number	of Distinct Detected Data	41	Number of Non-Detect Data	3
			Percent Non-Detects	4.05%
Raw S	Statistics		Log-transformed Statistics	
	Minimum Detected	0.64	Minimum Detected	-0.446
	Maximum Detected	17.1	Maximum Detected	2.839
	Mean of Detected	5.093	Mean of Detected	1.39
	SD of Detected	3.493	SD of Detected	0.728
	Minimum Non-Detect	0.1	Minimum Non-Detect	-2.303
	Maximum Non-Detect	2.54	Maximum Non-Detect	0.932
Note: Data have multiple DLs - Use of		nded	Number treated as Non-Detect	28
For all methods (except KM, DL/2, a			Number treated as Detected	46
Observations < Largest ND are treat	ed as NDs		Single DL Non-Detect Percentage	37.84%
		UCL St		
Normal Distribution Test	with Detected Values Onl	•	Lognormal Distribution Test with Detected Values On	-
	Lilliefors Test Statistic	0.133	Lilliefors Test Statistic	0.131
-	5% Lilliefors Critical Value	0.105	5% Lilliefors Critical Value	0.105
	5% Significance Level		Data not Lognormal at 5% Significance Level	
	mal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method	4.00	DL/2 Substitution Method	1 000
	Mean SD	4.92	Mean SD	1.299 0.896
	_	3.525		6.862
Maximum Likalibaa	95% DL/2 (t) UCL od Estimate(MLE) Method	5.603	95% H-Stat (DL/2) UCL Log ROS Method	0.802
	Mean	3.969	Mean in Log Scale	1.344
	SD	4.702	SD in Log Scale	0.756
	95% MLE (t) UCL	4.879	Mean in Original Scale	4.946
	95% MLE (Tiku) UCL	4.981	SD in Original Scale	3.497
			95% t UCL	5.624
			95% Percentile Bootstrap UCL	5.641
			95% BCA Bootstrap UCL	5.69
			95% H UCL	6.112
Gamma Distribution Test	with Detected Values On	ly	Data Distribution Test with Detected Values Only	
	k star (bias corrected)	2.17	Data do not follow a Discernable Distribution (0.05)	
	A-D Test Statistic	0.988	Nonparametric Statistics	
	5% A-D Critical Value	0.762	Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.762	Mean	4.945
	5% K-S Critical Value	0.107	SD	3.476
Data not Gamma Distribut	ted at 5% Significance Lev	/el	SE of Mean	0.407
			95% KM (t) UCL	5.623
			95% KM (z) UCL	5.614
Assuming Gan	nma Distribution			5.622
-	nma Distribution s using Extrapolated Data		95% KM (jackknife) UCL	0.021
-		0.000001	95% KM (bootstrap t) UCL	
=	s using Extrapolated Data	17.1	95% KM (bootstrap t) UCL 95% KM (BCA) UCL	5.706 5.627
=	s using Extrapolated Data Minimum	17.1 4.933	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	5.706 5.62 5.62
=	s using Extrapolated Data Minimum Maximum Mean Median	17.1 4.933 4.2	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	5.700 5.62 5.62 6.719
-	s using Extrapolated Data Minimum Maximum Mean	17.1 4.933 4.2 3.513	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	5.700 5.62 5.62 6.719 7.482
-	s using Extrapolated Data Minimum Maximum Mean Median SD k star	17.1 4.933 4.2 3.513 1.249	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	5.700 5.62 5.62 6.719 7.482
	s using Extrapolated Data Minimum Maximum Mean Median SD	17.1 4.933 4.2 3.513 1.249 3.949	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	5.700 5.627 5.627 5.62 6.719 7.487 8.990
	s using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star	17.1 4.933 4.2 3.513 1.249 3.949 184.9	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	5.706 5.627 5.627 6.719 7.487
	s using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2	17.1 4.933 4.2 3.513 1.249 3.949	95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	5.706 5.627 5.627 6.719 7.487

	General UCL Statistics	for Full Data	Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Cobalt So	uthern AU	
			Statistics	
Num	ber of Valid Observations	55	Number of Distinct Observations	40
Raw S	tatistics		Log-transformed Statistics	
	Minimum	3.15	Minimum of Log Data	1.147
	Maximum		Maximum of Log Data	
		37.62	Mean of log Data	
	Geometric Mean		SD of log Data	
	Median	19.1		
	SD	36.3		
	Std. Error of Mean			
	Coefficient of Variation			
	Skewness			
		Relevant U	CL Statistics	
Normal Dist	ribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.211	Lilliefors Test Statistic	0.178
	Lilliefors Critical Value	0.119	Lilliefors Critical Value	0.119
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
			Accurate a Leananne I Distribution	
Assuming Non	mal Distribution 95% Student's-t UCL	15 81	Assuming Lognormal Distribution 95% H-UCL	173
05% LICL & /Adiu	sted for Skewness)	40.01	95% Chebyshev (MVUE) UCL	
		47.27		
95% Adjuste	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	65.63
95% Adjuste			97.5% Chebyshev (MVUE) UCL	65.63
95% Adjuste 95% Modifie	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	65.63
95% Adjuste 95% Modifie	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978)	46.06	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	65.63 82.58
95% Adjuste 95% Modifie	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test	46.06	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	65.63 82.58
95% Adjuste 95% Modifie	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected)	46.06 1.549 24.28	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	65.63 82.58
95% Adjuste 95% Modifie Gamma Dist	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star	46.06 1.549 24.28 37.62	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution	65.63 82.58
95% Adjuste 95% Modifie Gamma Dist	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star	46.06 1.549 24.28 37.62 30.23 170.4	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05	65.63 82.58
95% Adjuste 95% Modifie Gamma Dist	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star ee Chi Square Value (.05)	46.06 1.549 24.28 37.62 30.23 170.4 141.2	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05	65.63 82.58
95% Adjuste 95% Modifie Gamma Dist Mi Approximat Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL	65.63 82.58)) 45.67
95% Adjuste 95% Modifie Gamma Dist Mi Approximat Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star ee Chi Square Value (.05)	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	65.63 82.58) 45.67 45.81
95% Adjuste 95% Modifie Gamma Dist Mi Approximat Adjus Ac	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	65.63 82.58) 45.67 45.81 45.67
95% Adjuste 95% Modifie Gamma Dist Mi Approximat Adjus Ac	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	65.63 82.58) 45.67 45.81 45.67 48.34
95% Adjuste 95% Modifie Gamma Dist Mi Approximat Adjus Ac Anders Anderson-	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	65.63 82.58) 45.67 45.81 45.67 48.34 48.34
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	65.63 82.58) 45.67 45.81 45.67 48.34 48.17 46.22
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	65.63 82.58) 45.67 45.81 45.67 48.34 48.34 48.17 46.22 47.11
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	65.63 82.58)) 45.67 45.81 45.67 48.34 48.17 46.22 47.11 58.96
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic mirnov 5% Critical Value ed at 5% Significance Le	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	65.63 82.58 9) 45.67 45.81 45.67 48.34 48.17 46.22 47.11 58.96 68.19
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus Componies Anderson- Kolmogorov-S Data not Gamma Distribute Assuming Gam	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic smirnov 5% Critical Value ed at 5% Significance Le	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122 vel	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	65.63 82.58 9) 45.67 45.81 45.67 45.81 45.67 48.34 48.17 46.22 47.11 58.96 68.19
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic cmirnov 5% Critical Value ed at 5% Significance Le	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122 vel 45.4	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	65.63 82.58 9) 45.67 45.81 45.67 48.34 48.17 46.22 47.11 58.96 68.19
95% Adjuste 95% Modifie Gamma Dist Gamma Dist Mi Approximat Adjus	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic smirnov 5% Critical Value ed at 5% Significance Le	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122 vel 45.4	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	65.63 82.58 9) 45.67 45.81 45.67 45.81 45.67 48.34 48.17 46.22 47.11 58.96 68.19
95% Adjuste 95% Modifie Gamma Dist Gamma Dist M Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Anderson- Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Adjusted Gamma	d-CLT UCL (Chen-1995) ed-t UCL (Johnson-1978) tribution Test k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic cmirnov 5% Critical Value ed at 5% Significance Le	46.06 1.549 24.28 37.62 30.23 170.4 141.2 0.0456 140.5 2.712 0.767 0.201 0.122 vel 45.4	97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	65.63 82.58) 45.67 45.81 45.67 48.34 48.34 48.17 46.22 47.11 58.96 68.19 86.32

	General UCL Statistics	for Full Data	Sets	
User Selected Options	\$			
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Iron Cou	thern AU	
		Iron Sou	them AU	
			Statistics	
Numl	ber of Valid Observations	55	Number of Distinct Observations	36
Raw S	Statistics		Log-transformed Statistics	
	Minimum	13000	Minimum of Log Data	9.473
	Maximum	68056	Maximum of Log Data	11.13
	Mean	33509	Mean of log Data	10.36
	Geometric Mean	31699	SD of log Data	0.335
	Median			
	SD	11743		
	Std. Error of Mean	1583		
	Coefficient of Variation	0.35		
	Skewness	1.268		
		Relevant U	CL Statistics	
Normal Dist	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.224	Lilliefors Test Statistic	0.162
	Lilliefors Critical Value	0.119	Lilliefors Critical Value	0.119
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
A council of Nor			Accurate Leanermal Distribution	
Assuming Nor	mal Distribution	00450	Assuming Lognormal Distribution	00000
05% 1101 - (A .!'.	95% Student's-t UCL	36159	95% H-UCL	
	usted for Skewness)	20402	95% Chebyshev (MVUE) UCL	
	ed-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	
95% Modifie		36204		40325
95% Modifie	ed-t UCL (Johnson-1978)	36204		
	· · ·	36204		
	stribution Test		Data Distribution)
	· · ·	8.68)
	tribution Test k star (bias corrected)	8.68 3860	Data Distribution)
Gamma Dis	tribution Test k star (bias corrected) Theta Star	8.68 3860 33509	Data Distribution)
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean	8.68 3860 33509 11374	Data Distribution)
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation	8.68 3860 33509 11374 954.8	Data Distribution)
Gamma Dis	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star	8.68 3860 33509 11374 954.8 884.1	Data Distribution Data do not follow a Discernable Distribution (0.05	
Gamma Dis M Approximat Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05)	8.68 3860 33509 11374 954.8 884.1 0.0456	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics	36114
Gamma Dis M Approximat Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	8.68 3860 33509 11374 954.8 884.1 0.0456	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL	36114 36159
Gamma Dis M Approximat Adjus Ad	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL	36114 36159 36063
Gamma Dis Gamma Dis M Approximat Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL	36114 36159 36063 36525
Gamma Dis Gamma Dis M Approximat Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL	36114 36159 36063 36525 36425
Gamma Dis Gamma Dis M Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.751 0.179	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL	36114 36159 36063 36525 36425 36425
Gamma Dis Gamma Dis M Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	36114 36159 36063 36525 36425 36123 36608
Gamma Dis Gamma Dis M Approximat Adjus Adj	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	36114 36159 36063 36525 36425 36425 36423 36608 40411
Gamma Dis Gamma Dis M Approximat Adjus Adj	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% CA Bootstrap UCL 95% CA Bootstrap UCL	36114 36159 36063 36525 36425 36123 36608 40411 43398
Gamma Dis Gamma Dis M Approximat Adjus Adj	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12 vel	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL	36114 36159 36063 36525 36123 36608 40411 43398
Gamma Dis Gamma Dis M Approximat Adjus Adj	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12 vel 36190	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL	36114 36159 36063 36525 36123 36608 40411 43398
Gamma Dis Gamma Dis M Approximat Adjus Adjus Adjus Anderson- Kolmogor Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gam 95% Approximate Gamma 95% Adjusted Gamma	tribution Test k star (bias corrected) Theta Star MLE of Mean ILE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	8.68 3860 33509 11374 954.8 884.1 0.0456 882.3 1.449 0.751 0.179 0.12 vel 36190	Data Distribution Data do not follow a Discernable Distribution (0.05 Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 95% Chebyshev(Mean, Sd) UCL	36114 36159 36063 36525 36425 36425 36425 36425 36425 36425 36425 40411 43398 49264

User Selected Options ProUCL upload.wst From File ProUCL upload.wst Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Magnesium Sout General Statis Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Number of Valid Observations 53 Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Maximum 1639 Maximum 1639 Median 6590 Std. 5039 Std. 5039 Std. 5039 Std. 679.5 Coefficient of Variation 0.637 Skewness 0.404 Elevant UCL St Normal Distribution Test 0.119 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level 0 95% Adjusted Cr Stewness) 9057 95% Adjusted Cr Stewness) 9057	ics Number of Distinct Observations Log-transformed Statistics Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data	6.276 9.982 8.704	
Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Number of Valid Observations 55 Raw Statistics Maximum 21639 Mean 7914 Geometric Mean 6024 Mean 7914 Geometric Mean 6590 SD 5039 SD 5039 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 SKewness 0.404 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Std 1.91 Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Statistics 1.95% Student's-t UCL 9051 Student's-t UCL	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704	
Confidence Coefficient 95% Number of Bootstrap Operations 2000 Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Maximum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Normal Distribution Test 2028 Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Gamma Distribution 95% UCLs (Adjusted for Skewness) 9057 Gamma Distribution Test Gamma Distribution Test <th colspa<="" td=""><td>ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value</td><td>6.276 9.982 8.704</td></th>	<td>ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value</td> <td>6.276 9.982 8.704</td>	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704
Number of Bootstrap Operations 2000 Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Number of Valid Observations 55 Raw Statistics 1 Maximum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Normal Distribution Test E Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level 0 Assuming Normal Distribution 9 95% Adjusted-CLT UCL (Chen-1995) 9057 Gamma Distribution Test 2 Gamma Distribution Test 2 Gamma Distribution Test 2 Gamma Distribution Test 2 Gamma Distribution Test 1.887 Modified-t UCL (Johnson-	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704	
Magnesium Sout General Statis Number of Valid Observations 55 Raw Statistics Minimum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Normal Distribution Test Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Gamma Distribution 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test Gamma Distribution Test 1.887 K star (bias corrected) 1.887 Theta Star 4194 MLE of Standard Deviation 5762 NLE of Standard Deviation 5762 NuE of Standard Deviation 5762 Adjusted Level of Significance 0.0456	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704	
Number of Valid Observations 55 Raw Statistics Inimum 531.9 Maximum 21639 Mean Mean 7914 Geometric Mean Geometric Mean 6590 SD SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 SKewness 0.404 Version Version 6690 SD Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Version Version Version Version Std. Error of Mean 679.5 Version Version Coefficient of Variation 0.637 Version Version Version Version Std. Error of Mean 679.5 Version Version Version Version Std. Error of Mean 679.5 Version Version Version Version Std. Error of Mean 619.5 Version Version Version Version Version Version Version <td>ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value</td> <td>6.276 9.982 8.704</td>	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704	
Number of Valid Observations 55 Raw Statistics Inimum 531.9 Maximum 21639 Mean Mean 7914 Geometric Mean Geometric Mean 6590 SD SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 SKewness 0.404 Version Version 6690 SD Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Version Version Version Version Std. Error of Mean 679.5 Version Version Coefficient of Variation 0.637 Version Version Version Version Std. Error of Mean 679.5 Version Version Version Version Std. Error of Mean 679.5 Version Version Version Version Std. Error of Mean 619.5 Version Version Version Version Version Version Version <td>ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value</td> <td>6.276 9.982 8.704</td>	ics Number of Distinct Observations Log-transformed Statistics Ninimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	6.276 9.982 8.704	
Number of Valid Observations 55 Raw Statistics 531.9 Maximum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Normal Distribution Test 0.208 Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal Distribution 95% Student's-t UCL 9051 95% UCLs (Adjusted for Skewness) 9057 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Adjusted-CLT UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star 4194 MLE of Standard Deviation 5762 NuE of Standard Deviation 5762 Approximate Chi Square Value (.05) 175.2	Number of Distinct Observations Log-transformed Statistics Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Itistics Lognormal Distribution Test Lilliefors Test Statistic	6.276 9.982 8.704	
Raw Statistics Minimum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Kelevant UCL St 0.404 Kelevant UCL St 0.404 Kewness 0.404 Std.etrics Critical Value 0.119 Data not Normal at 5% Significance Level 0.119 Std.etrics Critical Value 9051 95% Adjusted-CLT UCL (Chen-1995) 9071 </td <td>Log-transformed Statistics Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Image: statistic statis statistis statistis statistic statistic statistic statistis sta</td> <td>6.276 9.982 8.704</td>	Log-transformed Statistics Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data SD of log Data Image: statistic statis statistis statistis statistic statistic statistic statistis sta	6.276 9.982 8.704	
Minimum 531.9 Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Skewness Normal Distribution Test 0.208 Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level 0.208 Assuming Normal Distribution 95% 95% Student's-t UCL 9051 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test I.887 Gamma Distribution Test I.887 MLE of Mean 7914 MLE of Mean 7914 MLE of Standard Deviation 5762 NuE of Standard Deviation 5762 Nu Star 207.5 Approximate Chi Square Value (.05) 175.2	Minimum of Log Data Maximum of Log Data Mean of log Data SD of log Data tistics Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	9.982 8.704	
Maximum 21639 Mean 7914 Geometric Mean 6024 Median 6590 SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Kelevant UCL St 0.404 Kelevant UCL St 0.404 Kelevant UCL St 0.119 Data not Normal Distribution Test 0.119 Data not Normal at 5% Significance Level 0.119 Assuming Normal Distribution 95% Student's-t UCL 95% Adjusted for Skewness) 9051 95% Adjusted for Skewness) 9057 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test 1.887 Gamma Distribution Test 4194 MLE of Standard Deviation 5762 NLE of Standard Deviation 5762 NutE of Standard Deviation 5762 Nut Standard Deviation 5762 Adjusted Level of Significance 0.0456	Maximum of Log Data Mean of log Data SD of log Data SD of log Data Image: SD of log Dat	9.982 8.704	
Mean7914Geometric Mean6024Median6590SD5039Std. Error of Mean679.5Coefficient of Variation0.637Skewness0.404Relevant UCL StNormal Distribution TestLilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal Distribution95% Student's-t UCL905195% UCLs (Adjusted for Skewness)907195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)9057Gamma Distribution Test1.887K star (bias corrected)1.887Theta Star4194MLE of Standard Deviation5762NLE of Standard Deviation5762Nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Mean of log Data SD of log Data SD of log Data tistics Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	8.704	
Geometric Mean6024Median6590SD5039Std. Error of Mean679.5Coefficient of Variation0.637Skewness0.404Relevant UCL StNormal Distribution TestLilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal Distribution95% Student's-t UCL905195% UCLs (Adjusted for Skewness)907195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)9057Gamma Distribution Test1.887K star (bias corrected)1.887Theta Star4194MLE of Standard Deviation5762nu star207.5Adjusted Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	SD of log Data of		
Median6590SD5039Std. Error of Mean679.5Coefficient of Variation0.637Skewness0.404Relevant UCL StNormal Distribution TestLilliefors Test Statistic0.2080.119Data not Normal at 5% Significance LevelAssuming Normal Distribution95% Student's-t UCL905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)905795% Modified-t UCL (Johnson-1978)9057Katar (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.04561.0456	tistics Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value	0.835	
SD 5039 Std. Error of Mean 679.5 Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL St Normal Distribution Test Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Adjusted-CLT UCL (Chen-1978) 9057 Gamma Distribution Test k star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Std. Error of Mean679.5Coefficient of Variation0.637Skewness0.404Relevant UCL StNormal Distribution Test0.208Lilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal at 5% Significance LevelAssuming Normal Distribution95% Student's-t UCL905195% UCLs (Adjusted for Skewness)905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)9057Gamma Distribution TestK star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Coefficient of Variation 0.637 Skewness 0.404 Relevant UCL Statistic Normal Distribution Test 0.208 Lilliefors Test Statistic 0.208 Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% UCLs (Adjusted for Skewness) 9051 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Adjusted Level of Significance 0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Skewness0.404Relevant UCL StNormal Distribution Test0.208Lilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal at 5% Significance LevelAssuming Normal Distribution95% Student's-t UCL905195% UCLs (Adjusted for Skewness)905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)9057Gamma Distribution TestK star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Relevant UCL St Normal Distribution Test 0.208 Lilliefors Test Statistic 0.208 Lilliefors Critical Value Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% OCLs (Adjusted for Skewness) 95% Modified-t UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star Theta Star MLE of Mean MLE of Standard Deviation S762 In ustar Lilliefors Critical Value (.05) Gamma Distribution Test K star (bias corrected) 1.887 Theta Star MLE of Mean MLE of Standard Deviation MLE of Standard Deviation S762 Approximate Chi Square Value (.05) Adjusted Level of Significance	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Normal Distribution TestLilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal at 5% Significance Level0.119Assuming Normal Distribution95% Student's-t UCL95% UCLs (Adjusted for Skewness)905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)905795% Katar (bias corrected)1.88718871.8871994MLE of Mean7914MLE of Standard Deviation57621010207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Normal Distribution TestLilliefors Test Statistic0.208Lilliefors Critical Value0.119Data not Normal at 5% Significance Level0.119Assuming Normal Distribution95% Student's-t UCL95% UCLs (Adjusted for Skewness)905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)905795% Katar (bias corrected)1.88718871.8871994MLE of Mean7914MLE of Standard Deviation57621010207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Lognormal Distribution Test Lilliefors Test Statistic Lilliefors Critical Value		
Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% OLCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star Theta Star 4194 MLE of Mean 7914 MLE of Standard Deviation Total 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	Lilliefors Test Statistic		
Lilliefors Critical Value 0.119 Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	Lilliefors Critical Value	0.186	
Data not Normal at 5% Significance Level Assuming Normal Distribution 95% Student's-t UCL 9051 95% UCLs (Adjusted for Skewness) 9051 95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test K star (bias corrected) 1.887 Theta Star 4194 MLE of Mean MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456			
Assuming Normal Distribution95% Student's-t UCL905195% UCLs (Adjusted for Skewness)905195% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)905795% Modified-t UCL (Johnson-1978)9057Gamma Distribution Testk star (bias corrected)1.8871.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	`		
95% Student's-t UCL905195% UCLs (Adjusted for Skewness)95% Adjusted-CLT UCL (Chen-1995)907195% Adjusted-CLT UCL (Johnson-1978)90579057Gamma Distribution TestK star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456			
95% UCLs (Adjusted for Skewness)95% Adjusted-CLT UCL (Chen-1995)907195% Modified-t UCL (Johnson-1978)905795% Modified-t UCL (Johnson-1978)9057Gamma Distribution TestK star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Assuming Lognormal Distribution		
95% Adjusted-CLT UCL (Chen-1995) 9071 95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test k star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	95% H-UCL		
95% Modified-t UCL (Johnson-1978) 9057 Gamma Distribution Test k star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	95% Chebyshev (MVUE) UCL		
Gamma Distribution Test k star (bias corrected) 1.887 Theta Star 4194 MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	97.5% Chebyshev (MVUE) UCL		
k star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	99% Chebyshev (MVUE) UCL	19214	
k star (bias corrected)1.887Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456			
Theta Star4194MLE of Mean7914MLE of Standard Deviation5762nu star207.5Approximate Chi Square Value (.05)175.2Adjusted Level of Significance0.0456	Data Distribution		
MLE of Mean 7914 MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456	Data do not follow a Discernable Distribution (0.05)	
MLE of Standard Deviation 5762 nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456			
nu star 207.5 Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456			
Approximate Chi Square Value (.05) 175.2 Adjusted Level of Significance 0.0456			
Adjusted Level of Significance 0.0456			
	Nonparametric Statistics		
Adjusted Chi Square Value 174 4	95% CLT UCL		
	95% Jackknife UCL		
	95% Standard Bootstrap UCL		
Anderson-Darling Test Statistic 1.499	95% Bootstrap-t UCL		
Anderson-Darling 5% Critical Value 0.763	95% Hall's Bootstrap UCL		
Kolmogorov-Smirnov Test Statistic 0.203	95% Percentile Bootstrap UCL		
Kolmogorov-Smirnov 5% Critical Value 0.122	95% BCA Bootstrap UCL		
Data not Gamma Distributed at 5% Significance Level	95% Chebyshev(Mean, Sd) UCL		
	97.5% Chebyshev(Mean, Sd) UCL		
Assuming Gamma Distribution		14675	
95% Approximate Gamma UCL (Use when n >= 40) 9375	99% Chebyshev(Mean, Sd) UCL		
95% Adjusted Gamma UCL (Use when n < 40) 9418	99% Chebyshev(Mean, Sd) UCL		
Potential UCL to Use	99% Chebyshev(Mean, Sd) UCL		

	General UCL Statistics	for Full Data Se	ets	
User Selected Options				
-	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Ma	anganese So	outhern AU	
		General Sta	atistics	
Numl	ber of Valid Observations	74	Number of Distinct Observations 48	
Raw S	tatistics		Log-transformed Statistics	
	Minimum	23.9	Minimum of Log Data 3.1	174
	Maximum	3070	Maximum of Log Data 8.0)29
	Mean	584.8	Mean of log Data 6.0)06
	Geometric Mean	406.1	SD of log Data 0.9) 12
	Median	439.8		
	SD	541.6		
	Std. Error of Mean	62.96		
	Coefficient of Variation	0.926		
	Skewness	2.409		
		Relevant UCL	Statistics	
Normal Dist	tribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic	0.24	Lilliefors Test Statistic 0.1	132
	Lilliefors Critical Value	0.103	Lilliefors Critical Value 0.1	103
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	95% Student's-t UCL	689.7	95% H-UCL 776	6.2
95% UCLs (Adju	sted for Skewness)		95% Chebyshev (MVUE) UCL 938	8.9
95% Adjuste	ed-CLT UCL (Chen-1995)	707.2	97.5% Chebyshev (MVUE) UCL 108	81
95% Modifie	ed-t UCL (Johnson-1978)	692.6	99% Chebyshev (MVUE) UCL 136	60
		l		
Gamma Dis			Data Distribution	
Garrina Dio	tribution Test			
	tribution Test k star (bias corrected)	1.463	Data do not follow a Discernable Distribution (0.05)	
	k star (bias corrected)	399.7		
	k star (bias corrected) Theta Star	399.7 584.8		
	k star (bias corrected) Theta Star MLE of Mean	399.7 584.8 483.5		
M	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation	399.7 584.8 483.5 216.6		
M	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star	399.7 584.8 483.5 216.6 183.5	Data do not follow a Discernable Distribution (0.05)	8.4
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05)	399.7 584.8 483.5 216.6 183.5 0.0468	Data do not follow a Discernable Distribution (0.05)	
M Approximat Adjus	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	399.7 584.8 483.5 216.6 183.5 0.0468	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 688	9.7
M Approximat Adjus Ad	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance	399.7 584.8 483.5 216.6 183.5 0.0468 182.9	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 688 95% Jackknife UCL 688	9.7 0.7
M Approximat Adjus Ac Anders	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 690	9.7 0.7 3.8
Mi Approximat Adjus Adjus Adjus Anderson-	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 713	9.7 0.7 3.8 7.7
Mi Approximat Adjus Adjus Ac Anderson- Kolmogore	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133	Nonparametric Statistics 95% CLT UCL 688 95% Standard Bootstrap UCL 690 95% Bootstrap-t UCL 713 95% Hall's Bootstrap UCL 717	9.7 0.7 3.8 7.7 1.5
Mi Approximat Adjus Adjus Ac Anderson- Kolmogore	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL	9.7 0.7 3.8 7.7 1.5 8.2
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogoro Kolmogoro-S	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 95% Jackknife UCL 689 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% Percentile Bootstrap UCL 95% BCA Bootstrap UCL	9.7 0.7 3.8 7.7 1.5 8.2 9.2
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv Kolmogorv-S Data not Gamma Distribute	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 95% Standard Bootstrap UCL 95% Bootstrap-t UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	9.7 0.7 3.8 7.7 1.5 8.2 9.2 8
M Approximat Adjus Adjus Adjus Anders Anderson- Kolmogorv Kolmogorv-S Data not Gamma Distribute	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106 vel	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 688 95% Jackknife UCL 688 95% Standard Bootstrap UCL 690 95% Bootstrap-t UCL 713 95% Hall's Bootstrap UCL 717 95% Percentile Bootstrap UCL 691 95% BCA Bootstrap UCL 718 95% Chebyshev(Mean, Sd) UCL 859 97.5% Chebyshev(Mean, Sd) UCL 859	9.7 0.7 3.8 7.7 11.5 8.2 9.2 8
Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Anderson-I Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106 vel 690.2	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 688 95% Jackknife UCL 688 95% Standard Bootstrap UCL 690 95% Bootstrap-t UCL 713 95% Hall's Bootstrap UCL 717 95% Percentile Bootstrap UCL 691 95% BCA Bootstrap UCL 718 95% Chebyshev(Mean, Sd) UCL 859 97.5% Chebyshev(Mean, Sd) UCL 859	9.7 0.7 3.8 7.7 11.5 8.2 9.2 8
Mi Approximat Adjus Adjus Adjus Adjus Adjus Adjus Adjus Adjus Anderson-I Kolmogorov-S Data not Gamma Distribute Assuming Gam 95% Approximate Gamma	k star (bias corrected) Theta Star MLE of Mean LE of Standard Deviation nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value son-Darling Test Statistic Darling 5% Critical Value ov-Smirnov Test Statistic Smirnov 5% Critical Value ed at 5% Significance Le	399.7 584.8 483.5 216.6 183.5 0.0468 182.9 0.885 0.769 0.133 0.106 vel 690.2	Data do not follow a Discernable Distribution (0.05) Nonparametric Statistics 95% CLT UCL 688 95% Jackknife UCL 688 95% Standard Bootstrap UCL 690 95% Bootstrap-t UCL 713 95% Hall's Bootstrap UCL 717 95% Percentile Bootstrap UCL 691 95% BCA Bootstrap UCL 718 95% Chebyshev(Mean, Sd) UCL 859 97.5% Chebyshev(Mean, Sd) UCL 859	9.7 0.7 3.8 7.7 11.5 8.2 9.2 8

	General UCL Statistics f	or Data Set	s with Non-Detects	
From File F	ProUCL upload.wst			
	DFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations 2	2000			
	N	lercury So	outhern AU	
		General	Statistics	
	Number of Valid Data	74		66
Number of	Distinct Detected Data	30	Number of Non-Detect Data	8
			Percent Non-Detects	10.81%
Raw Sta			Log-transformed Statistics	
	Minimum Detected	0.0241	Minimum Detected	-3.727
	Maximum Detected	1.7	Maximum Detected	0.531
	Mean of Detected	0.216	Mean of Detected	-2.271
	SD of Detected	0.329	SD of Detected	1.161
	Minimum Non-Detect	0.05	Minimum Non-Detect	-2.996
	Maximum Non-Detect	0.13	Maximum Non-Detect	-2.04
Note: Data have multiple DLs - Use of		nded	Number treated as Non-Detect	48
For all methods (except KM, DL/2, and			Number treated as Detected	26
Observations < Largest ND are treated	as NDs		Single DL Non-Detect Percentage	64.86%
		UCL St		
Normal Distribution Test w		•	Lognormal Distribution Test with Detected Values O	-
	Lilliefors Test Statistic	0.279	Lilliefors Test Statistic	0.136
	Lilliefors Critical Value	0.109	5% Lilliefors Critical Value	0.109
Data not Normal at 5%	-		Data not Lognormal at 5% Significance Level	
Assuming Norm			Assuming Lognormal Distribution	
D	L/2 Substitution Method	0.100	DL/2 Substitution Method	0.07
	Mean	0.198	Mean	-2.374
	SD	0.315	SD	1.142
Maximum Likelike ed	95% DL/2 (t) UCL Estimate(MLE) Method	0.259	95% H-Stat (DL/2) UCL	0.246
	()	N/A	Log ROS Method	2.200
MLE yields a ne	egative mean		Mean in Log Scale SD in Log Scale	-2.368
			Mean in Original Scale	0.198
			SD in Original Scale	0.315
			95% t UCL	0.259
			95% Percentile Bootstrap UCL	0.259
			95% BCA Bootstrap UCL	0.203
			95% H-UCL	0.245
Gamma Distribution Test w	ith Detected Values On	lv	Data Distribution Test with Detected Values Only	
	k star (bias corrected)	0.775	Data do not follow a Discernable Distribution (0.05	
	Theta Star	0.279	· · · · · · · · · · · · · · · · · · ·	,
	nu star	102.3		
	A-D Test Statistic	3.035	Nonparametric Statistics	
	5% A-D Critical Value	0.79	Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.79	Mean	0.197
	5% K-S Critical Value	0.114	SD	0.313
Data not Gamma Distributed	l at 5% Significance Lev	/el	SE of Mean	0.0367
			95% KM (t) UCL	0.259
Assuming Gam	na Distribution		95% KM (z) UCL	0.258
Gamma ROS Statistics	using Extrapolated Data		95% KM (jackknife) UCL	0.258
	Minimum	0.000001	95% KM (bootstrap t) UCL	0.283
	Maximum	1.7	95% KM (BCA) UCL	0.262
	Mean	0.195	95% KM (Percentile Bootstrap) UCL	0.264
	Median	0.0788	95% KM (Chebyshev) UCL	0.357
	SD	0.316	97.5% KM (Chebyshev) UCL	0.426
	k star	0.472	99% KM (Chebyshev) UCL	0.562
	Theta star	0.413		
	Nu star	69.91	Potential UCLs to Use	
	AppChi2	51.66	95% KM (Chebyshev) UCL	0.357
95% Gamma Approximate U	CL (Use when n >= 40)	0.264		
95% Adjusted Gamma	UCL (Use when n < 40)	0.266		

	General UCL Statistics	for Full Dat	a Sets	
User Selected Options				
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
		Nickel So	puthern AU	
		Genera	I Statistics	
Numl	ber of Valid Observations	74	Number of Distinct Observations	46
Raw S	tatistics		Log-transformed Statistics	
	Minimum	0.08	Minimum of Log Data	-2.526
	Maximum	176.5	Maximum of Log Data	5.173
	Mean	44.35	Mean of log Data	
	Geometric Mean	20.43	SD of log Data	1.772
	Median			
		45.32		
	Std. Error of Mean			
	Coefficient of Variation	-		
	Skewness	1.568		
		Relevant U	ICL Statistics	
Normal Dist	ribution Test		Lognormal Distribution Test	
	Lilliefors Test Statistic		Lilliefors Test Statistic	0.202
	Lilliefors Critical Value	0.103	Lilliefors Critical Value	0.103
Data not Normal at 5	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution	50.40	Assuming Lognormal Distribution	107.0
	95% Student's-t UCL	53.13	95% H-UCL	
	sted for Skewness)	54.05	95% Chebyshev (MVUE) UCL	
	d-CLT UCL (Chen-1995)		97.5% Chebyshev (MVUE) UCL	
95% Modifie	ed-t UCL (Johnson-1978)	53.29	99% Chebyshev (MVUE) UCL	372.2
Gamma Die	tribution Test		Data Distribution	
Gainina Dis	k star (bias corrected)	0 748	Data do not follow a Discernable Distribution (0.05	5)
	Theta Star			"
	MLE of Mean			
М	LE of Standard Deviation			
IVI	nu star			
Approximat	te Chi Square Value (.05)		Nonparametric Statistics	
	sted Level of Significance		95% CLT UCL	53.02
-	djusted Chi Square Value		95% Jackknife UCL	
	,		95% Standard Bootstrap UCL	
Ander	son-Darling Test Statistic	1.393	95% Bootstrap-t UCL	
	Darling 5% Critical Value		95% Hall's Bootstrap UCL	
	ov-Smirnov Test Statistic		95% Percentile Bootstrap UCL	
	mirnov 5% Critical Value		95% BCA Bootstrap UCL	
Data not Gamma Distribute			95% Chebyshev(Mean, Sd) UCL	
	• • • • • • • •		97.5% Chebyshev(Mean, Sd) UCL	
Assuming Gam	nma Distribution		99% Chebyshev(Mean, Sd) UCL	
95% Approximate Gamma		56.17		
	a UCL (Use when n < 40)			
	(
Potential I	JCL to Use		Use 95% Chebyshev (Mean, Sd) UCL	67.32

	with Non-Detects	or Data Sets	General UCL Statistics	
			File ProUCL upload.wst	From File
			sion OFF	Full Precision
			cient 95%	Confidence Coefficient
			ions 2000	Number of Bootstrap Operations
	outhern AU	hallium So	Т	
	Statistics	General		
42	Number of Detected Data	95	Number of Valid Data	
53	Number of Non-Detect Data	23	Imber of Distinct Detected Data	Number
55.79%	Percent Non-Detects			
	Log-transformed Statistics		Raw Statistics	Raws
-2.12	Minimum Detected	0.12	Minimum Detected	
1.554	Maximum Detected	4.73	Maximum Detected	
-0.0504	Mean of Detected	1.227	Mean of Detected	
0.785	SD of Detected	0.857	SD of Detected	
-1.897	Minimum Non-Detect	0.15	Minimum Non-Detect	
2.913	Maximum Non-Detect	18.41	Maximum Non-Detect	
95	Number treated as Non-Detect	ded	Use of KM Method is recomme	Note: Data have multiple DLs - Use
C	Number treated as Detected		L/2, and ROS Methods),	For all methods (except KM, DL/2, a
100.00%	Single DL Non-Detect Percentage		e treated as NDs	Observations < Largest ND are treat
	atistics	UCL St		
nly	Lognormal Distribution Test with Detected Values Or	y	Test with Detected Values On	Normal Distribution Test
0.875	Shapiro Wilk Test Statistic	0.794	Shapiro Wilk Test Statistic	
0.942	5% Shapiro Wilk Critical Value	0.942	5% Shapiro Wilk Critical Value	5% 5
	Data not Lognormal at 5% Significance Level		al at 5% Significance Level	Data not Normal at
	Assuming Lognormal Distribution		g Normal Distribution	Assuming No
	DL/2 Substitution Method		DL/2 Substitution Method	
-0.124	Mean	1.456	Mean	
1.054	SD	1.753	SD	
1.977	95% H-Stat (DL/2) UCL	1.755	95% DL/2 (t) UCL	
	Log ROS Method	N/A	elihood Estimate(MLE) Method	Maximum Likeliho
-0.435	Mean in Log Scale		failed to converge properly	MLE method failed
0.708	SD in Log Scale			
0.833	Mean in Original Scale			
0.685	SD in Original Scale			
0.95	95% t UCL			
0.952	95% Percentile Bootstrap UCL			
0.965	95% BCA Bootstrap UCL			
0.964	95% H-UCL			
	Data Distribution Test with Detected Values Only	у	Test with Detected Values On	Gamma Distribution Test
)	Data do not follow a Discernable Distribution (0.05)	1.976	k star (bias corrected)	
		0.621	Theta Star	
		166	nu star	
	Nonparametric Statistics	1.252	A-D Test Statistic	
	Kaplan-Meier (KM) Method	0.759	5% A-D Critical Value	
0.889	Mean	0.759	K-S Test Statistic	
0.776	SD	0.138	5% K-S Critical Value	
0.0954	SE of Mean	rel	stributed at 5% Significance Le	Data not Gamma Distribu
1.048	95% KM (t) UCL			
1.046	95% KM (z) UCL		g Gamma Distribution	Assuming Ga
1.048	95% KM (jackknife) UCL		atistics using Extrapolated Data	Gamma ROS Statistic
1.063	95% KM (bootstrap t) UCL	0.000001	Minimum	
1.069	95% KM (BCA) UCL	4.73	Maximum	
1.064	95% KM (Percentile Bootstrap) UCL	0.891	Mean	
1.305	95% KM (Chebyshev) UCL	0.878	Median	
1.485	97.5% KM (Chebyshev) UCL	0.718	SD	
1.838	99% KM (Chebyshev) UCL	0.445	k star	
		2.002	Theta star	
	Detential LIQUE to Line	84.6	Nu star	
	Potential UCLs to Use			
1.048	Potential UCLs to Use 95% KM (t) UCL	64.4	AppChi2	
1.048 1.064		64.4 1.171	AppChi2 imate UCL (Use when n >= 40)	95% Gamma Approximate

	General UCL Statistics	for Full Data	Sets
User Selected Options			
From File	ProUCL upload.wst		
Full Precision	OFF		
Confidence Coefficient	95%		
Number of Bootstrap Operations	2000		
	V	anadium S	Southern AU
		General	Statistics
Num	ber of Valid Observations	84	Number of Distinct Observations 56
Raw S	Statistics		Log-transformed Statistics
	Minimum	17.07	Minimum of Log Data 2.83
	Maximum	293	Maximum of Log Data 5.68
		66.08	Mean of log Data 4.05
	Geometric Mean		SD of log Data 0.49
	Median	55	
		41.79	
	Std. Error of Mean		
	Coefficient of Variation		
	Skewness	2.944	
		Relevant U	CL Statistics
Normal Dis	tribution Test		Lognormal Distribution Test
	Lilliefors Test Statistic		Lilliefors Test Statistic 0.114
	Lilliefors Critical Value	0.0967	Lilliefors Critical Value 0.090
Data not Normal at	5% Significance Level		Data not Lognormal at 5% Significance Level
Accuming Nor	mal Distribution		Assuming Lognormal Distribution
Assuming No	95% Student's-t UCL	73.66	95% H-UCL 72.0
95% LICLs (Adiu	usted for Skewness)	73.00	95% Chebyshev (MVUE) UCL 81.1
	ed-CLT UCL (Chen-1995)	75 14	97.5% Chebyshev (MVUE) UCL 88.0
•	ed-t UCL (Johnson-1978)		99% Chebyshev (MVUE) UCL 101.
Gamma Dis	stribution Test		Data Distribution
	k star (bias corrected)	3.797	Data do not follow a Discernable Distribution (0.05)
	Theta Star		
	MLE of Mean	66.08	
K.		00.00	
IV	ILE of Standard Deviation		
W	ILE of Standard Deviation nu star	33.91	
		33.91 637.9	Nonparametric Statistics
Approxima	nu star	33.91 637.9 580.3	Nonparametric Statistics 95% CLT UCL 73.58
Approxima Adju	nu star te Chi Square Value (.05)	33.91 637.9 580.3 0.0471	-
Approxima Adju	nu star te Chi Square Value (.05) sted Level of Significance	33.91 637.9 580.3 0.0471	95% CLT UCL 73.58
Approxima Adju A	nu star te Chi Square Value (.05) sted Level of Significance	33.91 637.9 580.3 0.0471 579.3	95% CLT UCL 73.58 95% Jackknife UCL 73.66
Approxima Adju A	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value	33.91 637.9 580.3 0.0471 579.3 2.036	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.40
Approxima Adju A A Ander Anderson-	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic	33.91 637.9 580.3 0.0471 579.3 2.036 0.756	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.43 95% Bootstrap-t UCL 75.6
Approxima Adju A Ander Anderson- Kolmogo	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic -Darling 5% Critical Value	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.41 95% Bootstrap-t UCL 75.60 95% Hall's Bootstrap UCL 77.22
Approxima Adju A Ander Anderson- Kolmogo	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.60 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.48 95% Bootstrap-t UCL 75.67 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89 95% BCA Bootstrap UCL 75.40
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.60 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.80 95% BCA Bootstrap UCL 75.40 95% Chebyshev(Mean, Sd) UCL 85.90
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098 vel	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.6 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89 95% BCA Bootstrap UCL 75.40 95% Chebyshev(Mean, Sd) UCL 85.99 97.5% Chebyshev(Mean, Sd) UCL 94.59
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098 vel 72.63	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.6 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89 95% BCA Bootstrap UCL 75.40 95% Chebyshev(Mean, Sd) UCL 85.99 97.5% Chebyshev(Mean, Sd) UCL 94.59
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098 vel 72.63	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.6 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89 95% BCA Bootstrap UCL 75.40 95% Chebyshev(Mean, Sd) UCL 85.99 97.5% Chebyshev(Mean, Sd) UCL 94.59
Approxima Adju A Ander Anderson- Kolmogor Kolmogorov-S Data not Gamma Distribut Assuming Gar 95% Approximate Gamma 95% Adjusted Gamm	nu star te Chi Square Value (.05) sted Level of Significance djusted Chi Square Value rson-Darling Test Statistic Darling 5% Critical Value rov-Smirnov Test Statistic Smirnov 5% Critical Value ted at 5% Significance Le nma Distribution UCL (Use when n >= 40)	33.91 637.9 580.3 0.0471 579.3 2.036 0.756 0.139 0.098 vel 72.63	95% CLT UCL 73.58 95% Jackknife UCL 73.60 95% Standard Bootstrap UCL 73.44 95% Bootstrap-t UCL 75.6 95% Hall's Bootstrap UCL 77.22 95% Percentile Bootstrap UCL 73.89 95% BCA Bootstrap UCL 75.40 95% Chebyshev(Mean, Sd) UCL 85.99 97.5% Chebyshev(Mean, Sd) UCL 94.59

	General UCL Statistics f	or Data Set	s with Non-Detects	
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Benzo(a)anthrac	ene Southern AU	
	· · · · ·	General		
	Number of Valid Data	45	Number of Detected Data	20
Number	r of Distinct Detected Data	8	Number of Non-Detect Data	25
			Percent Non-Detects	55.56%
Raw S	Statistics		Log-transformed Statistics	
	Minimum Detected	11	Minimum Detected	2.398
	Maximum Detected	773	Maximum Detected	6.65
	Mean of Detected	179.7	Mean of Detected	4.8
	SD of Detected	156.8	SD of Detected	1.079
	Minimum Non-Detect	70	Minimum Non-Detect	4.248
	Maximum Non-Detect	458	Maximum Non-Detect	6.127
Note: Data have multiple DLs - Use of	of KM Method is recommer	nded	Number treated as Non-Detect	44
For all methods (except KM, DL/2, ar	nd ROS Methods),		Number treated as Detected	1
Observations < Largest ND are treat	ed as NDs		Single DL Non-Detect Percentage	97.78%
		UCL St	atistics	
Normal Distribution Test	with Detected Values Onl	у	Lognormal Distribution Test with Detected Values On	ly
5	Shapiro Wilk Test Statistic	0.589	Shapiro Wilk Test Statistic	0.731
5% S	Shapiro Wilk Critical Value	0.905	5% Shapiro Wilk Critical Value	0.905
Data not Normal at !	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Normal Distribution			Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	151	Mean	4.72
	SD	118.6	SD	0.875
	95% DL/2 (t) UCL	180.7	95% H-Stat (DL/2) UCL	221.1
Maximum Likelihoo	od Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed	to converge properly		Mean in Log Scale	4.232
			SD in Log Scale	0.962
			Mean in Original Scale	107.8
			SD in Original Scale	123.8
			95% t UCL	138.8
			95% Percentile Bootstrap UCL	142
			95% BCA Bootstrap UCL	150.3
			95% H-UCL	153.2
Gamma Distribution Test	with Detected Values On	ly	Data Distribution Test with Detected Values Only	
	k star (bias corrected)	1.242	Data do not follow a Discernable Distribution (0.05)	1
	Theta Star	144.7	· · · ·	
	nu star	49.67		
	A-D Test Statistic	2.525	Nonparametric Statistics	
	5% A-D Critical Value	0.759	Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.759	Mean	112.7
	5% K-S Critical Value	0.198	SD	128.8
Data not Gamma Distribut	ed at 5% Significance Lev	vel	SE of Mean	21.47
			95% KM (t) UCL	148.8
Assuming Gar	mma Distribution		95% KM (z) UCL	148
	s using Extrapolated Data		95% KM (jackknife) UCL	148.7
	Minimum	0.000001	95% KM (bootstrap t) UCL	157.3
	Maximum	773	95% KM (BCA) UCL	150.9
	Mean	116.6	95% KM (Percentile Bootstrap) UCL	150.3
	IVICALI	113.8	95% KM (Chebyshev) UCL	206.3
	Median	110.0		
		126.6	97.5% KM (Chebyshev) UCL	246.8
	Median			
	Median SD k star	126.6 0.324	97.5% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	
	Median SD k star Theta star	126.6 0.324 359.5	99% KM (Chebyshev) UCL	
	Median SD k star Theta star Nu star	126.6 0.324 359.5 29.19	99% KM (Chebyshev) UCL Potential UCLs to Use	326.3
95% Gamma Approximate	Median SD k star Theta star Nu star AppChi2	126.6 0.324 359.5	99% KM (Chebyshev) UCL	246.8 326.3 150.9

	General UCL Statistics f	or Data Set	s with Non-Detects	
From File	ProUCL upload.wst			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
	Benz		e Southern AU	
	Number of Valid Data	General 37	Statistics Number of Detected Data	1
Number	of Distinct Detected Data		Number of Non-Detect Data	1
		,	Percent Non-Detects	51.35
Raw S	Statistics		Log-transformed Statistics	01.00
	Minimum Detected	23	Minimum Detected	3.13
	Maximum Detected	595	Maximum Detected	6.38
	Mean of Detected	205.4	Mean of Detected	5.16
	SD of Detected	122.3	SD of Detected	0.64
	Minimum Non-Detect	190	Minimum Non-Detect	5.24
	Maximum Non-Detect	458	Maximum Non-Detect	6.12
lote: Data have multiple DLs - Use c	of KM Method is recommer	nded	Number treated as Non-Detect	3
For all methods (except KM, DL/2, ar	nd ROS Methods),		Number treated as Detected	
Observations < Largest ND are treated	ed as NDs		Single DL Non-Detect Percentage	97.30
		UCL SI		
Normal Distribution Test		•	Lognormal Distribution Test with Detected Values On	<u> </u>
	Shapiro Wilk Test Statistic	0.657	Shapiro Wilk Test Statistic	0.70
	Shapiro Wilk Critical Value 5% Significance Level	0.897	5% Shapiro Wilk Critical Value Data not Lognormal at 5% Significance Level	0.89
	mal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	180.9	Mean	5.07
	SD	95.68	SD	0.52
	95% DL/2 (t) UCL	207.5	95% H-Stat (DL/2) UCL	217.
Maximum Likelihoc	od Estimate(MLE) Method	N/A	Log ROS Method	
MLE method failed	to converge properly		Mean in Log Scale	5.09
			SD in Log Scale	0.47
			Mean in Original Scale	18
			SD in Original Scale	91.4
			95% t UCL	206
			95% Percentile Bootstrap UCL	20
			95% BCA Bootstrap UCL	216.
			95% H-UCL	213
Gamma Distribution Test			Data Distribution Test with Detected Values Only	
	k star (bias corrected)	2.771	Data do not follow a Discernable Distribution (0.05)	
	Theta Star	74.14		
	nu star	99.75	Nonporemetric Statistics	
	A-D Test Statistic 5% A-D Critical Value	2.463 0.745	Nonparametric Statistics Kaplan-Meier (KM) Method	
	K-S Test Statistic	0.745	Kapian-weier (Kivi) weinou Mean	185.
		0.740	SD	92.0
		0 205		
Data not Gamma Distribut	5% K-S Critical Value	0.205	SE of Mean	
Data not Gamma Distribut	5% K-S Critical Value		SE of Mean	17.7
	5% K-S Critical Value			17.7 215
Assuming Gan	5% K-S Critical Value red at 5% Significance Lev		SE of Mean 95% KM (t) UCL	17.7 215 214
Assuming Gan	5% K-S Critical Value red at 5% Significance Lev nma Distribution		SE of Mean 95% KM (t) UCL 95% KM (z) UCL	17.7 215 214 215
Assuming Gan	5% K-S Critical Value ed at 5% Significance Lev mma Distribution s using Extrapolated Data	/el	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	17.7 215 214 215 215 219
Assuming Gan	5% K-S Critical Value ed at 5% Significance Lev nma Distribution s using Extrapolated Data Minimum	vel 23	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	17.7 215 214 215 219 219 215
Assuming Gan	5% K-S Critical Value eed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum	23 595	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL	17.7 215 214 215 219 219 215 213
Assuming Gan	5% K-S Critical Value eed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean	vel 23 595 200.8	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	17. 215 214 215 219 219 215 213 262
Assuming Gan	5% K-S Critical Value ed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean Median	23 595 200.8 185.8 91.12 4.846	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	17.7 215 214 215 219 215 213 213 262 296
Assuming Gan	5% K-S Critical Value eed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD	vel 23 595 200.8 185.8 91.12	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	17.7 215 214 215 219 215 213 213 262 296
Assuming Gan	5% K-S Critical Value eed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD k star	23 595 200.8 185.8 91.12 4.846	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	17.7 215 214 215 219 215 213 213 262 296
Assuming Gan	5% K-S Critical Value eed at 5% Significance Lev mma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2	vel 23 595 200.8 185.8 91.12 4.846 41.43	SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (Chebyshev) UCL 95% KM (Chebyshev) UCL 99% KM (Chebyshev) UCL	17.7

	General UCL Statistics	for Data Set	s with Non-Detects	
From File	ProUCL upload.wst			
Full Precision	OFF 95%			
Confidence Coefficient	2000			
Number of Bootstrap Operations) fluoronth	and Southern All	
	Benzo(I		n <mark>ene Southern AU</mark> Statistics	
	Number of Valid Data	45		1
Number	of Distinct Detected Data	7	Number of Non-Detect Data	2
			Percent Non-Detects	60.00
Raw S	itatistics		Log-transformed Statistics	
	Minimum Detected	15	Minimum Detected	2.70
	Maximum Detected	895	Maximum Detected	6.79
	Mean of Detected	224.7	Mean of Detected	5.13
	SD of Detected	182.3	SD of Detected	0.88
	Minimum Non-Detect	70	Minimum Non-Detect	4.24
	Maximum Non-Detect	458	Maximum Non-Detect	6.12
ote: Data have multiple DLs - Use c	of KM Method is recomme	nded	Number treated as Non-Detect	4
or all methods (except KM, DL/2, ar	nd ROS Methods),		Number treated as Detected	
bservations < Largest ND are treate	ed as NDs		Single DL Non-Detect Percentage	97.789
		UCL St	tatistics	
Normal Distribution Test	with Detected Values On	ly	Lognormal Distribution Test with Detected Values On	ly
ę	Shapiro Wilk Test Statistic	0.563	Shapiro Wilk Test Statistic	0.70
5% S	hapiro Wilk Critical Value	0.897	5% Shapiro Wilk Critical Value	0.89
	5% Significance Level		Data not Lognormal at 5% Significance Level	
Assuming Nor	mal Distribution		Assuming Lognormal Distribution	
	DL/2 Substitution Method		DL/2 Substitution Method	
	Mean	166.6	Mean	4.84
	SD	134.8	SD	0.80
	95% DL/2 (t) UCL	200.4	95% H-Stat (DL/2) UCL	228.
	od Estimate(MLE) Method	N/A	Log ROS Method	. = -
MLE method failed	to converge properly		Mean in Log Scale	4.50
			SD in Log Scale	0.84
			Mean in Original Scale	
			SD in Original Scale 95% t UCL	140. 164.
			95% Percentile Bootstrap UCL	164.
			95% BCA Bootstrap UCL	181.
			95% H-UCL	170.
Gamma Distribution Test	with Detected Values On	lv	Data Distribution Test with Detected Values Only	170.
	k star (bias corrected)	1.65	-	
	Theta Star	136.1		
	nu star	59.42		
	A-D Test Statistic	2.573	Nonparametric Statistics	
	5% A-D Critical Value	0.753	Kaplan-Meier (KM) Method	
			Mean	
	K-S Test Statistic	0.753	Mean	130.
		0.753	SD	
Data not Gamma Distribut	K-S Test Statistic 5% K-S Critical Value	0.206		130. 149. 25.2
Data not Gamma Distribut	K-S Test Statistic 5% K-S Critical Value	0.206	SD	149.
	K-S Test Statistic 5% K-S Critical Value	0.206	SD SE of Mean	149 25.2
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le	0.206	SD SE of Mean 95% KM (t) UCL	149 25.2 173 172
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution	0.206	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL	149 25.2 173 172 173
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data	0.206 vel	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL	149 25.2 173 172 173 173 184
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum	0.206 vel 0.000001	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL	149 25.2 173 172 173 173 184 216
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum	0.206 vel 0.000001 895	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	149 25.2 173 172 173 184 216 192
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum Mean	0.206 vel 0.000001 895 131.6	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	149 25.2 173 172 173 184 216 192 24
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum Mean Median	0.206 vel 0.000001 895 131.6 126.6 148 0.181	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM (Chebyshev) UCL	149 25.: 173 172 173 184 216 192 24 288
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD	0.206 vel 0.000001 895 131.6 126.6 148 0.181 727.3	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	149 25.: 173 172 173 184 216 192 24 288
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star	0.206 vel 0.000001 895 131.6 126.6 148 0.181 727.3 16.28	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	149 25.2 173 172 173 184 216 192 24 288
Assuming Gan	K-S Test Statistic 5% K-S Critical Value ed at 5% Significance Le nma Distribution s using Extrapolated Data Minimum Maximum Mean Median SD k star Theta star Nu star AppChi2	0.206 vel 0.000001 895 131.6 126.6 148 0.181 727.3	SD SE of Mean 95% KM (t) UCL 95% KM (z) UCL 95% KM (jackknife) UCL 95% KM (bootstrap t) UCL 95% KM (bootstrap t) UCL 95% KM (BCA) UCL 95% KM (Chebyshev) UCL 97.5% KM (Chebyshev) UCL	149 25.2 173

	t-Test Site	-Test Site vs Background Comparison for Full Data Sets without NDs										
User Selected	Options				BEG	N BACKG	ROUND	TEST R	ESULTS			
Fro	m File ProUCL up	oload.wst										
Full Pre	ecision OFF											
Confidence Coe	fficient 95%											
Substantial Differen	ce (S) 0											
Selected Null Hypo	othesis Site or AO	C Mean Less	Than or Equa	al to Backgro	ound Mean (F	orm 1)						
Alternative Hypo	othesis Site or AO	C Mean Grea	ater Than the I	Background	Mean							
	ł											
							ſ	BEGIN T	ABLE A.:			
Area of Concern Data:	Mercury 4900 (Juehec										
Background Data: Mer	-	LUCDOC										
Subiground Bata. Mon												
	Raw Statist	ics										
		Site	Background									
Number of	Number of Valid Observations 13 23											
	stinct Observations	13	21									
	Minimum	0.0062	0.0065									
	Maximum	2.61	0.29									
	Maximum	0.721	0.23									
	Median	0.66	0.065									
	SD	0.687	0.0679									
	SE of Mean	0.191	0.0079									
		0.191	0.0142									
Site	s Background Two	Somelo + T										
Sile v	s backyrounu Two	-Sample t-T	551									
H0: Mu of Site - Mu of Back												
TO. MU OF SILE - MU OF BACK		t-Test	Critical									
				D. Value								
Method	DF	Value	t (0.050)	P-Value								
Pooled (Equal Variance)	34	4.437	1.691	0								
Welch-Satterthwaite (Unequa	al Varian 12.1	3.318	1.782	0.003								
Pooled SD 0.412												
Conclusion with Alpha = 0.05												
* Student t (Pooled) Test: F	•		-									
* Welch-Satterthwaite Test:	Reject HU, Concluc	ie Site > Bac	kground									
	T	Maria a										
	Test of Equality of	variances										
		0.470										
	Variance of Site	0.472										
Varia	nce of Background	0.00461										
	Denominator DF		st Value	P-Value								
12	22	10	2.479	0								
Conclusion with Alpha = 0.05												
* Two variances are not equ	al											

	t-Test Site	vs Backarou	Ind Comparis	on for Full [Data Sets without	t NDs		
User Selected Op						-		
From		load.wst						
Full Precis	-							
Confidence Coeffic								
Substantial Difference								
Selected Null Hypoth		C Mean Less	Than or Fou	al to Backoro	ound Mean (Form	1)		
Alternative Hypoth			ter Than the		-	•)		
				Buckground	Wear			
						BEG	IN TABLE A.5	
Area of Concern Data: Alumin								
Background Data: AluminumB	BG							
•								
	Raw Statisti	cs						
		Site	Background					
Number of Va	lid Observations	14	23					
	nct Observations	14	21					
	Minimum	14400	5940					
	Maximum	28400	16300					
	Mean	22393	11552					
	Median	22500	11500					
	SD	4319	3283					
	SE of Mean	1154	684.5					
		1104	004.0					
Site vs	Background Two	-Sample t-Te	est					
		-						
H0: Mu of Site - Mu of Backgro	ound <= 0							
		t-Test	Critical					
Vethod	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	35	8.639	1.69	0				
Welch-Satterthwaite (Unequal		8.078	1.717	0				
Pooled SD 3701.664		-						
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Re		e Site > Bacl	karound					
* Welch-Satterthwaite Test: R								
	-,, = = = = = = = = = = = = = = = = =							
					+			
Τι	est of Equality of \	/ariances						
	Variance of Site	18654560						
Varianc								
varidite								
Numerator DF De	enominator DF	E Tor	st Value	P-Value				
13	22		731	0.248				
-	22	1.	/31	0.240				
Conclusion with Alpha = 0.05	agual							
* Two variances appear to be e	equal							<u> </u>

	Wilcoxon-M	lann-Whitn	ey Site vs Bac	kground Co	mparison Te	st for Data S	Sets with No	n-Detects	
User Selected Options					-				
From File	ProUCL upl	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean/Mec	lian Less Thar	or Equal to	Background I	Mean/Media	n (Form 1)		
	Site or AOC		. ,						
Area of Concern Data: Antimo	ony POI39								
Background Data: AntimonyB	-								
Daoigrouna Data: AntinonyD	u								
FF	Raw Statistic	s							
		Site	Background						
Number of ¹	Valid Data	14	23						
Number of Non-De		11	10						
Number of D		3	13						
Minimum N	on-Detect	2.1	5						
Maximum N	on-Detect	11.5	7.4						
Percent No		78.57%	43.48%						
Minimum	Detected	11.2	0.36						
-	Detected	13.5	2.3						
Mean of Dete		12.17	0.808						
Median of Dete		11.8	0.7						
SD of Dete		1.193	0.502						
Wilcoxon-Mann-W	hitnev Site v	s Backaro	und Test						
All observations <= 1									
Wilcoxon-Ma	•	•							
H0: Mean/Median of Site or AOC <	= Mean/Med	ian of Back	around						
Site Rank	Sum W-Stat	289							
	/ Test U-Stat								
WMW Critical V									
	P-Value								
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgro	und							
P-Value >= alpha (0.05)									

	t-Test Site vs Background Comparison for Full Data Sets without NDs									
User Selected Options										
From File	ProUCL up	oad.wst								
Full Precision	OFF									
Confidence Coefficient	95%									
Substantial Difference (S)	0									
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equ	al to Backgro	ound Mean (Form 1)				
Alternative Hypothesis	Site or AOC	Mean Grea	iter Than the	Background	Mean					
Area of Concern Data: Manganese	POI39									
Background Data: ManganeseBG										
F	Raw Statistic	s								
		Site	Background	1						
Number of Valid Ob	servations	13	23							
Number of Miss	ing Values	1	0							
Number of Distinct Ob	servations	12	23							
	Minimum	233	163							
	Maximum	2580	1000							
	Mean	845.5	453							
	Median	551	368							
	SD	649.7	229.3							
S	E of Mean	180.2	47.81							
Site vs Backg	round Two-	Sample t-Te	est							
H0: Mu of Site - Mu of Background ·	<= 0									
		t-Test	Critical							
Method	DF	Value	t (0.050)	P-Value						
Pooled (Equal Variance)	34	2.644	1.691	0.006						
Welch-Satterthwaite (Unequal Variar	13.7	2.105	1.761	0.027						
Pooled SD 427.790				r						
Conclusion with Alpha = 0.050										
* Student t (Pooled) Test: Reject H0	, Conclude S	Site > Backg	round							
* Welch-Satterthwaite Test: Reject	H0, Conclu	de Site > Ba	ackground							
Test of I	Equality of V	ariances/								
Varia	nce of Site	422109								
Variance of B	ackground	52583								
Numerator DF Denomi	nator DF	F-Tes	st Value	P-Value						
	12 22 8.027 0									
Conclusion with Alpha = 0.05										
* Two variances are not equal										

	-Test Site vs Background Comparison for Full Data Sets without NDs									
User Selected Options										
From File	ProUCL Up	load.wst								
Full Precision	OFF									
Confidence Coefficient	95%									
Substantial Difference (S)	0									
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equa	al to Backgro	ound Mean (F	Form 1)				
Alternative Hypothesis	Site or AOC	Mean Grea	ter Than the	Background	Mean					
							BEGIN	N TABLE A.8		
Area of Concern Data: Aluminum AC	DI 11									
Background Data: AluminumBG										
F	Raw Statistic									
		Site	Background							
Number of Valid Ob	servations	6	23							
Number of Distinct Ob		6	21							
	Minimum	16300	5940							
	Maximum	21000	16300							
	Mean	18167	11552							
	Median	17850	11500							
	SD	1574	3283							
S	E of Mean	642.7	684.5							
S	E of Mean	642.7	684.5							
S Site vs Backg										
	round Two-									
Site vs Backg	round Two-									
Site vs Backg	round Two-	Sample t-Te	est	P-Value						
Site vs Backg 10: Mu of Site - Mu of Background <	round Two- <= 0	Sample t-Te	Critical	P-Value 0						
Site vs Backg H0: Mu of Site - Mu of Background < Method	round Two- = 0 DF 27	Sample t-Te t-Test Value	Critical t (0.050)							
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance)	round Two- = 0 DF 27	Sample t-Te t-Test Value 4.747	Critical t (0.050) 1.703	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian	round Two- = 0 DF 27	Sample t-Te t-Test Value 4.747	Critical t (0.050) 1.703	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646	round Two- = 0 DF 27 17.6	Sample t-Test t-Test Value 4.747 7.045	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050	round Two- = 0 DF 27 17.6 0, Conclude	Sample t-Test t-Test Value 4.747 7.045	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H	round Two- = 0 DF 27 17.6 0, Conclude	Sample t-Test t-Test Value 4.747 7.045	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H	round Two- = 0 DF 27 17.6 0, Conclude	Sample t-Test t-Test Value 4.747 7.045	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H	round Two- = 0 DF 27 17.6 0, Conclude	Sample t-Test t-Test Value 4.747 7.045 Site > Back e Site > Back	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H	First Constraint DF 27 17.6 0, Conclude 10, Conclude	Sample t-Test t-Test Value 4.747 7.045 Site > Back e Site > Back	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H Test of E	First Constraint DF 27 17.6 0, Conclude 10, Conclude	Sample t-Test t-Test Value 4.747 7.045 Site > Back e Site > Back	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H Test of E	Fround Two- C DF 27 17.6 0, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude	Sample t-Test t-Test Value 4.747 7.045 Site > Back e Site > Back de Site > Back	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H Test of E Varian	Fround Two- C DF 27 17.6 0, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude 10, Conclude	Sample t-Test t-Test Value 4.747 7.045 Site > Back e Site > Back a Site > Back a Site > Back a Site > Back	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H Test of E Varian	round Two-	Sample t-Test t-Test Value 4.747 7.045 Site > Back site > Back a Site > Back 2478667 10775991	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H * Welch-Satterthwaite Test: Reject H Variance of Ba	round Two-	Sample t-Test t-Test Value 4.747 7.045 Site > Back Site > Back 2478667 10775991 F-Tes	Critical t (0.050) 1.703 1.734	0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H * Welch-Satterthwaite Test: Reject H Variance of Ba Numerator DF Denomin 22	round Two-	Sample t-Test t-Test Value 4.747 7.045 Site > Back Site > Back 2478667 10775991 F-Tes	critical t (0.050) 1.703 1.734 cground cground	0 0						
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 3039.646 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Reject H * Welch-Satterthwaite Test: Reject H * Welch-Satterthwaite Test: Reject H Varian Varian Variance of Ba Numerator DF Denomin	round Two-	Sample t-Test t-Test Value 4.747 7.045 Site > Back Site > Back 2478667 10775991 F-Tes	critical t (0.050) 1.703 1.734 cground cground	0 0						

	t-Test Site	vs Backgrou	son for Full D	ata Sets w	ithout NDs			
User Selected Options								
From File	ProUCL Up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	und Mean (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ater Than the	Background I	Mean			
Area of Concern Data: Magnesium	AOI 11							
Background Data: MagnesiumBG								
	Raw Statisti	cs						
		Site	Background					
Number of Valid Ob	servations	6	23					
Number of Distinct Ob	servations	6	23					
	Minimum	5350	1550					
	Maximum	7060	8600					
	Mean	5848	4340					
	Median	5690	4360					
	SD	619.6	1758					
	E of Mean	252.9	366.5					
Site vs Back	around Two	Sample t-To	est					
H0: Mu of Site - Mu of Background	<= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	27	2.044	1.703	0.025				
Welch-Satterthwaite (Unequal Variar		3.386	1.711	0.001				
Pooled SD 1608.984	·							
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0	. Conclude :	Site > Backo	round					
* Welch-Satterthwaite Test: Reject		-						
Weich-Sallerufwalle Test. Rejec		iue olle - Di						
Teet of	Equality of \	/ariances						
Varia	nce of Site	383857						
Variance of B								
Numerator DF Denomi	nator DF	E To	st Value	P-Value				
	5	8	3.05	0.029				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

	Wilcoxon-M	Jann-Whitn	ey Site vs Ba	ckground Co	omparison T	est for Data	Sets with No	on-Detects	
User Selected Options	5								
From File	ProUCL Up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	C Mean/Med	lian Less Thai	n or Equal to	Background	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean/Med	lian Greater T	han Backgro	und Mean/M	edian			
Area of Concern Data: Thallium AC	DI 11								
Background Data: ThalliumBG									
	Raw Statisti	cs							
		Site	Background	1					
Number of	Valid Data	6	23						
Number of Non-D	etect Data	6	22						
Number of D		0	1						
Minimum N	Ion-Detect	4.1	2.1						
Maximum N	lon-Detect	4.4	3.1						
Percent N	on detects	100.00%	95.65%						
Minimun	n Detected	N/A	0.82						
	n Detected	N/A	0.82						
Mean of Dete	ected Data	N/A	0.82						
Median of Dete	ected Data	N/A	0.82						
SD of Dete	ected Data	N/A	N/A						
Wilcoxon-Mann-W	-	-							
All observations <= /	•								
Wilcoxon-M	ann-Whitney	/ (WMW) Te	est						
H0: Mean/Median of Site or AOC <	<= Mean/Me	dian of Back	ground						
				1					
	Sum W-Sta								
	V Test U-Sta								
WMW Critical									
	P-Value	0.511							
Overstanding with At 1 0.07									
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgro	und							
P-Value >= alpha (0.05)									

		t-Test Site	est Site vs Background Comparison for Full Data Sets without NDs									
User Sele	cted Options											
	From File	ProUCL Up	load.wst									
Fu	II Precision	OFF										
Confidence	Coefficient	95%										
Substantial Dif	ference (S)	0										
Selected Null	Hypothesis	Site or AOC	Mean Less	Than or Equ	al to Backgro	ound Mean (F	Form 1)					
Alternative	Hypothesis	Site or AOC	Mean Grea	ter Than the	Background	Mean						
							İ	BEGIN T	ABLE A.9			
Area of Concern Data: Al	<mark>uminum AOI</mark>	9										
Background Data: Alumin	numBG											
	R	aw Statistics	6									
			Site	Background								
Numbe	er of Valid Ob	servations	48	23								
Number	of Distinct Ob	servations	44	21								
		Minimum	4007	5940								
		Maximum	51900	16300								
		Mean	18842	11552								
		Median	18550	11500								
		SD	9152	3283								
	S	E of Mean	1321	684.5								
S	ite vs Backgr	ound Two-S	Sample t-Tes	st								
	•		•									
H0: Mu of Site - Mu of Ba	ckground <=	0										
	-		t-Test	Critical								
Method		DF	Value	t (0.050)	P-Value							
Pooled (Equal Variance)		69	3.696	1.667	0							
Welch-Satterthwaite (Une	gual Variance	65.5	4.9	1.668	0							
Pooled SD 7777.580												
Conclusion with Alpha = 0	.050											
* Student t (Pooled) Test		Conclude Site	e > Backgrou	und								
* Welch-Satterthwaite To	=		-									
Welch-Oaller Invaller I				ground								
	Test of E	quality of Va	ariances									
	Varia	nce of Site	83761485									
\\	Variance of B		10775991									
Numerator DF Denominator DF F-Test Value P-Value												
47 22 7.773 0												
	Conclusion with Alpha = 0.05											
* Two variances are not e												
						1	1		1			

Wilco	oxon-Mann-Wh	itney Site vs Ba	ckground Co	mparison Test	for Data Se	ts with Nor	-Detects	
User Selected Options								
From File ProU	CL upload.wst							
Full Precision OFF								
Confidence Coefficient 95%								
Substantial Difference (S) 0								
Selected Null Hypothesis Site of	or AOC Mean/N	ledian Less Tha	n or Equal to	Background M	ean/Median	(Form 1)		
Alternative Hypothesis Site	or AOC Mean/N	ledian Greater T	han Backgrou	und Mean/Med	ian	· ·		
Area of Concern Data: Antimony A								
Background Data: AntimonyBG								
Raw S	Statistics							
	Site	Background	ł					
Number of Valid	Data 58	23						
Number of Non-Detect	Data 39	10						
Number of Detect	Data 19	13						
Minimum Non-De	etect 0.23	5						
Maximum Non-De	etect 10.9	7.4						
Percent Non det	tects 67.24%	43.48%						
Minimum Dete	cted 0.194	0.36						
Maximum Dete	cted 44.2	2.3						
Mean of Detected	Data 13.06	0.808						
Median of Detected	Data 10.7	0.7						
SD of Detected	Data 12.69	0.502						
Wilcoxon-Mann-Whitney	/ Site vs Backg	round Test						
All observations <= 10.9 (N								
Wilcoxon-Mann-W	-							
	,							
H0: Mean/Median of Site or AOC <= Mea	an/Median of Ba	ackground						
		-						
Site Rank Sum	W-Stat 2482							
WMW Test	U-Stat 1.079							
WMW Critical Value	(0.050) 1.645							
	-Value 0.14							
			1					
Conclusion with Alpha = 0.05								
Do Not Reject H0, Conclude Site <= Ba	ackground							
P-Value >= alpha (0.05)								
/								

	son for Full [Data Sets wi	thout NDs					
User Selected Options	;							
From File	ProUCL Up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	Mean		 			
Area of Concern Data: Cobalt AOI 9								
Background Data: CobaltBG								
B	aw Statistics	1						
		Site	Background	1				
Number of Valid Ol	servations	24	23	-				
Number of Distinct O		23	23					
	Minimum	4.33	2.5					
	Maximum	69.2	2.5					
	Mean	22.52	10.17					
		19.35	8.5					
	Median							
	SD	13.95	5.323					
	SE of Mean	2.847	1.11					
		<u> </u>						
Site vs Backgr	ound Two-S	ample t-Tes	t					
H0: Mu of Site - Mu of Background <=	0	1	-	1				
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	45	3.978	1.679	0				
Welch-Satterthwaite (Unequal Variance) 29.8	4.043	1.697	0				
Pooled SD 10.642								
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0, C	onclude Site	> Backgroui	nd					
* Welch-Satterthwaite Test: Reject H(), Conclude	Site > Back	ground					
Test of E	quality of Va	riances						
Varia	ance of Site	194.5						
Variance of E	Background	28.34						
Numerator DF Denomin	ator DF	F-Tes	st Value	P-Value				
23 22 6.863 0								
Conclusion with Alpha = 0.05								
Two variances are not equal								

		t-Test Site	vs Backgrou	nd Comparis	son for Full [Data Sets wi	thout NDs		
User Sele	ected Options								
	From File	ProUCL Up	oload.wst						
Fi	ull Precision	OFF							
Confidence	e Coefficient	95%							
Substantial Di	fference (S)	0							
Selected Null	Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (F	Form 1)		
Alternative	Hypothesis	Site or AO	C Mean Grea	ter Than the	Background	Mean			
Area of Concern Data: Mag	gnesium AOI S	9							
Background Data: Magnes	iumBG								
	Ra	w Statistics							
	-		Site	Background					
Numb	er of Valid Ob	servations	9	23					
	of Distinct Ob		8	23					
		Minimum	534.5	1550					
		Maximum	7490	8600					
		Mean	4888	4340					
		Median	5020	4360					
		SD	2727	1758					
	S	E of Mean	908.9	366.5					
	0		500.5	500.5					
	te vs Backgro		ample t Test						
	te va Dackyru		ample t-rest						
H0: Mu of Site - Mu of Bacl	karound <= 0								
			t-Test	Critical					
Method		DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)		30	0.675	1.697	0.252				
Welch-Satterthwaite (Unequ		10.7	0.558	1.796	0.232				
Pooled SD 2061.250	ual variance)	10.7	0.556	1.790	0.294				
Conclusion with Alpha = 0.0									
* Student t (Pooled) Test:	and the second secon								
* Welch-Satterthwaite Test	t: Do Not Reje	ct HU, Conc	siude Site <=	Васкдгоипа					
	lest of Eq	uality of Va	riances						
			7405400						
		nce of Site	7435426						
	Variance of Ba	ackground	3089959						
	·				D \ ()				
Numerator DF	Denomina	tor DF		t Value	P-Value				
8	22		2.	406	0.098				
Conclusion with Alpha = 0.05									
* Two variances appear to	be equal								

	t-Test Site	vs Backgrou	und Comparis	son for Full D	Data Sets wi	thout NDs		
User Selected Option	S							
From File	ProUCL Up	oload.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AO	C Mean Less	Than or Equ	al to Backgro	ound Mean (I	Form 1)		
Alternative Hypothesis	Site or AO	C Mean Grea	ater Than the	Background	Mean			
Area of Concern Data: Manganese A	OI 9							
Background Data: ManganeseBG								
	Raw Statistics	5						
		Site	Background					
Number of Valid 0	bservations	48	23					
Number of Distinct (bservations	46	23					
	Minimum	89	163					
	Maximum	2040	1000					
	Mean	593.3	453					
	Median	514	368					
	SD	338.2	229.3					
	SE of Mean	48.82	47.81					
			_ II	L				
Site vs Back	round Two-S	ample t-Tes	it					
H0: Mu of Site - Mu of Background <=	• 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	69	1.799	1.667	0.038				
Welch-Satterthwaite (Unequal Varianc	e) 60.8	2.054	1.67	0.022				
Pooled SD 307.709								
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0		-						
* Welch-Satterthwaite Test: Reject H	, Conclude S	ite > Backgro	ound					
Test of	Equality of Va	ariances						
				.				
	iance of Site	114392						
Variance of	Background	52583						
		1		1				
	nator DF		st Value	P-Value				
	2	2.	.175	0.051				
Conclusion with Alpha = 0.05								
* Two variances appear to be equal								

	t-Test Site	vs Backgrou	und Comparis	on for Full Da	ata Sets witho	ut NDs		
User Selected Options								
From File	ProUCL Up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%						 	
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AO	C Mean Less	Than or Equa	al to Backgrou	und Mean (For	m 1)		
Alternative Hypothesis			iter Than the E			,		
Area of Concern Data: Vanadium A								
Background Data: VanadiumBG								
	Raw Statis	tice						
		Site	Background					
Number of Valid Ot	servations	56	23					
Number of Distinct Of		53	23					
	Minimum	0.66	27.6					
		307	85					
	Maximum							
	Mean	43.82	55.43					
	Median	29.1	54.1					
	SD	48.51	14.98					
	E of Mean	6.483	3.123					
Site vs Bac	kground Tw	o-Sample t-	ſest					
H0: Mu of Site - Mu of Background	<= 0		1					
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	77	-1.122	1.665	0.867				
Welch-Satterthwaite (Unequal Varian	73.6	-1.613	1.666	0.944				
Pooled SD 41.776								
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Do Not R	eject H0, Co	nclude Site <	<= Background	b				
* Welch-Satterthwaite Test: Do No	<mark>t Reject H0</mark>	<mark>, Conclude</mark> S	Site <= Backg	round				
Test o	f Equality of	Variances						
Varia	nce of Site	2354						
Variance of E	ackground	224.3						
		-						
Numerator DF Denom	nator DF	F-Tes	st Value	P-Value				
55 2	22	10	.494	0				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

	t-Test Site	vs Backgrou	nd Comparis	son for Full [Data Sets wi	thout NDs			
User Selected Options	;								
From File	ProUCL up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (I	Form 1)			
Alternative Hypothesis	Site or AOC	C Mean Great	ter Than the	Background	Mean				
				-					
							BEGIN T	ABLE A.10	
Area of Concern Data: Aluminum AOI	13								
Background Data: AluminumBG									
-									
R	aw Statistics	3							
		Site	Background						
Number of Valid Ol	servations	15	23						
Number of Distinct O	servations	14	21						
	Minimum	9260	5940						
	Maximum	29700	16300						
	Mean	17857	11552						
	Median	16450	11500						
	SD	6112	3283						
	SE of Mean	1578	684.5						
Site vs Backgr	ound Two-S	ample t-Tes	t						
		•							
H0: Mu of Site - Mu of Background <=	0								
		t-Test	Critical						
Method	DF	Value	t (0.050)	P-Value					
Pooled (Equal Variance)	36	4.135	1.688	0					
Welch-Satterthwaite (Unequal Variance) 19.3	3.665	1.729	0.001					
Pooled SD 4594.892	1								
Conclusion with Alpha = 0.050									
* Student t (Pooled) Test: Reject H0, C	onclude Site	> Backgrour	nd						
* Welch-Satterthwaite Test: Reject H		-							
	,								
Test of E	quality of Va	ariances							
Varia	ince of Site	37356950							
Variance of E	ackground	10775991							
	-			I					
Numerator DF Denomin	ator DF	F-Tes	t Value	P-Value					
14 22	2	3.4	467	0.009					
Conclusion with Alpha = 0.05				1					
* Two variances are not equal	* Two variances are not equal								

		t-Test Site	vs Backgrou	Ind Comparis	son for Full D	Data Sets wi	thout NDs		
User Se	elected Options								
	From File	ProUCL up	load.wst						
	Full Precision	OFF							
Confiden	ce Coefficient	95%							
Substantial I	Difference (S)	0							
Selected Nu	ull Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (I	Form 1)		
Alternativ	ve Hypothesis	Site or AOC	C Mean Grea	ter Than the	Background	Mean			
Area of Concern Data: C	Cobalt AOI 13								
Background Data: Coba	ItBG								
	Ra	w Statistics	5						
			Site	Background					
Nun	nber of Valid Ob	servations	15	23					
Numbe	er of Distinct Ob	servations	14	23					
		Minimum	0.66	2.5					
		Maximum	30.7	20					
		Mean	17.43	10.17					
		Median	17.1	8.5					
		SD	8.995	5.323					
	S	E of Mean	2.323	1.11					
			1	1					
	Site vs Backgr	ound Two-S	ample t-Tes	t					
H0: Mu of Site - Mu of B	ackground <= ()							
			t-Test	Critical					
Method		DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)		36	3.134	1.688	0.002				
Welch-Satterthwaite (Une	equal Variance)	20.4	2.822	1.725	0.005				
Pooled SD 6.985									
Conclusion with Alpha =	0.050								
* Student t (Pooled) Tes	st: Reject H0, Co	onclude Site	> Backgrour	nd					
* Welch-Satterthwaite	Test: Reject H0	, Conclude	Site > Backg	ground					
	Test of E	quality of Va	riances						
		nce of Site	80.92						
	Variance of B	ackground	28.34						
Numerator DF	Denomina			st Value	P-Value			 	
14	22		2.	855	0.027				
Conclusion with Alpha =									
* Two variances are not	Two variances are not equal								

	t-Test Site	vs Backgrou	nd Comparis	son for Full [Data Sets wit	hout NDs		
User Selected Options	;							
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equa	al to Backgro	ound Mean (F	Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the I	Background	Mean			
				-				
Area of Concern Data: Iron AOI 13								
Background Data: IronBG								
R	aw Statistic	S						
		Site	Background					
Number of Valid Ob	servations	7	23					
Number of Distinct Ot		6	22					
	Minimum	26300	14000					
	Maximum	38500	36200					
	Mean	32733	24643					
	Median	32500	23100					
	SD	4754	6635					
	SD SE of Mean	1797	1383					
		1/9/	1303					
Site vs Backg	round Two G	Complet Tee						
	rounu i wo-a	sample t-res	il					
Lio, My of Site My of Deckground of	0							
H0: Mu of Site - Mu of Background <=	U	A Test	Oritical					
	DE	t-Test	Critical	D.V.I				
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	28	2.985	1.701	0.003				
Welch-Satterthwaite (Unequal Variance	e 13.9	3.567	1.761	0.002				
Pooled SD 6279.391								
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0,								
* Welch-Satterthwaite Test: Reject H0	, Conclude S	Site > Backgr	ound					
Test of E	quality of Va	ariances						
	ince of Site	22600741						
Variance of B	ackground	44020751						
Numerator DF Denomin			t Value	P-Value				
22 6		1.9	948	0.417				
Conclusion with Alpha = 0.05								
* Two variances appear to be equal								

	t-Test Site	vs Backgrou	nd Comparis	on for Full Dat	ta Sets witho	ut NDs		
User Selected Option	IS							
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equa	al to Backgrour	nd Mean (Fori	m 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the E	Background Me	ean			
Area of Concern Data: Magnesiur	n AOI 13							
Background Data: MagnesiumBG								
	Raw Statis	tics						
		Site	Background					
Number of Valid (Observations	7	23					
Number of Distinct (6	23					
	Minimum	425.5	1550					
	Maximum	13100	8600					
	Mean	5867	4340					
	Median	6630	4360					
	SD	4458	1758					
	SE of Mean	1685	366.5					
		1000	500.5					
Site ve Br	ckground Tw	o-Sample t-1	[oet					
		0-Sample (-)	631					
H0: Mu of Site - Mu of Backgroun	1 ~- 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	28	1.368	1.701	0.091				
,								
Welch-Satterthwaite (Unequal Vari Pooled SD 2585.656	an 0.0	0.886	1.895	0.204				
Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not		naluda Cita d	- De elverre un					
	-		-					
* Welch-Satterthwaite Test: Do N	lot Reject H0	, Conclude S	ite <= Backg	round				
Test	of Environment							
	of Equality of	variances						
		10000701	1					
	iance of Site	19869701						
Variance of	Background	3089959						
	ninator DF		t Value	P-Value				
6	22	6	.43	0.001				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

	t-Test Site	vs Backgrou	Ind Comparis	on for Full I	Data Sets wi	thout NDs		
User Selected Option	s							
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equa	al to Backgro	ound Mean (F	Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the I	Background	Mean			
Area of Concern Data: Manganese A	OI 13							
Background Data: ManganeseBG								
	Raw Statistic	S						
		Site						
Number of Valid C	bservations	16						
Number of Distinct C		15	23 23					
	Minimum	9.637	163					
	Maximum	992	1000					
	Mean	525	453					
	Median	563.5	368					
	SD	253.4	229.3					
	SE of Mean	63.36	47.81					
		00.00	47.01					
Site vs Back	round Two-S	Sample t-Tes	et					
H0: Mu of Site - Mu of Background <	= 0							
	.	t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	37	0.925	1.687	0.181				
Welch-Satterthwaite (Unequal Variand		0.908	1.697	0.186				
Pooled SD 239.381	.0 00.0	0.000	1.007	0.100				
Conclusion with Alpha = 0.050								
			- De elsenesse					
* Student t (Pooled) Test: Do Not R * Welch-Satterthwaite Test: Do Not F			-					
Weich-Sattertriwaite Fest. Do Not 1				u				
Toot of	Equality of Va	rianaaa						
Var	ance of Site							
Variance of		64227 52583						
		52505						
Numerator DF Denom	nator DF	F-Too	t Value	P-Value				
	22		221	0.653				
Conclusion with Alpha = 0.05								
* Two variances appear to be equal								

	Wilcoxon-M	lann-Whitr	ney Site vs Back	ground Con	nparison Te	st for Data	Sets with No	on-Detects	
User Selected Options									
From File	ProUCL up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	C Mean/Mea	dian Less Than d	or Equal to B	ackground	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean/Mea	dian Greater Tha	in Backgroui	nd Mean/Me	edian			
Area of Concern Data: Thallium AO	13								
Background Data: ThalliumBG				_					
F	Raw Statisti	cs							
		Site	Background						
Number of V	/alid Data	15	23						
Number of Non-De	etect Data	7	22						
Number of De	etect Data	8	1						
Minimum N	on-Detect	0.11	2.1						
Maximum N	on-Detect	1.2	3.1						
Percent No	on detects	46.67%	95.65%						
Minimum	Detected	0.17	0.82						
Maximum	Detected	3.2	0.82						
Mean of Dete	cted Data	1.541	0.82						
Median of Dete	cted Data	1.79	0.82						
SD of Dete	cted Data	1.131	N/A						
			i i						
Wilcoxon-Mann-W	-	-							
All observations <= 3	.1 (Max DL) are ranke	d the same						
Wilcoxon-Ma	nn-Whitney	' (WMW) T	est						
H0: Mean/Median of Site or AOC <	= Mean/Me	lian of Bac	kground						
	Sum W-Stat								
	Test U-Stat								
WMW Critical V									
	P-Value	0.371							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgro	und							
P-Value >= alpha (0.05)									

	t-Test Site	vs Backgrou	Ind Comparis	on for Full Da	ita Sets witi			
User Selected Options			· · · · ·					
From File	ProUCL upl	oad.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equa	al to Backgrou	nd Mean (F	orm 1)		
Alternative Hypothesis	Site or AOC	: Mean Grea	ter Than the I	Background M	lean			
Area of Concern Data: Vanadi		3		_				
Background Data: VanadiumE	BG							
F	Raw Statistic	1	1					
		Site	Background				 	
Number of Valid Ob		15	23					
Number of Distinct Ob		14	23					
	Minimum	32.2	27.6					
	Maximum	103	85					
	Mean	63.18	55.43					
	Median	63.8	54.1					
	SD 27.12 14.98							
S	SD E of Mean	27.12 7.002	14.98 3.123					
	E of Mean	7.002	3.123					
S Site vs Backg	E of Mean	7.002	3.123					
Site vs Backg	E of Mean round Two-	7.002	3.123					
	E of Mean round Two-	7.002 Sample t-Te	3.123 est					
Site vs Backg H0: Mu of Site - Mu of Background <	E of Mean round Two- = 0	7.002 Sample t-Te t-Test	3.123	P. Value				
Site vs Backg H0: Mu of Site - Mu of Background < Method	E of Mean round Two- = 0 DF	7.002 Sample t-Te t-Test Value	3.123 est Critical t (0.050)	P-Value				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance)	E of Mean round Two- = 0 DF 36	7.002 Sample t-Te t-Test Value 1.136	3.123 est Critical t (0.050) 1.688	0.132				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian	E of Mean round Two- = 0 DF 36	7.002 Sample t-Te t-Test Value	3.123 est Critical t (0.050)					
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569	E of Mean round Two- = 0 DF 36	7.002 Sample t-Te t-Test Value 1.136	3.123 est Critical t (0.050) 1.688	0.132				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050	E of Mean round Two- = 0 DF 36 19.6	7.002 Sample t-Te t-Test Value 1.136 1.012	3.123 est Critical t (0.050) 1.688 1.725	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re	E of Mean round Two- = 0 DF 36 19.6	7.002 Sample t-Te t-Test Value 1.136 1.012	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050	E of Mean round Two- = 0 DF 36 19.6	7.002 Sample t-Te t-Test Value 1.136 1.012	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re	E of Mean round Two- = 0 DF 36 19.6	7.002 Sample t-Te t-Test Value 1.136 1.012	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not	E of Mean round Two- E 0 DF 36 19.6 iject H0, Cor Reject H0,	7.002 Sample t-Test t-Test Value 1.136 1.012 Conclude Site <	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not	E of Mean round Two- = 0 DF 36 19.6	7.002 Sample t-Test t-Test Value 1.136 1.012 Conclude Site <	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E	E of Mean round Two- E 0 DF 36 19.6 iject H0, Cor Reject H0,	7.002 Sample t-Test t-Test Value 1.136 1.012 Conclude Site <	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E	E of Mean round Two- = 0 DF 36 19.6 iject H0, Cor Reject H0, Equality of V nce of Site	7.002 Sample t-Te t-Test Value 1.136 1.012 nclude Site < Conclude S	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E	E of Mean round Two- = 0 DF 36 19.6 iject H0, Cor Reject H0, Equality of V nce of Site	7.002 Sample t-Te t-Test Value 1.136 1.012 Conclude Site < Conclude S /ariances 735.5	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E Varian Variance of Ba	E of Mean round Two- = 0 DF 36 19.6 iject H0, Cor Reject H0, Equality of V nce of Site	7.002 Sample t-Te t-Test Value 1.136 1.012 Conclude Site < Conclude S 735.5 224.3	3.123 est Critical t (0.050) 1.688 1.725 = Background	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E Varian Variance of Ba Numerator DF Denomin	E of Mean round Two- Two- Two- Two- Two- Two- Two- Two-	7.002 Sample t-Test Value 1.136 1.012 Anclude Site < Conclude S /ariances /ariances 735.5 224.3 F-Tes	3.123	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Re * Welch-Satterthwaite	E of Mean round Two- Two- Two- Two- Two- Two- Two- Two-	7.002 Sample t-Test Value 1.136 1.012 Anclude Site < Conclude S /ariances /ariances 735.5 224.3 F-Tes	3.123 est Critical t (0.050) 1.688 1.725 = Background ite <= Background ite <= Background ite st Value	0.132 0.162				
Site vs Backg H0: Mu of Site - Mu of Background < Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Varian Pooled SD 20.569 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Re * Welch-Satterthwaite Test: Do Not Test of E Varian Variance of Ba Numerator DF Denomin	E of Mean round Two- Two- Two- Two- Two- Two- Two- Two-	7.002 Sample t-Test Value 1.136 1.012 Anclude Site < Conclude S /ariances /ariances 735.5 224.3 F-Tes	3.123 est Critical t (0.050) 1.688 1.725 = Background ite <= Background ite <= Background ite st Value	0.132 0.162				

	t-Test Site	vs Backgrou	Ind Comparis	son for Full [Data Sets wit	thout NDs			
User Selected Options	6								
From File	ProUCL up	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equ	al to Backgro	ound Mean (F	Form 1)			
Alternative Hypothesis	Site or AOC	Mean Grea	ter Than the	Background	Mean	-			
				0					
							BEGIN T	ABLE A.11	
Area of Concern Data: Aluminum We	stern 53								
Background Data: AluminumBG									
Г Г	aw Statistics	3							
		Site	1						
Number of Valid Ol	servations	5	Background 23						
Number of Distinct O		5	23						
	Minimum	11900	5940						
	Maximum	26500	16300						
	Mean	16560	11552						
		14900	11552						
	Median								
	SD	5729	3283						
	SE of Mean	2562	684.5						
Site vs Backg	round Two-S	Sample t-Tes	st						
H0: Mu of Site - Mu of Background <=	= 0	1	1	T					
		t-Test	Critical						
Method	DF	Value	t (0.050)	P-Value					
Pooled (Equal Variance)	26	2.696	1.706	0.006					
Welch-Satterthwaite (Unequal Varianc	e 4.6	1.888	2.015	0.061					
Pooled SD 3763.917									
Conclusion with Alpha = 0.050									
* Student t (Pooled) Test: Reject H0									
* Welch-Satterthwaite Test: Do Not R	eject H0, Co	nclude Site <	<= Backgroun	d					
Test of E	quality of Va	ariances							
Varia	ance of Site	32818000							
Variance of E	Background	10775991							
		1	1	I					
Numerator DF Denomir	nator DF	F-Tes	st Value	P-Value					
4 2	2	3.	045	0.077					
Conclusion with Alpha = 0.05		1		1					
* Two variances appear to be equal									

	t-Test Site	vs Backgrou	Ind Comparis	on for Full Da	ata Sets witho	ut NDs			
User Selected Options			•	-	-				
From File	ProUCL up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis		C Mean Less	Than or Four	al to Backgrou	nd Mean (For	m 1)			
Alternative Hypothesis			•	Background M	•				
Area of Concern Data: Manganese	Western 53								
Background Data: ManganeseBG	Western 55								
Background Data. ManganesebG									
	Raw Statist	tion							
	naw Statis	Site	Background						
Number of Valid Ob	convotions	Site 5	23						
Number of Distinct Ob		5	23						
		5 128	163						
	Minimum Maximum	128	163						
	Mean	604.8	453						
	Median	206	368						
	SD	612.9	229.3						
	E of Mean	274.1	47.81						
Site vs Back	ground Two	o-Sample t-1	est						
H0: Mu of Site - Mu of Background	<= 0	1							
		t-Test	Critical						
Method	DF	Value	t (0.050)	P-Value					
Pooled (Equal Variance)	26	0.962	1.706	0.172					
Welch-Satterthwaite (Unequal Variar	4.2	0.546	2.132	0.306					
Pooled SD 319.809									
Conclusion with Alpha = 0.050									
* Student t (Pooled) Test: Do Not Re	eject H0, Co	nclude Site <	<= Background	d					
* Welch-Satterthwaite Test: Do No	t Reject H0,	Conclude S	<mark>lite <= Backg</mark>	round					
Test of	f Equality of	Variances							
	nce of Site	375601							
Variance of B	ackground	52583							
			·						
Numerator DF Denomi	nator DF	F-Tes	st Value	P-Value					1
4 2	22	7.	143	0.002					1
Conclusion with Alpha = 0.05		<u>u</u>							1
* Two variances are not equal									1
									+
					1		1	1	

M	/ilcoxon-M	lann-Whitn	ey Site vs Ba	ckground Co	mparison Te	est for Data	Sets with No	n-Detects	
User Selected Options									
From File P	roUCL upl	oad.wst							
Full Precision C	FF								
Confidence Coefficient 9	5%								
Substantial Difference (S) 0									
Selected Null Hypothesis S	ite or AOC	Mean/Med	lian Less Thar	or Equal to	Background	Mean/Media	n (Form 1)		
Alternative Hypothesis S	ite or AOC	Mean/Med	lian Greater T	han Backgro	und Mean/M	edian			
Area of Concern Data: Thallium West	ern 53								
Background Data: ThalliumBG									
Ra	w Statistic	s							
		Site	Background						
Number of Va	lid Data	10	23						
Number of Non-Dete	ect Data	5	22						
Number of Dete	ect Data	5	1						
Minimum Nor	n-Detect	0.85	2.1						
Maximum Nor	n-Detect	0.93	3.1						
Percent Non	detects	50.00%	95.65%						
Minimum D	etected	1.88	0.82						
Maximum D	etected	3.41	0.82						
Mean of Detect	ed Data	2.428	0.82						
Median of Detect	ed Data	2.32	0.82						
SD of Detect	ed Data	0.586	N/A						
		I		I					
Wilcoxon-Mann-Whi	tney Site v	s Backgrou	und Test						
All observations <= 3.1	(Max DL)	are ranked	d the same						
Wilcoxon-Man	n-Whitney	(WMW) Te	est						
H0: Mean/Median of Site or AOC <=	Mean/Med	lian of Back	rground						
Site Rank Su	um W-Stat	181.5							
WMW T	est U-Stat	0.431							
WMW Critical Val									
	P-Value	0.333							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site <=	= Backgrou	und							
P-Value >= alpha (0.05)									

	t-Test Site	vs Backgrou	und Comparis	son for Full D	oata Sets with	out NDs		
User Selected Options								
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis		Mean Less	Than or Equ	al to Backoro	und Mean (Fo	m 1)		
Alternative Hypothesis			iter Than the	-		,		
Area of Concern Data: Vanadium W	estern 53							
Background Data: VanadiumBG								
F	Raw Statisti	CS						
· · · · · · · · · · · · · · · · · · ·		Site	Background					
Number of Valid Ob	servations	10	23					
Number of Distinct Ob	10	23						
	Minimum	45.1	27.6					
		45.1 129						
	Maximum		85					
	Mean	70.37	55.43					
	Median	69.7	54.1					
	SD	23.32	14.98					
S	E of Mean	7.374	3.123					
Site vs Backg	round Two-	Sample t-Te	est					
H0: Mu of Site - Mu of Background <	<= 0	1						
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	31	2.216	1.696	0.017				
Welch-Satterthwaite (Unequal Varian	12.4	1.866	1.782	0.043				
Pooled SD 17.805								
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H	0, Conclude	<mark>e Site > Bac</mark> l	kground					
* Welch-Satterthwaite Test: Reject H	10, Conclud	e Site > Bacl	kground					
Test of I	Equality of \	/ariances						
	-							
Varia	nce of Site	543.7						
Variance of Background 224.3								
· · · · · · · · · · · · · · · · · · ·	U							
Numerator DF Denomi	nator DF	F-Too	st Value	P-Value				
Conclusion with Alpha = 0.05		2.	767	0.007				
* Two variances appear to be equal								
r wo variances appear to be equal								

User Selected O		vs Backgro	und Comparis	on for Full D	eta Sets withou	t NDs		
	n File ProUCL up	load.wst						
Full Prec								
Confidence Coeffi								
Substantial Differenc								
Selected Null Hypoth	hesis Site or AO	C Mean Less	Than or Equa	al to Backgro	und Mean (Forn	n 1)		
Alternative Hypoth	hesis Site or AOC	C Mean Grea	ater Than the I	Background N	Mean			
	I							
						BEG	IN TABLE A.12	
Area of Concern Data: Alumi		nkin		-				
Background Data: Aluminum	BG							
	Raw Statisti	<u></u>						
	raw Statisti	Site	Background					
Number of V	alid Observations							
	inct Observations	66 64	23 21					
	Minimum	2530	5940					
	Maximum	37428	16300					
	Mean	15639	11552					
	Median	15248	11500					
	SD	6068	3283					
	SE of Mean	746.9	684.5					
	Background Two	-Sample t-T	est					
H0: Mu of Site - Mu of Backg	round <= 0		1					
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	87	3.069	1.663	0.001				
Velch-Satterthwaite (Unequal Pooled SD 5498.519	Varian 71.3	4.034	1.007	0				
Conclusion with Alpha = 0.050)							
* Student t (Pooled) Test: Re		Site > Backo	iround					
* Welch-Satterthwaite Test:	-	-						
Т	est of Equality of	/ariances						
	Variance of Site	36819403						
Varian								
	Denominator DF		st Value	P-Value				
65	22	3	.417	0.002				
Conclusion with Alpha = 0.05	-							
* Two variances are not equal								
* Two variances are not equal	I							

	Wilcoxon-M	lann-Whitn	ey Site vs Ba	ckground Co	mparison To	est for Data	Sets with No	n-Detects	
User Selected Options									
From File	ProUCL upl	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean/Mec	lian Less Thar	or Equal to	Background	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	Mean/Mec	lian Greater T	nan Backgro	und Mean/M	edian			
Area of Concern Data: Antimony Spa	aulding Ran	kin							
Background Data: AntimonyBG									
R	aw Statistic	s							
		Site	Background						
Number of V	/alid Data	54	23						
Number of Non-De	etect Data	27	10						
Number of De	etect Data	27	13						
Minimum No	on-Detect	3.25	5						
Maximum No	on-Detect	14.7	7.4						
Percent No	on detects	50.00%	43.48%						
Minimum	Detected	0.454	0.36						
Maximum	Detected	18.5	2.3						
Mean of Deter	cted Data	4.947	0.808						
Median of Deter	cted Data	1.47	0.7						
SD of Deter	cted Data	5.062	0.502						
		1							
Wilcoxon-Mann-Wi	hitney Site v	s Backgrou	und Test						
All observations <= 14	I.7 (Max DL) are ranke	d the same						
Wilcoxon-Ma	nn-Whitney	(WMW) Te	est						
H0: Mean/Median of Site or AOC <=	= Mean/Med	ian of Bacl	kground						
Site Rank S	Sum W-Stat	2129							
WMW	Test U-Stat	0.25							
WMW Critical Va	alue (0.050)	1.645							
	P-Value	0.401							
		·							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgrou	und							
P-Value >= alpha (0.05)									

W	/ilcoxon-N	lann-Whitn	ey Site vs Bac	kground Co	mparison To	est for Data	Sets with No	on-Detects	
User Selected Options									
From File P	roUCL upl	oad.wst							
Full Precision O	FF								
Confidence Coefficient 95	5%								
Substantial Difference (S) 0									
Selected Null Hypothesis Si	ite or AOC	Mean/Mec	lian Less Than	or Equal to	Background	Mean/Medi	an (Form 1)		
Alternative Hypothesis S	ite or AOC	Mean/Mec	lian Greater Th	an Backgrou	und Mean/M	edian			
Area of Concern Data: Arsenic Spauld	<mark>ling Ranki</mark>	n							
Background Data: ArsenicBG									
Ra	w Statistic	s							
		Site	Background						
Number of Va	lid Data	64	23						
Number of Non-Dete	ect Data	8	0						
Number of Dete	ect Data	56	23						
Minimum Non	-Detect	0.25	N/A						
Maximum Non	-Detect	2.1	N/A						
Percent Non	detects	12.50%	0.00%						
Minimum D	etected	0.2	2.1						
Maximum D	etected	131	8.2						
Mean of Detector	ed Data	7.35	4.683						
Median of Detecto	ed Data	2.225	4.6						
SD of Detecto	ed Data	19.34	1.555						
Wilcoxon-Mann-Whit	ney Site v	s Backgrou	und Test						
Wilcoxon-Man	n-Whitney	(WMW) Te	est						
H0: Mean/Median of Site or AOC <= N	Mean/Med	lian of Bacl	ground						
Site Rank Su	ım W-Stat	2414							
WMW T	est U-Stat	-3.874							
WMW Critical Value	ue (0.050)	1.645							
	P-Value	1							
		1							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site <=	- Backaro	und							
P-Value >= alpha (0.05)									

	t-Test Site	vs Backgrou	Ind Comparis	son for Full I	Data Sets wi	thout NDs		
User Selected Options								
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (I	Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the	Background	Mean			
Area of Concern Data: Cobalt Spaul	ding Rankir	ו						
Background Data: CobaltBG								
	Raw Statistic		Devi					
Number of Valid Ob	conveticas	Site 38	Background	I			 	
Number of Valid Ob Number of Distinct Ob		38	23 23					
	Minimum	38 11.96	2.5					
	Maximum	426.5	2.5					
	Maximum	426.5	10.17					
	Median	49.32	8.5					
	SD	49.32 82.68	5.323				 	
Q	E of Mean	13.41	1.11				 	
		10.41	1.11					
Site vs Backg	round Two-	Sample t-Te	est					
H0: Mu of Site - Mu of Background •	<= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	59	3.984	1.671	0				
Welch-Satterthwaite (Unequal Variar	37.5	5.127	1.686	0				
Pooled SD 65.558	1	1	1	1				
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0	, Conclude S	Site > Backg	round					
* Welch-Satterthwaite Test: Reject	H0, Conclu	de Site > Ba	ackground		·			
Test of I	Equality of V	ariances/						
	nce of Site	6837 28.34						
Variance of B								
		1		I				
	nator DF		st Value	P-Value				
	2	24	1.26	0				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

	t-Test Site	vs Backgrou	nd Comparie	son for Full I	Data Sets with			
User Selected Options						541 HD3		
From File	ProUCL up	load wst						
Full Precision	OFF	1080.1151						
Confidence Coefficient	95%							
Substantial Difference (S)	95 %							
Selected Null Hypothesis		Maanlaaa	Thop or Fau	al to Dookar	ound Mean (Fo	(ma 1)		
						orm I)	 	
Alternative Hypothesis	Site or AOC	Mean Grea	ter Than the	Background	Mean			
					1			
Area of Concern Data: Iron Spauld	ing Rankin							
Background Data: IronBG								
	n n i i i						 	
	Raw Statisti							
		Site	Background	I				
Number of Valid O	30	23						
Number of Distinct O		30	22					
	Minimum	26308	14000					
	Maximum	140536	36200					
	Mean	56729	24643					
	Median	54545	23100					
	SD	22749	6635					
	SE of Mean	4153	1383					
		1		I				
Site vs Back	ground Two-	Sample t-Te	st					
H0: Mu of Site - Mu of Background	<= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	51	6.541	1.675	0				
Welch-Satterthwaite (Unequal Varia	n 35.2	7.329	1.69	0				
Pooled SD 17699.597		1	1	1				
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H	0, Conclude	Site > Backar	ound					
* Welch-Satterthwaite Test: Reject		-						
Test of	Equality of \	/ariances						
\/ari	ance of Site	517500000						
Variance of I		44020751						
variance of t								
Numerator DF Denom	P-Value			 				
	inator DF		t Value					
	22	11.	.757	0				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

[t-Test Site	vs Backgrou	und Comparis	on for Full Dat	a Sets withou	ıt NDs		
User Selected Opt	ions							
From F	ile ProUCL up	load.wst						
Full Precisi	on OFF							
Confidence Coefficie	ent 95%							
Substantial Difference (S) 0							
Selected Null Hypothes		C Mean Less	Than or Equa	al to Backgroun	d Mean (Forr	n 1)		
Alternative Hypothes				Background Me	-	,		
Area of Concern Data: Magnesi	um Spaulding F	ankin						
Background Data: MagnesiumE								
Duckground Data. Magnosiani								
	Raw Statis	tics						
		Site	Background					
Number of Vali	1 Observations	30	23					
		30						
Number of Disting	Minimum	30 1278	23 1550					
	Maximum	14900	8600					
	Mean	4600	4340					
	Median	4291	4360					
	SD	3047	1758					
	SE of Mean	556.4	366.5					
Site vs	Background Tw	o-Sample t-	Test					
H0: Mu of Site - Mu of Backgrou	ınd <= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	51	0.364	1.675	0.359				
Welch-Satterthwaite (Unequal V	arian 47.8	0.389	1.677	0.349				
Pooled SD 2571.611	I							
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Do N	ot Reject H0, Co	nclude Site ·	<= Background	d				
* Welch-Satterthwaite Test: Do	-		-					
Te	est of Equality of	f Variances						
1	ariance of Site	9285972						
Variance								
vailance	o. Duongi ouriu	3089959						
Numerator DF Der	ominator DF	Гт-	st Value	P-Value				
29	22	3	.005	0.01				
Conclusion with Alpha = 0.05								
* Two variances are not equal								

ProUCL up	-										
	ProUCL upload.wst										
95%											
0											
Site or AOC	Mean Less	Than or Equa	al to Backgro	ound Mean (Fo	orm 1)						
		-	-	-	/						
			J								
Spaulding R	ankin										
Raw Statistic	cs										
	i.	Background									
servations											
	-										
-											
-											
E of Mean	94.15	47.81									
	Somplo + T	ot									
	Sample I- I	551									
- 0											
~ = 0	t Toot	Critical									
			DValue								
86	6.345	1.663	U								
	-										
H0, Conclu	de Site > Ba	ackground									
Equality of V	ariances/										
	T	1									
	585007										
ackground	52583										
	F-Tes	st Value	P-Value								
2	11	.125	0								
	Site or AOC Spaulding R Raw Statistic servations servations Minimum Median Median SD E of Mean round Two- c= 0 DF 87 87 86	Site or AOC Mean Great Spaulding Rankin Raw Statistics Raw Statistics Site Servations 66 Servations 64 Minimum 222 Maximum 3248 Mean 1123 Median 901 SD 764.9 E of Mean 94.15 Foround Two-Sample t-Te Servations Conclude Site Site Site Site Site Site Site Site	Site or AOC Mean Greater Than the I Spaulding Rankin Raw Statistics Site Background servations 66 23 servations 64 23 Minimum 222 163 Maximum 3248 1000 Mean 1123 453 Median 901 368 SD 764.9 229.3 E of Mean 94.15 47.81 Fround Two-Sample t-Test C= 0 L -Test Critical DF Value t (0.050) 87 4.123 1.663 86 6.345 1.663 86 6.345 1.663 86 6.345 1.663 87 4.123 1.663 86 6.345 1.663 86 6.345 1.663 , Conclude Site > Background H0, Conclude Site > Background H0, Conclude Site > Background Curriances nce of Site 585007 ackground 52583	Site or AOC Mean Greater Than the Background Spaulding Rankin Site Background Site Background servations 66 23 Minimum 222 163 Image: Colspan="2">Colspan="2"C	Site or AOC Mean Greater Than the Background Mean $ \begin{array}{c c c c c c c c } Spaulding Rankin Spaulding Rankin $	Spaulding Rankin Image: Spaulding Rankin	Site or AOC Mean Greater Than the Background Mean				

	Wilcoxon-M	lann-Whitn	ey Site vs Ba	ckground Co	mparison Te	est for Data	Sets with No	on-Detects	
User Selected Options									
From File	ProUCL upl	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean/Mec	lian Less Thar	n or Equal to	Background	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	Mean/Mec	lian Greater T	han Backgro	und Mean/M	edian			
Area of Concern Data: Thallium Spa	<mark>ulding Rank</mark>	tin							
Background Data: ThalliumBG									
R	aw Statistic	s							
		Site	Background						
Number of V	/alid Data	70	23						
Number of Missir	ng Values	1	0						
Number of Non-De	Number of Non-Detect Data 3								
Number of De	etect Data	31	1						
Minimum No	on-Detect	0.22	2.1						
Maximum No	on-Detect	14.03	3.1						
Percent No	n detects	55.71%	95.65%						
Minimum	Detected	0.25	0.82						
Maximum	Detected	75.72	0.82						
Mean of Deter	cted Data	14.18	0.82						
Median of Detec	cted Data	4.89	0.82						
SD of Detec	cted Data	19.26	N/A						
Wilcoxon-Mann-Wi	-	-							
All observations <= 14	.03 (Max DL	.) are ranke	ed the same						
Wilcoxon-Ma	nn-Whitney	(WMW) Te	est						
H0: Mean/Median of Site or AOC <=	= Mean/Med	ian of Bacl	ground						
	Sum W-Stat								
	Test U-Stat								
WMW Critical Va									
	P-Value	0.238							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgrou	und							
P-Value >= alpha (0.05)									

	t-Test Site	vs Backgrou	und Comparis	son for Full [Data Sets wi	thout NDs		
User Selected Options	5							
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (Form 1)		
Alternative Hypothesis			iter Than the	-	-			
				0				
Area of Concern Data: Vanadium S	paulding Ra	nkin						
Background Data: VanadiumBG								
					<mark> </mark>			
	Raw Statisti	cs						
		Site	Background					
Number of Valid Ol	oservations	71	23					
Number of Distinct Ol		70	23					
	Minimum	24	27.6					
	Maximum	195	85					
	Mean	94.85	55.43					
	Median	90.9	54.1					
	SD	36.55	14.98					
	SE of Mean	4.338	3.123					
			0.120					
Site vs Back	around Two-	Sample t-Te	est					
	ground rite	Campio e re						[
H0: Mu of Site - Mu of Background	<= 0							
		t-Test	Critical					[
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	92	5.023	1.662	0				
Welch-Satterthwaite (Unequal Variat		7.375	1.663	0				
Pooled SD 32.715	0,	7.070	1.000	Ū				
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H	Conclude	Site > Backa	round					
* Welch-Satterthwaite Test: Reject		-						
weich-Sattertriwaite Test: Rejec	t HU, CONCIL		ackground					
Test of	Equality of \	/ariances						
		anances						
Varia	ance of Site	1336						
Variance of E		224.3						
	backyrounu	224.5						
Numerator DF Denom	inator DF		at Value	P-Value				<u> </u>
	ominator DF F-Test Value P-Value 22 5.958 0							
Conclusion with Alpha = 0.05		5.	900	U				
* Two variances are not equal								<u> </u>
I WU VAHAHCES ALE HUL EQUAL								<u> </u>
1								I.

	t-Test Site	vs Backgrou	und Comparis	on for Full Dat	ta Sets without N	NDs	
User Selected Options							
From File	ProUCL up	load.wst					
Full Precision	OFF						
Confidence Coefficient	95%						
Substantial Difference (S)	0						
Selected Null Hypothesis		C Mean Less	Than or Equa	al to Backgrour	nd Mean (Form 1)	
Alternative Hypothesis			•	Background Me	•	/	
				<u> </u>			
Area of Concern Data: Zinc Spaulding	Rankin						
Background Data: ZincBG							
	Raw Statisti	cs					
•		Site	Background				
Number of Valid Ob	servations	30	23				
Number of Distinct Ob		30	23				
	39.1						
	Minimum Maximum	42.17 13600	283				
	Mean	537.2	113.2				
	Median	78.25	90.7				
	SD	2467	90.7 64.03				
	E of Mean	450.5	13.35				
5	E of Mean	450.5	13.35				
Olta va Daalu		0					
Site vs Backg	round Two	-Sample t-T	est				
	-	-Sample t-Te	est				
	-						
H0: Mu of Site - Mu of Background <=	0	t-Test	Critical	DV/char			
10: Mu of Site - Mu of Background <=	0 DF	t-Test Value	Critical t (0.050)	P-Value			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance)	0 DF 51	t-Test Value 0.822	Critical t (0.050) 1.675	0.207			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance	0 DF 51	t-Test Value	Critical t (0.050)				
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137	0 DF 51	t-Test Value 0.822	Critical t (0.050) 1.675	0.207			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050	0 DF 51) 29.1	t-Test Value 0.822 0.941	Critical t (0.050) 1.675 1.699	0.207			
HO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject	0 DF 51) 29.1	t-Test Value 0.822 0.941 ude Site <=	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
HO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject	0 DF 51) 29.1	t-Test Value 0.822 0.941 ude Site <=	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050	0 DF 51) 29.1	t-Test Value 0.822 0.941 ude Site <=	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R	0 DF 51) 29.1 ct H0, Concl eject H0, Co	t-Test Value 0.822 0.941 ude Site <=	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <=	0 DF 51) 29.1	t-Test Value 0.822 0.941 ude Site <=	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
IO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I	0 DF 51) 29.1 et H0, Concl eject H0, Concl eject H0, Concl	t-Test Value 0.822 0.941 ude Site <= onclude Site	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I Varia	0 DF 51) 29.1 ct H0, Concl eject H0, Co Equality of V	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
IO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I	0 DF 51) 29.1 ct H0, Concl eject H0, Co Equality of V	t-Test Value 0.822 0.941 ude Site <= onclude Site	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I Varia	0 DF 51) 29.1 ct H0, Concl eject H0, Co Equality of V	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
IO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I Varia	0 DF 51 29.1 et H0, Concl eject H0, Concl eject H0, Concl eject H0, Concl eject H0, Concl eject H0, Concl eject H0, Concl	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances 6088451 4100	Critical t (0.050) 1.675 1.699 Background	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I Varia Variance of B	0 DF 51 29.1 ct H0, Concl eject H0, Co Equality of V nce of Site ackground	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances 6088451 4100	Critical t (0.050) 1.675 1.699 Background e <= Backgrou	0.207 0.177			
IO: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Velch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject Test of Varia Variance of B Numerator DF Denomina 29	0 DF 51 29.1 ct H0, Concl eject H0, Co Equality of V nce of Site ackground	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances 6088451 4100	Critical t (0.050) 1.675 1.699 Background e <= Backgrou	0.207 0.177			
H0: Mu of Site - Mu of Background <= Method Pooled (Equal Variance) Welch-Satterthwaite (Unequal Variance Pooled SD 1861.137 Conclusion with Alpha = 0.050 * Student t (Pooled) Test: Do Not Reject * Welch-Satterthwaite Test: Do Not R Test of I Varia Varia Variance of B Numerator DF Denomina	0 DF 51 29.1 ct H0, Concl eject H0, Co Equality of V nce of Site ackground	t-Test Value 0.822 0.941 ude Site <= onclude Site /ariances 6088451 4100	Critical t (0.050) 1.675 1.699 Background e <= Backgrou	0.207 0.177			

	t-Test Site	vs Backgrou	nd Comparis	on for Full D	ata Sets wit	hout NDs			
User Selected Options									
From File	ProUCL up	oad.wst					BEGIN	TABLE	A.13
Full Precision	OFF								F
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equa	al to Backgro	und Mean (F	orm 1)			
Alternative Hypothesis	Site or AOC	Mean Great	ter Than the I	Background I	Mean				
Area of Concern Data: Alumir	num South	ern AU							
Background Data: Aluminum	3G								
	Raw Statistic	s							
		Site	Background						
Number of Valid Ob	servations	74	23						
Number of Distinct Ob	servations	42	21						
	Minimum	3740	5940						
	Maximum	56138	16300						
	Mean	18932	11552						
	Median	17653	11500						
	SD	9269	3283						
S	E of Mean	1078	684.5						
Site vs Back	ground Two-	Sample t-Te	st						
	-	•							
H0: Mu of Site - Mu of Background •	<= 0								
		t-Test	Critical						
Method	DF	Value	t (0.050)	P-Value					
Pooled (Equal Variance)	95	3.735	1.661	0					
Welch-Satterthwaite (Unequal Varian	93.4	5.781	1.661	0					
Pooled SD 8277.363									
Conclusion with Alpha = 0.050									
* Student t (Pooled) Test: Reject H0	, Conclude S	Site > Backgr	ound						
* Welch-Satterthwaite Test: Reject	H0, Conclu	de Site > Ba	ckground						
Test of	Equality of V	ariances							
Varia	nce of Site	85915448							
Variance of B	ackground	10775991							
Numerator DF Denomi	Denominator DF F-Test Value P-Value								
73 2	22	7.9	973	0					
Conclusion with Alpha = 0.05		I		I					
* Two variances are not equal									

[\\	Vilcoxon-M	lann-Whitn	iey Site vs Ba	ckground Co	mparison Te	est for Data	Sets with No	on-Detects	
User Selected Options									
From File F	ProUCL upl	oad.wst							
Full Precision	DFF								
Confidence Coefficient	95%								
Substantial Difference (S))								
Selected Null Hypothesis	Site or AOC	Mean/Mea	dian Less Tha	n or Equal to	Background	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	Mean/Mea	dian Greater T	han Backgro	und Mean/M	edian			
Area of Concern Data: Antimor	ny Southe	ern AU							
Background Data: AntimonyBC	-								
Ra	w Statistic	s							
		Site	Backgroun	ł					
Number of Va	alid Data	77	23						
Number of Non-Det	ect Data	36	10						
Number of Det	ect Data	41	13						
Minimum No	n-Detect	0.24	5						
Maximum No	n-Detect	16.88	7.4						
Percent Nor	detects	46.75%	43.48%						
Minimum I	Detected	0.367	0.36						
Maximum I	Detected	19.1	2.3						
Mean of Detec	ted Data	2.781	0.808						
Median of Detec	ted Data	0.76	0.7						
SD of Detec	ted Data	4.803	0.502						
Wilcoxon-Mann-Wh	itney Site v	s Backgro	und Test						
All observations <= 16.	88 (Max Dl	.) are rank	ed the same						
Wilcoxon-Mar	n-Whitney	(WMW) T	est						
H0: Mean/Median of Site or AOC <=	Mean/Med	ian of Bacl	kground						
Site Rank S	um W-Stat	3900							
WMW	Fest U-Stat	0.0901							
WMW Critical Va	lue (0.050)	1.645							
	P-Value	0.464							
			I	1					
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site <	= Backgrou	und							
P-Value >= alpha (0.05)									

	Wilcoxon-M	lann-Whitr	ney Site vs Backg	round Comparis	on Test for Data	a Sets with No	n-Detects	
User Selected Options	i							
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	Mean/Me	dian Less Than or	Equal to Backg	round Mean/Med	lian (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean/Me	dian Greater Thar	n Background Me	ean/Median			
Area of Concern Data: Arseni	ic Souther	n AU						
Background Data: ArsenicBG	ì							
I	Raw Statistic	cs						
		Site	Background					
Number of	Valid Data	74	23					
Number of Non-D	etect Data	3	0					
Number of D	etect Data	71	23					
Minimum N	Ion-Detect	0.1	N/A					
Maximum N	Ion-Detect	2.54	N/A					
Percent N	on detects	4.05%	0.00%					
Minimum	n Detected	0.64	2.1					
Maximum	n Detected	17.1	8.2					
Mean of Dete	ected Data	5.093	4.683					
Median of Dete	ected Data	4.6	4.6					
SD of Dete	ected Data	3.493	1.555					
		1						
Wilcoxon-Mann-W	hitney Site \	/s Backgro	und Test					
Wilcoxon-Ma	ann-Whitney	' (WMW) T	est					
H0: Mean/Median of Site or AOC <	= Mean/Med	lian of Bac	kground					
	Sum W-Stat							
	/ Test U-Stat							
WMW Critical V								
	P-Value	0.69						
Conclusion with Alpha = 0.05								
Do Not Reject H0, Conclude Site	<= Backgro	und						
P-Value >= alpha (0.05)								

	t-Test Site	vs Backarou	Ind Comparis	ion for Full F)ata Sets wit	hout NDs		
User Selected Option								
From File		load wst						
Full Precision								
Confidence Coefficient	-							
Substantial Difference (S)								
Selected Null Hypothesis		Mean Less	Than or Equa	al to Backaro	und Mean (F	orm 1)		
Alternative Hypothesis			ter Than the l	-	-			
				Background	wear		 	
Area of Concern Data: Coba	It Southern							
Background Data: CobaltBC								
Backyrounu Dala. Coballbe								
	Raw Statisti	s						
		Site	Background					
Number of Valid C	bservations	55	23					
Number of Distinct C		40	23					
	Minimum	3.15	2.5					
	Maximum	193.1	20					
	Mean	37.62	10.17					
	Median	19.1	8.5				 	
	SD	36.3	5.323				 	
	SE of Mean	4.894	1.11					
		4.034	1.11					
Site ve Bac	kground Two-	Sample t-Te	aet .					
	kground 1 wo							
H0: Mu of Site - Mu of Background	<= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	76	3.598	1.665	0				
Velch-Satterthwaite (Unequal Varia	-	5.47	1.671	0				
Pooled SD 30.730		0.47	1.071	0				
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H	In Conclude 9	Site > Backar	round					
* Welch-Satterthwaite Test: Reject		-					 	
THEILI-Caller I Walle TESL REJE								
Toot o	f Equality of \	/ariances						
I est o		anances						
Ver	iance of Site	1318						
	Background	28.34					 	
variance of	Dackground	20.34					 	
	ninator DF	ГТ	at Value	D Value			 	
			st Value	P-Value			 	
54	22	46	.494	0			 	
Conclusion with Alpha = 0.05							 	
* Two variances are not equal							 	

	t-Test Site	vs Backgrou	und Comparis	son for Full D	ata Sets wit	hout NDs		
User Selected Options								
From File	ProUCL up	load.wst						
Full Precision	OFF							
Confidence Coefficient	95%							
Substantial Difference (S)	0							
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equa	al to Backgro	und Mean (F	orm 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the	Background N	Mean			
Area of Concern Data: Iron S	outhern A	U						
Background Data: IronBG								
	Raw Statistic							
NI 1 (177)		Site	Background					
Number of Valid Ob		55	23					
Number of Distinct Of		36	22					
	Minimum	13000	14000					
	Maximum	68056	36200					
	Mean	33509 33900	24643 23100					
	Median	11743	6635					
	SD	11743	1383					
	SE of Mean	1000	1363					
Site vs Back	round Two-	Sample t-Te	et .					
H0: Mu of Site - Mu of Background	<= 0							
0	-	t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	76	3.393	1.665	0.001				
Welch-Satterthwaite (Unequal Variar	69.1	4.217	1.667	0				
Pooled SD 10522.243	1	1		<u> </u>				
Conclusion with Alpha = 0.050								
* Student t (Pooled) Test: Reject H0	, Conclude S	Site > Backgi	round					
* Welch-Satterthwaite Test: Reject		-						
Test of	Equality of \	/ariances						
Varia	nce of Site	137900000)					
Variance of E	ackground	44020751						
		1						
Numerator DF Denom	nator DF	F-Tes	st Value	P-Value				
54 2	22	3.	132	0.005				
Conclusion with Alpha = 0.05		1						
* Two variances are not equal								
							1	

	t-Test Site	vs Backgrou	Ind Comparis	son for Full D	Data Sets with	out NDs	
User Selected Options			•				
•	ProUCL up	load.wst					
Full Precision	OFF						
Confidence Coefficient	95%						
Substantial Difference (S)	0						
Selected Null Hypothesis		C Mean Less	Than or Equ	al to Backord	ound Mean (Fo	rm 1)	
Alternative Hypothesis			ter Than the	-			
				Buokground			
Area of Concern Data: Magne		thorn All					
Background Data: Magnesiun	IDG						
	Raw Statistic	20					
	าลพ อเสแรน	Site	Pookarour				
	ooniotierer		Background	I 			
Number of Valid Ob		55	23				
Number of Distinct Ob		40	23				
	Minimum	531.9	1550				
	Maximum	21639	8600				
	Mean	7914	4340				
	Median	6590	4360				
	SD	5039	1758				
S	E of Mean	679.5	366.5				
Site vs Backg	round Two-	Sample t-Te	est				
H0: Mu of Site - Mu of Background <	= 0						
		t-Test	Critical				
Method	DF	Value	t (0.050)	P-Value			
Pooled (Equal Variance)	76	3.307	1.665	0.001			
Welch-Satterthwaite (Unequal Varian	74.5	4.629	1.665	0			
Pooled SD 4351.799	1	1	1	1			
Conclusion with Alpha = 0.050							
* Student t (Pooled) Test: Reject H0	, Conclude S	Site > Backgr	round				
* Welch-Satterthwaite Test: Reject		-					
Test of I	Equality of V	/ariances					
	nce of Site	25394833					
Variance of B		3089959					
	acryiounu	3003333					
Numerator DF Denomi	nator DF	Г Т		D Value			
			st Value	P-Value			
	2	8.	219	0			
Conclusion with Alpha = 0.05							
* Two variances are not equal							

	t-Test Site	vs Backgrou	nd Comparis	on for Full D	ata Sets with	out NDs			
User Selected Options									
From File	ProUCL upl	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean Less	Than or Equ	al to Backgro	und Mean (Fo	orm 1)			
Alternative Hypothesis	Site or AOC	Mean Great	ter Than the	Background	Mean				
Area of Concern Data: Manga	anese Sou	thern AU							
Background Data: Manganes	eBG								
I	Raw Statistic	s							
		Site	Background						
Number of Valid Ob	servations	74	23						
Number of Distinct Ob	servations	48	23						
	Minimum	23.9	163						
	Maximum	3070	1000						
	Mean	584.8	453						
	Median	439.8	368						
	SD	541.6	229.3						
S	E of Mean	62.96	47.81						
Site vs Backg	ground Two-	Sample t-Te	st						
H0: Mu of Site - Mu of Background -	<= 0								
		t-Test	Critical						
Method	DF	Value	t (0.050)	P-Value					
Pooled (Equal Variance)	95	1.133	1.661	0.13					
Welch-Satterthwaite (Unequal Varian	86.3	1.668	1.663	0.049					
Pooled SD 487.389	1	1							
Conclusion with Alpha = 0.050									
* Student t (Pooled) Test: Do Not Re	eject H0, Cor	nclude Site <	= Backgroun	d					
* Welch-Satterthwaite Test: Reject	H0, Conclu	<mark>de Site > Ba</mark>	ckground						
Test of	Equality of V	ariances							
Varia	nce of Site	293292							
Variance of B	ackground	52583							
		1	<u>I</u>	1					
Numerator DF Denomi	nator DF	F-Tes	t Value	P-Value					
73 2	22	5.	578	0					
Conclusion with Alpha = 0.05		1		I					
* Two variances are not equal									
					1		1	1	1

	Wilcoxon-M	lann-Whitn	ey Site vs Bac	kground Co	mparison Te	st for Data	Sets with N	on-Detects	
User Selected Options									
From File	ProUCL upl	oad.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	Mean/Med	lian Less Than	or Equal to E	Background I	Mean/Media	an (Form 1)		
Alternative Hypothesis	Site or AOC	Mean/Mec	lian Greater Th	an Backgrou	Ind Mean/Me	edian			
	I								
Area of Concern Data: Thalliu	<mark>ım Southe</mark>	rn AU							
Background Data: ThalliumBo	G			=					
F	Raw Statistic	s							
		Site	Background						
Number of V	/alid Data	95	23						
Number of Non-De	etect Data	53	22						
Number of De	etect Data	42	1						
Minimum N	on-Detect	0.15	2.1						
Maximum N	on-Detect	18.41	3.1						
Percent No	on detects	55.79%	95.65%						
Minimum	Detected	0.12	0.82						
Maximum	Detected	4.73	0.82						
Mean of Dete	cted Data	1.227	0.82						
Median of Dete	cted Data	1.02	0.82						
SD of Dete	cted Data	0.857	N/A						
Wilcoxon-Mann-W	hitney Site v	s Backgro	und Test						
All observations <= 18	8.41 (Max DI	.) are rank	ed the same						
Wilcoxon-Ma	ann-Whitney	(WMW) To	est						
H0: Mean/Median of Site or AOC <	= Mean/Med	lian of Bacl	kground						
Site Rank	Sum W-Stat	5653							
WMW	Test U-Stat	-0.0034							
WMW Critical V	alue (0.050)	1.645							
	P-Value	0.501							
		1							
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclud	e Site <=	Backgrou	und						
P-Value >= alpha (0.05)									

	t-Test Site	vs Backgrou	Ind Comparis	son for Full [Data Sets wit	thout NDs		
User Selected Optio	ns	-	-					
From File	ProUCL up	load.wst						
Full Precision	I OFF							
Confidence Coefficien	t 95%							
Substantial Difference (S	0							
Selected Null Hypothesis	Site or AOC	C Mean Less	Than or Equ	al to Backgro	ound Mean (F	Form 1)		
Alternative Hypothesis	Site or AOC	C Mean Grea	ter Than the	Background	Mean			
	ł							
Area of Concern Data: Vana		nern AU						
Background Data: Vanadiu	nBG							
								<u> </u>
	Raw Statisti							<u> </u>
	<u>.</u>	Site	Background	1				
Number of Valid		84	23					
Number of Distinct		56	23					_
	Minimum	17.07	27.6					-
	Maximum	293	85					
	Mean	66.08	55.43					
	Median	55	54.1					
	SD	41.79	14.98					
	SE of Mean	4.56	3.123					_
Site ve Ba	kground Two	Sample t Te	et.					
	Ryround Two	-Sample t-Te	551					
H0: Mu of Site - Mu of Backgroun	d <= 0							
		t-Test	Critical					
Method	DF	Value	t (0.050)	P-Value				
Pooled (Equal Variance)	105	1.198	1.659	0.117				
Welch-Satterthwaite (Unequal Vari		1.927	1.661	0.028				+
Pooled SD 37.786								+
Conclusion with Alpha = 0.050								-
* Student t (Pooled) Test: Do Not	Reject H0. Co	nclude Site <	= Backgroun	d				+
* Welch-Satterthwaite Test: Reje	•		-					-
			U					-
Test	of Equality of \	/ariances						-
								+
Va	riance of Site	1747						+
Variance o	Background	224.3						+
			I	1				1
Numerator DF Deno	minator DF	F-Tes	st Value	P-Value				+
83	22	7.	789	0				1
Conclusion with Alpha = 0.05				1				1
* Two variances are not equal					1	1	 1	+
i wo vananees are not equal								

Wilcox	on-Mann-W	hitney Site vs Ba	ckground Co	mparison Te	st for Data S	Sets with No	n-Detects	
User Selected Options				-				
From File ProUC	L upload.wst							
Full Precision OFF	-							
Confidence Coefficient 95%								
Substantial Difference (S) 0								
Selected Null Hypothesis Site or	AOC Mean/l	Median Less Tha	n or Equal to	Background	Mean/Media	n (Form 1)		
		Median Greater T		-		. ,		
			<u> </u>					
Area of Concern Data: Benzo(a)ant	hracene S	outhern AU						
Background Data: Benzo(a)anthrac								
Raw Sta	atistics							
	Site	Backgroun	d					
Number of Valid Da	ata 45	23						
Number of Non-Detect Da	ata 25	8						
Number of Detect Da	ata 20	15						
Minimum Non-Det	ect 70	360						
Maximum Non-Det	ect 458	430						
Percent Non dete	cts 55.56%	6 34.78%						
Minimum Detect	ed 11	43						
Maximum Detect	ed 773	590						
Mean of Detected Da	ata 179.7	213						
Median of Detected Da	ata 191.9	190						
SD of Detected Da	ata 156.8	132.5						
Wilcoxon-Mann-Whitney	Site vs Back	ground Test						
All observations <= 458 (Ma	x DL) are ra	nked the same						
Wilcoxon-Mann-Wh	itney (WMW) Test						
H0: Mean/Median of Site or AOC <= Mean	/Median of E	ackground						
Site Rank Sum W	-Stat 1542							
WMW Test U	-Stat -0.143							
WMW Critical Value (0	.050) 1.645							
P-1	/alue 0.557							
	I	I						
Conclusion with Alpha = 0.05								
Do Not Reject H0, Conclude Site <= Bac	kground							
P-Value >= alpha (0.05)								

	Wilcoxon-M	lann-Whitn	ey Site vs Ba	ckground Co	mparison Te	st for Data	Sets with N	on-Detects	
User Selected Options	5								
From File	ProUCL up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	C Mean/Med	dian Less Tha	n or Equal to	Background	Mean/Media	an (Form 1)		
Alternative Hypothesis			dian Greater T		-		. ,		
Area of Concern Data: Benzo	o(a)pyrene	Souther	n AU						
Background Data: Benzo(a)p									
	,								
	Raw Statisti	cs							
		Site	Background	d					
Number of	Valid Data	37	23						
Number of Non-D	etect Data	19	7						
Number of D		18	16						
Minimum N	Ion-Detect	190	360						
Maximum N	Ion-Detect	458	510						
Percent N	on detects	51.35%	30.43%						
	n Detected	23	40						
Maximun	n Detected	595	530						
Mean of Dete		205.4	202.4						
Median of Dete	ected Data	185.8	180						
SD of Dete	ected Data	122.3	126.7						
Wilcoxon-Mann-W	/hitnev Site	vs Backoro	und Test						
All observations <= 5	-	-							
Wilcoxon-M	-	-							
H0: Mean/Median of Site or AOC <	= Mean/Mea	lian of Back	karound						
			v ···· ·						
Site Rank	Sum W-Sta	t 1122							
	V Test U-Sta								
WMW Critical \									
	P-Value								
Conclusion with Alpha = 0.05									
Do Not Reject H0, Conclude Site	<= Backgro	und							
P-Value >= alpha (0.05)	Juongio								

	Wilcoxon-N	lann-Whitn	ey Site vs Ba	ckground Co	mparison Te	st for Data	Sets with No	on-Detects	
User Selected Options	•								
From File	ProUCL up	load.wst							
Full Precision	OFF								
Confidence Coefficient	95%								
Substantial Difference (S)	0								
Selected Null Hypothesis	Site or AOC	C Mean/Med	lian Less Thar	n or Equal to I	Background	Mean/Media	in (Form 1)		
Alternative Hypothesis	Site or AOC	C Mean/Med	lian Greater T	han Backgrou	und Mean/Me	edian			
	1								
Area of Concern Data: Benzo	(b)fluoran	thene So	uthern AU						
Background Data: Benzo(b)fl	uoranthen	eBG		· · · · · · · · · · · · · · · · · · ·					
	Raw Statisti	cs							
		Site	Background	1					
Number of	Valid Data	45	23						
Number of Non-D	etect Data	27	5						
Number of D	etect Data	18	18						
Minimum N	Ion-Detect	70	360						
Maximum N	Ion-Detect	458	430						
Percent N	on detects	60.00%	21.74%						
Minimun	n Detected	15	40						
Maximun	n Detected	895	620						
Mean of Dete	ected Data	224.7	184.4						
Median of Dete	ected Data	210.1	155						
SD of Dete	ected Data	182.3	144.1						
		•							
Wilcoxon-Mann-W	-	•							
All observations <= 4	158 (Max DL) are ranke	d the same						
Wilcoxon-M	ann-Whitney	/ (WMW) Te	est						
H0: Mean/Median of Site or AOC <	= Mean/Mea	lian of Back	ground						
	Sum W-Sta								
	V Test U-Sta								
WMW Critical									
	P-Value	0.557							
Conclusion with Alpha = 0.05									
Lie Not Roject H0, Conclude Site	<= Backgro	und							
Do Not Reject H0, Conclude Site P-Value >= alpha (0.05)									

APPENDIX E: RISK CALCULATIONS

This Page Intentionally Left Blank

Table E.1Calculation of Non-Cancer Hazard Quotients for Remaining COPCs4256 Warren (one sample)

Non-Cancer Hazard Quotient Ca	alculation - Resident (Child				
				Non-Cancer		Non-Cance
	Exposure Point		RME Chronic Daily	Hazard	RME Chronic Daily	Hazard
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)		(mg/kg-day)	
			Incidental Inc	gestion (1)	Dermal Exp	osure (1)
Aluminum	25,500	1.00E+00	3.26E-01	0.3	NA	NA
Arsenic	14	3.00E-04	1.83E-04	0.6	2.01E-04	0.0003
Cobalt	19.6	3.00E-04	2.51E-04	0.8	NA	NA
Iron	67,600	7.00E-01	8.64E-01	1.2	NA	NA
Magnesium	7,430	NA				
Vanadium	83.2	5.00E-03	1.06E-03	0.2	NA	NA
Non-Cancer Hazard Quotient Ca	alculation - Resident /	Adult		Non-Cancer		Non-Cance
	Exposure Point		RME Chronic Daily	Hazard	RME Chronic Daily	Hazard
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)		(mg/kg-day)	
			Incidental Ing	gestion (1)	Dermal Exp	
Aluminum	05 500	1 005 00	0.405.00			osure (1)
	25,500	1.00E+00	3.49E-02	0.03	NA	osure (1) NA
	25,500 14	1.00E+00 3.00E-04	3.49E-02 1.96E-05	0.03	NA 2.30E-04	· · · ·
Arsenic						NÁ
Arsenic Cobalt	14	3.00E-04	1.96E-05	0.07	2.30E-04	NA 0.004
Arsenic Cobalt Iron Magnesium	14 19.6	3.00E-04 3.00E-04	1.96E-05 2.68E-05	0.07 0.09	2.30E-04 NA	NA 0.004 NA

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown below **(these also apply to Tables E.2 through E.13)**. Dermal pathway only quantified for those COPCs with EPA-recommended dermal absorption fractions. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

Incidental Ingestion CDI (mg/kg/day) =	Acronym	Definition	Value Used
$CS \times IR \times FI \times EF \times ED \times CF / (BW \times AT)^{4}$	CS	Chemical Concentration in Soil	mg/kg in soil
Dermal Contact CDI (mg/kg/day) = (CS x SA x AF x DA x EF x ED x CF) / (BW	IR	Incidental Soil Ingestion Rate	200 mg/day for child, 100 mg/day for adult
x AT)	FI	Fraction Ingested from Site	100%
To estimate non-cancer risks:	EF	Exposure Frequency	350 days/year
HQ = CDI/RfD	ED	Exposure Duration	33 years for adult, 6 years for child
HQ = Hazard Quotient	BW	Body Weight	70 kg for adult, 15 kg for child
CDI = Chronic Daily Intake	AT	Averaging Time	12,045 days for adult, 2,190 for child
RfD = Reference Dose (toxicity value)	CF	Factor	0.000001 kg/mg

Conclusion: Individual HQs are equal to or less than one, with all different target organs. Iron HQ slightly greater than one, but it is essential nutrient. Magnesium is essential nutrient.

Therefore, site does not require further evaluation.

2. Using the single available data point.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

4. Applies the "high end" incidental soil ingestion rates previously recommended by EPA to the screening calculations of non-cancer hazard quotients HQs associated with a "reasonable maximum scenario. The use of the high end soil ingestion rates at this screening level is appropriate because the purpose of conducting the HQ calculations was to identify chemicals in soil that were detected at concentrations that may be of human health concern to carry through to a full HHRA.

Table E.2Calculation of Non-Cancer Hazard Quotients for Remaining COPCs4900 Quebec (13 samples)

Non-Cancer Hazard Quotient Ca	alculation - Resident C			
	Exposure		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental Ir	ngestion (1)
Mercury	1.44	3.00E-04	1.84E-05	0.06
				0.00
Non-Cancer Hazard Quotient Ca	alculation - Resident A			
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure	Adult	RME Chronic Daily	Non-Cancer
	alculation - Resident A			
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure	Adult	RME Chronic Daily	Non-Cancer
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure Concentration (2)	dult Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean concentration.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Since an oral RfD is not published for elemental mercury, the oral RfD for mercuric chloride was used

Conclusion: Individual HQ is less than one. Therefore, site does not require further evaluation.

Table E.3Calculation of Non-Cancer Hazard Quotients for Remaining COPCs3949 52nd (2 samples)

Non-Cancer Hazard Que	otient Calculation - Resid	lent Child		
Chemical of Potential Concern	Exposure Point Concentration (2)	Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental I	Ingestion (1)
Cobalt	19.7	3.00E-04	2.52E-04	0.8
Chemical of Potential	otient Calculation - Resic Exposure Point		RME Chronic Daily	Non-Cancer Hazard
Chemical of Potential	Exposure Point		RME Chronic Daily	Non-Cancer Hazard
Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental	Ingestion (1)
Cobalt	19.7	3.00E-04	2.70E-05	
	13.1	3.00L-04	2.702-05	0.09

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the maximum of the two available data points.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Individual HQ is less than one. **Therefore, site does not require further evaluation.**

Table E.4Calculation of Non-Cancer Hazard Quotients for Remaining COPCs4015 52nd (one sample)

Non-Cancer Hazard Quo	otient Calculation - Resid	lent Child		
Chemical of Potential	Exposure Point		RME Chronic Daily	Non-Cancer Hazard
Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental I	ngestion (1)
Aluminum	28,000	1.00E+00	3.58E-01	0.4
Cobalt	22.8	3.00E-04	2.92E-04	0.97
Iron	38,300	7.00E-01	4.90E-01	0.7
Magnesium	7,160	NA		
Non-Cancer Hazard Que		lent Adult		
Chemical of Potential	Exposure Point	$O_{\text{based}} = D(D_{\text{c}})$	RME Chronic Daily	Non-Cancer Hazard
Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental I	ngestion (1)
Aluminum	28,000	1.00E+00	3.84E-02	0.04
Cobalt	22.8	3.00E-04	3.12E-05	0.1
Iron	38,300	7.00E-01	5.25E-02	0.07
Magnesium	7,160	NA		

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the single available data point.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Individual HQs are equal to or less than one, with all different target organs. Magnesium is essential nutrient. **Therefore, site does not require further evaluation.**

Table E.5Calculation of Non-Cancer Hazard Quotients for Remaining COPCsPOI 39 (14 samples)

				Non-Cancer
	Exposure Point		RME Chronic Daily	Hazard
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
	-		Incidental Ing	estion (1)
Aluminum	24,437	1.00E+00	3.12E-01	0.3
	4 4 6 7			
Manganese	1,197	1.40E-01	1.53E-02	0.1
Manganese Non-Cancer Hazard Quotient Ca			1.53E-02	
			1.53E-02	
	alculation - Resident A			Non-Cancer
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure Point	Adult	RME Chronic Daily	Non-Cancer Hazard
Non-Cancer Hazard Quotient Ca	Exposure Point Concentration (2)	Adult Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients
Non-Cancer Hazard Quotient Ca	Exposure Point Concentration (2)	Adult Chronic RfD (3)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Individual HQs are less than one; even with same target organs, HQ combined still less than one. Therefore, site does not require further evaluation.

Table E.6Calculation of Non-Cancer Hazard Quotients for Remaining COPCsDalecarlia Woods (13 samples)

There were no COPCs. Howe sample was screened separat	•	•	•	,
Non-Cancer Hazard Quotient Ca	alculation - Resident C	hild		
	Exposure Point		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental Ir	ngestion (1)
Aluminum	27,783	1.00E+00	3.55E-01	0.4
Cadmium	29	1.00E-03	3.71E-04	0.4
Zinc	2,548	3.00E-01	3.26E-02	0.1
Non-Cancer Hazard Quotient Ca	Iculation - Resident A	dult		
	Exposure Point		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental Ir	ngestion (1)
Aluminum	27,783	1.00E+00	3.81E-02	0.04
Cadmium	29	1.00E-03	3.97E-05	0.04
Zinc	2,548	3.00E-01	3.49E-03	0.01

Notes:

Г

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the maximum of the detected concentrations.

Conclusion: Individual HQ of outlier is less than one. Therefore, site does not require further evaluation.

Table E.7Calculation of Non-Cancer Hazard Quotients for Remaining COPCsAOI 8 (4 samples)

	Exposure Point		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental In	gestion (1)
	1,130	1.40E-01	1.44E-02	0.1
Manganese			1.446-02	0.1
Non-Cancer Hazard Quotient Ca	alculation - Resident A			-
5			RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure Point	Adult	RME Chronic Daily	Non-Cancer
Non-Cancer Hazard Quotient Ca	alculation - Resident A Exposure Point Concentration (2)	Adult Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the maximum of the detected concentrations.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Individual HQ is less than one. **Therefore, site does not require further evaluation.**

Table E.8Calculation of Non-Cancer Hazard Quotients for Remaining COPCsAOI 11 (6 samples)

Non-Cancer Hazard Quotient Ca	Iculation - Resident (Child		
	Exposure Point		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental In	ngestion (1)
Aluminum	19,462	1.00E+00	2.49E-01	0.2
Magnesium	6,401	NA		
Non-Cancer Hazard Quotient Ca	Iculation - Resident A	Adult		
	Exposure Point		RME Chronic Daily	Non-Cancer
Chemical of Potential Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental In	ngestion (1)
Aluminum	19,462	1.00E+00	2.67E-02	0.03
Magnesium	6,401	NA		

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean concentration.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Aluminum HQ is less than one; magnesium is essential nutrient. Therefore, site does not require further evaluation.

Table E.9 Calculation of Non-Cancer Hazard Quotients for Remaining COPCs AOI 9 (59 samples)

Non-Cancer Hazard Quotient Calc	ulation - Resident C	Child		
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients
Incidental Ingestion				
Aluminum	21,199	1.00E+00	2.71E-01	0.3
Cobalt	27.92	3.00E-04	3.57E-04	1.2
Manganese	678	1.40E-01	8.67E-03	0.1
Non-Cancer Hazard Quotient Calc	ulation - Resident A	dult		
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients
	-		Incidental Ing	estion (1)
Aluminum	21,199	1.00E+00	2.90E-02	0.03
Cobalt	27.92	3.00E-04	3.82E-05	0.1
Manganese	678	1.40E-01	9.29E-04	0.01

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Cobalt HQ is greater than one. **Site requires further evaluation.**

Table E.10 Calculation of Non-Cancer Hazard Quotients for Remaining COPCs AOI 13 (17 samples)

Non-Cancer Hazard Quot	ient Calculation - Resid	lent Child			
Chemical of Potential	Exposure Point		RME Chronic Daily	Non-Cancer	
Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients	
	(mg/kg)	(mg/kg-day)	(mg/kg-day)		
Incidental Ingestion (1)					
Aluminum	20,637	1.00E+00	2.64E-01 0.3		
Cobalt	21.53	3.00E-04	2.75E-04	0.9	
Iron	36,225	7.00E-01	4.63E-01	0.7	
Non-Cancer Hazard Quoti Chemical of Potential	ient Calculation - Resid Exposure Point	lent Adult	RME Chronic Daily	Non-Cancer	
Concern	Concentration (2)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients	
Concern	(mg/kg)	(mg/kg-day)	(mg/kg-day)	nazaru Quotients	
			Incidental I	ngestion (1)	
Aluminum	20,637	1.00E+00	2.83E-02	0.03	
Cobalt	21.53	3.00E-04	2.95E-05	0.10	
Iron	36,225	7.00E-01	4.96E-02	0.07	

Mercury was an outlier in one sample (4707WL-1); that sample was screened separately and mercury and cobalt were determined to be COPCs.

Chemical of Potential	Exposure Point		RME Chronic Daily	Non-Cancer
Concern	Concentration (4)	Chronic RfD (3)	Intake (CDI)	Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental I	ngestion (1)
Cobalt	19.4	3.00E-04	2.48E-04	0.8
Mercury	2.3	3.00E-04	2.94E-05	0.1
				ļ
Non-Cancer Hazard Quo	tient Calculation - Resid		1	
Non-Cancer Hazard Quo	tient Calculation - Resic Exposure Point	lent Adult	RME Chronic Daily	Non-Cancer
Non-Cancer Hazard Quo	tient Calculation - Resid	lent Adult Chronic RfD (3)	Intake (CDI)	
Non-Cancer Hazard Quo	tient Calculation - Resic Exposure Point	lent Adult	,	Non-Cancer
Non-Cancer Hazard Quo	otient Calculation - Resic Exposure Point Concentration (4)	lent Adult Chronic RfD (3)	Intake (CDI) (mg/kg-day)	Non-Cancer
Non-Cancer Hazard Quo Chemical of Potential Concern Cobalt	otient Calculation - Resic Exposure Point Concentration (4)	lent Adult Chronic RfD (3)	Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean concentration.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

4. Concentration of outlier (maximum detected concentration within EU)

Since an oral RfD is not published for elemental mercury, the oral RfD for mercuric chloride was used

Conclusion: Individual HQs are less than one, with all different target organs. Mercury outlier HQ is less than one; Cobalt from that outlier sample has an HQ<1. Therefore, site does not require further evaluation.

Table E.11Calculation of Non-Cancer Hazard Quotients for Remaining COPCsWestern POI 53 (10 samples)

Non-Cancer Hazard Quotient Calc	ulation - Resident (Child		
Chemical of Potential Concern	Exposure Point Concentration (2)	Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental Ing	estion (1)
Aluminum	22,022	1.00E+00	2.82E-01	0.3
Vanadium	85	5.00E-03	1.08E-03	0.2
Non-Cancer Hazard Quotient Calc	ulation - Resident A	Adult		
Chemical of Potential Concern	Exposure Point Concentration (2)	Chronic RfD (3)	RME Chronic Daily Intake (CDI)	Non-Cancer Hazard Quotients
	(mg/kg)	(mg/kg-day)	(mg/kg-day)	
			Incidental Ing	estion (1)
Aluminum	22,022	1.00E+00	3.02E-02	0.03
Vanadium	85	5.00E-03	1.16E-04	0.02

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean concentration.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Individual HQs are equal to or less than one, with all different target organs. **Therefore,** site does not require further evaluation.

Table E.12Calculation of Non-Cancer Hazard Quotients for Remaining COPCsSpaulding-Rankin (60 samples)

Non-Cancer Hazard Quotient Ca	alculation - Resident (Child					
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients			
	(iiig/kg)	(ing/kg) (ing/kg-day)		Incidental Ingestion (1)			
Aluminum	16,602	1.00E+00	2.12E-01	0.2			
Cobalt	100	3.00E-04	1.28E-03	4.3			
Iron	63,501	7.00E-01	8.12E-01	1.2			
Manganese	1,286	1.40E-01	1.64E-02	0.1			
Vanadium	99	5.00E-03	1.26E-03	0.3			
Non-Cancer Hazard Quotient Calculation - Resident Adult Non-Cancer							
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Hazard Quotients			
			Incidental Ingestion (1)				
Aluminum	16,602	1.00E+00	2.27E-02	0.02			
Cobalt	100	3.00E-04	1.37E-04	0.5			
Iron	63,501	7.00E-01	8.70E-02	0.1			
Manganese	1,286	1.40E-01	1.76E-03	0.01			
Vanadium	99	5.00E-03	1.35E-04	0.03			

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean concentration.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peer-reviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

Conclusion: Iron HQ slightly greater than one, but it is essential nutrient. Cobalt HQ is greater than one; therefore, site requires further evaluation.

Table E.13 Calculation of Non-Cancer Hazard Quotients for Remaining COPCs Southern AU (contained 86 total samples, including the 6 discrete sample locations that had outlier concentrations)

Calculations for COP	Cs with outliers re	emoved]
Non-Cancer Hazard Q	uotient Calculation	- Resident C	hild		
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients	Conclusions
	Incidental Ingestion (1)			U	_
Aluminum	20,727	1.00E+00	2.65E-01	0.3	
Cobalt	58.96	3.00E-04	7.54E-04	2.5	Cobalt HQ greater than one; EU requires further evaluation.
Iron	36,159	7.00E-01	4.62E-01	0.7	
Magnesium	10,876	NA			
Manganese	859	1.40E-01	1.10E-02	0.08	
Vanadium	74	5.00E-03	9.42E-04	0.188	
Non-Cancer Hazard Q	uotient Calculation	- Resident A	dult		
Chemical of Potential Concern	Exposure Point Concentration (2) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients	
			Incidental Ingestion (1)		
Aluminum	20,727	1.00E+00	2.84E-02	0.03	
Cobalt	58.96	3.00E-04	8.08E-05	0.3]
Iron	36,159	7.00E-01	4.95E-02	0.07	
Magnesium	10,876	NA]
Manganese	859	1.40E-01	1.18E-03	0.008]
Vanadium	74	5.00E-03	1.01E-04	0.0202	
					Note: this table presents Final COPCs (i.e., not eliminated through screening steps) after all outliers removed.

Table E.13 Calculation of Non-Cancer Hazard Quotients for Remaining COPCs Southern AU (contained 86 total samples, including the 6 discrete sample locations that had outlier concentrations)

Calculations for Highe	est Value from Ou	utlier Test 1 (g	green)		
Non-Cancer Hazard Qu	otient Calculation	- Resident Cl	nild		
Chemical of Potential Concern and Outlier Sample	Exposure Point Concentration (4) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)		Conclusions
			Incidental Ir	ngestion (1)	
Antimony (AU-03)	40	4.00E-04	5.17E-04	1.3	Antimony at outlier location AU-03 could be associated with risk; outlier location requires further evaluation.
Beryllium (SV-12A)	19	2.00E-03	2.43E-04	0.1	
Mercury (SV-AU-05)	9.74	3.00E-04	1.25E-04	0.4	
Cancer Risk Calculation -	Resident Child	Slope Factor (mg/kg-day)-1	RME Chronic Daily Intake (CDI) (mg/kg-day)	Incremental Cancer Risk	
Benzo(a)anthracene (BAKER-03)	3800	7.30E-01	4.16E-03	3E-03	
Benzo(b)fluoranthene (BAKER-03)	3400	7.30E-01	3.73E-03	3E-03	Estimated incremental cancer risks are greater than the EPA acceptable range;
Benzo(k)fluoranthene (SV-BAKER-03)	2200	7.30E-02	2.41E-03	2E-04	outlier locations BAKER-03 and SV-BAKER 03 require further evaluation.
Indeno(1,2,3-c,d) Pyrene (BAKER-03)	2000	7.30E-01	2.19E-03	2E-03	
Phenanthrene (SV-BAKER-03)	2000	NA	2.19E-03	NA	No tox value published; however, if the slope factor was 7.3E-1 (like the other PAHs), the conclusion would be the same as above.
Non-Cancer Hazard Quot	iont Calculation B	sidont Adult			
Chemical of Potential Concern and Outlier Sample	Exposure Point Concentration (4) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients	
+ +		-	Incidental Ingestion (1)		
Antimony (AU-03)	40	4.00E-04	5.53E-05	0.1	-
Beryllium (SV-12A)	19	2.00E-03	2.60E-05	0.01	4
Mercury (SV-AU-05)	9.74	3.00E-04	1.33E-05	0.04	
Cancer Risk Calculation -	Resident Adult	Slope Factor (mg/kg-day)-1	RME Chronic Daily Intake (CDI) (mg/kg-day)	Incremental Cancer Risk	
Benzo(a)anthracene (BAKER-03)	3800	7.30E-01	2.45E-03	2E-03	
Benzo(b)fluoranthene (BAKER-03)	3400	7.30E-01	2.20E-03	2E-03	Estimated incremental cancer risks are greater than the EPA acceptable range; outlier locations BAKER-03 and SV-BAKE 03 require further evaluation.
Benzo(k)fluoranthene (SV-BAKER-03)	2200	7.30E-02	1.42E-03	1E-04	
Indeno(1,2,3-c,d) Pyrene (BAKER-03)	2000	7.30E-01	1.29E-03	9E-04	
Phenanthrene (SV-BAKER-03)	2000	NA	1.29E-03	NA	No tox value published; however, if the slope factor was 7.3E-1 (like the other PAHs), the conclusion would be the same as above.
			resulting from O	utlier Test 1. C	chemicals from 4 sample locations ancer and non-cancer risks were entrations of these 8 chemicals at

Table E.13 Calculation of Non-Cancer Hazard Quotients for Remaining COPCs Southern AU (contained 86 total samples, including the 6 discrete sample locations that had outlier concentrations)

Calculations for High	hest Value from Ou	ıtlier Test 2 (I	blue)		
Non-Cancer Hazard C	Quotient Calculation	- Resident C	hild		
Chemical of Potential Concern and Outlier Sample	Exposure Point Concentration (4) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients	Conclusions
			Incidental Ir	ngestion (1)	
Antimony (AU-10)	36.3	4.00E-04	4.64E-04	1.2	Antimony at outlier location AU-10 could be associated with risk; outlier location requires further evaluation.
Mercury (SV-04)	2.3	3.00E-04	2.94E-05	0.1	
Non-Cancer Hazard G	Quotient Calculation	- Resident A	dult		
Chemical of Potential Concern and Outlier Sample	Exposure Point Concentration (4) (mg/kg)	Chronic RfD (3) (mg/kg-day)	RME Chronic Daily Intake (CDI) (mg/kg-day)	Non-Cancer Hazard Quotients	
Incidental Ingestion (1)				ngestion (1)]
Antimony (AU-10)	36.3	4.00E-04	4.97E-05	0.1]
Mercury (SV-04)	2.3	3.00E-04	3.15E-06	0.01	
					chemicals from 2 sample locatior ancer and non-cancer risks were

resulting from Outlier Test 2. Cancer and non-cancer risks were evaluated for the detected concentrations of these 2 chemicals at the outliers.

Notes:

1. Risks for a residential receptor were evaluated for the incidental soil ingestion route using the assumptions and equations shown in Table E.1. Dermal pathway not quantified, since only those COPCs with EPA-recommended dermal absorption fractions are quantified. Currently, USEPA (2004) provides recommended dermal absorption factors for ten chemicals in soil, including only the inorganics arsenic (0.03) and cadmium (0.001).

2. Using the 95% UCL of the mean with outliers removed.

3. The toxicity values for aluminum, cobalt, iron, thallium, and vanadium are provisional peerreviewed toxicity reference values (PPRTV) (EPA RSL Table May 2013).

4. Concentration of outlier (maximum or next detected concentration within EU).

Since an oral RfD is not published for elemental mercury, the oral RfD for mercuric chloride was used