
FINAL SVFUDS SITE-WIDE HUMAN HEALTH RISK ASSESSMENT WORK PLAN

SPRING VALLEY FORMERLY USED DEFENSE SITE WASHINGTON, D.C.

Contract No.: W912DR-09-D-0061, Delivery Order 0011 DERP FUDS MMRP/CWM Project No. C03DC091801 and DERP FUDS HTRW Project No. C03DC091802

BUILDING STRONG®

Prepared for:

US ARMY CORPS OF ENGINEERS BALTIMORE DISTRICT Prepared by:

ERT, Inc. Laurel, MD 20707 FEBRUARY 10, 2014

February 10, 2014

Attn: Lan Reeser CENAB-EN-HN 10 S. Howard Street Baltimore, MD 21201-1715

Dear Mr. Reeser,

ERT, Inc., is pleased to present the Final SVFUDS Site-Wide Risk Assessment Work Plan for the Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC.

This version incorporates Stakeholder comments on the Draft-Final version.

Electronic distribution has been made as shown below. Please do not hesitate to call me at 301-323-1442 if you need anything more.

Sincerely,

J.B. ELECTRONIC SIGNATURI

Thomas J. Bachovchin Project Manager

DISTRIBUTION:

CENAB – Reeser (4) CEHNC – Anderson-Hudgins (1) USEPA – Hirsh (1) DCDOE – Sweeney (1) RAB TAPP – deFur (1) AU – Bridgham (1)

- Written Comments were received January 23, 2014, via email from the <u>USEPA</u> on the December 18, 2013 Draft-Final SVFUDS Site-Wide Human Health Risk Assessment Work Plan.
- Written Comments were received January 22, 2014, from the <u>RAB</u> <u>TAPP</u> on the December 18, 2013 Draft-Final SVFUDS Site-Wide Human Health Risk Assessment Work Plan.
- Written Comments were received January 31, 2014, from the <u>American</u> <u>University</u> on the December 18, 2013 Draft-Final SVFUDS Site-Wide Human Health Risk Assessment Work Plan.

USEPA

From: **Hirsh, Steven** [mailto:Hirsh.Steven@epa.gov] Sent: Thursday, **January 23, 2014** 01:58 PM Pacific Standard Time To: Reeser, Leland H NAB; 'Mr. Jim Sweeney' <james.sweeney@dc.gov> Subject: [EXTERNAL] RE: SVFUDS - Draft-Final SVFUDS Site-Wide HHRA Work Plan (UNCLASSIFIED)

Hi Lan,

EPA has completed its review of the Site-Wide Human Health Risk Assessment Work Plan for the Spring Valley FUD site. The report is thorough and clear. EPA agrees with the proposed approach, and has no comments.

Steven Hirsh U.S. EPA, Region III (3HS10) Office of Federal Facility Remediation 1650 Arch Street (3HS10) Philadelphia, PA 19103-2029

USACE RESPONSE: Noted.

RAB TAPP

To: Lan Reeser, CENAB (received January 22, 2014) From: Peter deFur, ESC, LLC

January 13, 2014 Comments prepared by TAPP advisor, ESC, LLC, Dr. Peter L. deFur, President. Spring Valley Draft-Final SVFUDS Risk Assessment Work Plan

3.5 Potential Exposure Pathways

"Two different soil exposure intervals will be evaluated. The current potential receptors will be evaluated using an exposure interval of 0 to 2 feet below ground surface (bgs), to represent routine landscaping, gardening, and outdoor play activities. The soil exposure interval for future potential receptors includes mixed soils from 0 to 10 feet bgs. This exposure interval takes into account soil mixing that may occur due to future construction."

• Why not 0 to 10 ft bgs for both current vs future? Construction is taking place in the "current" scenario that is more than shallow, and would warrant the greater depth.

USACE RESPONSE:

The category termed "future potential receptors," with risks estimated using the 0 to 10 foot interval, will provide information on any risks that may be faced by residents during any current or future construction. The text has been re-worded as follows: The soil exposure interval for future potential receptors is mixed soils from 0 to 10 feet bgs, which includes the 0 to 2 foot interval to which current receptors could be exposed. This exposure interval takes into account soil mixing that may occur due to construction.

3.5.1 Southern AU EU

"Also, possible future exposure to mixed surface/subsurface soil for outdoor workers, construction workers, students, and residents will be evaluated, and will include the exposure pathways of incidental soil ingestion, dermal contact, inhalation outdoors, home-grown vegetable ingestion and inhalation of vapors indoors, if the criteria described above for volatility are met."

• It is not clear why there is no vegetable garden ingestion for current exposure scenarios. Wouldn't that be possible if 0 to 2 ft bgs covers routine gardening?

USACE RESPONSE:

The vegetable ingestion exposure pathway has been added for the 0 to 2 foot depth at Southern AU for current students to account for any current gardening that may be occurring on the site.

Table 4.8: Toxicity values

IRIS is listed as the top source in the hierarchy of primary sources and this table states that chromium VI does not have any observed effects at a daily intake of 3.00E-03 mg/Kg-day. However, on closer inspection, IRIS's "Confidence in the Oral RfD" for chromium VI is as follows: "Study – Low; Database – Low; RfD – Low" and the last revision is date 09/03/1998. The section for Chromium VI from the Region II Regional Screening Levels is copied and inserted below. This web site indicates that NJ has concluded that Cr VI is carcinogenic and ATSDR has determined an oral RfD of 4.0e -4, according to RAIS (http://rais.ornl.gov/tools/profile.php). The toxicity of chromium, notably chromium VI seems to be under discussion by regulatory agencies, suggesting a more cautious approach is warranted. At the least, a discussion of the uncertainties is needed.

USACE RESPONSE:

A discussion of the uncertainties associated with the chromium RfD will be included in the HHRA.

Excerpt from the EPA Region III web site concerning screening levels

EPA Regional Screening Levels, Region III.

http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/usersguide.htm "5.6 Chromium (VI)

It is recommended that valence-specific data for chromium be collected when chromium is likely to be an important contaminant at a site, and when hexavalent chromium (Cr (VI)) may

exist. For Cr(VI), IRIS shows an air unit risk of 1.2E-2 per (μ g/m²). While the exact ratio of Cr(VI) to Cr(III) in the data used to derive the IRIS air unit risk value is not known, it is likely that both Cr(VI) and Cr(III) were present. The RSLs calculated using the IRIS air unit risk assume that the Cr(VI) to Cr(III) ratio is 1:6. Because of various sources of uncertainty, this assumption may overestimate or underestimate the risk calculated. Users are invited to review the document ?Toxicological Review of Hexavalent Chromium? in support of the summary information on Cr(VI) on IRIS to determine whether they believe this ratio applies to their projects and to consider consulting with an EPA regional risk assessor.

In the RSL Table, the Cr(VI) specific value (assuming 100% Cr(VI)) is derived by multiplying the IRIS Cr(VI) value by 7. This is considered to be a health-protective assumption, and is also consistent with the State of California's interpretation of the Mancuso study that forms the basis of Cr(VI)'s estimated cancer potency.

If you are working on a chromium site, you may want to contact the appropriate regulatory officials in your region to determine what their position is on this issue.

The Maximum Contaminant Level (MCL) of 100 μ g/L for "Chromium (total)", from the EPA's <u>MCL</u> listing is applied to the "Chromium, Total" analyte on this website.

Tier 3 sources were used to derive the screening levels for Cr(VI).

The New Jersey Department of Environmental Protection (NJDEP) determined that Cr(VI) by ingestion is likely to be carcinogenic in humans. NJDEP derived an oral cancer slope factor, based on cancer bioassays conducted by the National Toxicology Program (<u>http://www.state.nj.us/dep/dsr/chromium/soil-cleanup-derivation.pdf</u>). The New Jersey assessment did not make a determination that Cr(VI) was mutagenic by mode of action for carcinogenesis.

EPA?s <u>Office of Pesticide Programs</u> (OPP) made a determination that Cr(VI) has a mutagenic mode of action for carcinogenesis in all cells regardless of type, following administration via drinking water. OPP recommended that Age-Dependent Adjustment Factors (ADAFs) be applied when assessing cancer risks from early-life exposure (< 16 years of age). This determination was reviewed by OPP?s Cancer Assessment Review Committee and published in a peer review journal).

Therefore, in 2009 the RSL workgroup adopted the Tier III NJDEP values and the OPP recommendation with respect to mutagenicity. More recently, in 2011, external peer reviewers provided input on the EPA?s Office of Research and Development Integrated Risk Information System draft Toxicological Review of Hexavalent Chromium

(http://cfpub.epa.gov/ncea/iris_drafts/recordisplay.cfm?deid=221433). The majority of reviewers questioned the evidence used to support a mutagenic mode of action for carcinogenesis for Cr(VI). Furthermore, in 2011 California Environmental Protection Agency finalized its drinking water Public Health Goal for Cr(VI). CalEPA?s Technical Support Document concluded in numerous studies that Cr(VI) is both genotoxic and mutagenic. (http://www.oehha.ca.gov/water/phg/072911Cr6PHG.html)

Therefore, the RSL workgroup acknowledges that there is uncertainty associated with the assessment of hexavalent chromium. However, no updated consensus IRIS assessment (Tier I) has yet appeared, and chromium is still under review by the IRIS program. With respect to RSLs, the more health-protective approach of applying ADAFs for early life exposure via ingestion, dermal and inhalation was used to calculate screening levels for all exposure pathways. Application of ADAFs for all exposure pathways results in more health-protective screening levels.

As always, consult EPA toxicologists in the Superfund program of the regional office when developing site specific screening levels. "

American University

AMERICAN UNIVERSITY COMMENTS ON SVFUDS SITE-WIDE HUMAN HEALTH RISK ASSESSMENT WORK PLAN

January 29, 2014

American University (AU) is pleased to have this opportunity to review and comment on the SVFUDS Site-Wide Human Health Risk Assessment Work Plan (HHRAWP) dated December 18, 2013. This is one of a series of documents that will ultimately lead to a site-wide HHRA as a component of a site-wide RI/FS. AU has commented on earlier documents in this series including

• American University's Comments on the Draft-Final Evaluation of Remaining Sampling Requirements for SVFUDS.

• American University Response to "Final Evaluation of Remaining Sampling Requirements": Site-Wide Remedial Investigation/Feasibility Study.

• AU Comments on Draft-Final Addendum 1 to the Final Pre-2005 Human Health Risk Assessment Review

Many of AU's concerns have not been addressed or have been addressed inadequately in responses to these comments. AU's comments at this stage should be considered to incorporate by reference our comments and concerns as transmitted in the previous documents, above.

Section 1.2. The fact that information was presented to AU or that U representatives were present where information was shared should not be construed as agreement or approval by AU.

As noted previously in AU comments, it is quite unusual to perform a risk assessment independent of the remainder of the RI and when the nature and extent of contamination have not been defined. In fact, EPA guidance1.is clear in showing that risk assessment is an integral part of the RI at various stages in its development. Some of the information to be included in the RI is identified in Section 1.3.2 of this HHRAWP. This information should be fully integrated in the risk assessment rather than being included as separate components in the RI as shown in EPA guidance. Since an RI is not available, AU reserves its right to further comment on this HHRAWP if information contained in the RI requires modification of the risk assessment.

USACE RESPONSE: Noted.

Several sections of the HHRAWP including 3.3, 3.4.2, and 3.5 include subsurface soil. Section 3.5 defines subsurface soil as that which occurs to depths up to 10 ft bags. It is not clear anywhere in the document; however, what data represents surface soil and what data represents subsurface soil. At the very least, each data point presented in the appendices should include the soil depth, sampling interval, and degree of vertical compositing. Although AU has not gone back and evaluated every data point, it is our distinct impression that the subsurface in the area now known as the AU EU has been poorly characterized. A data summary, preferably with a map, should show the extent of subsurface characterization in this area.

USACE RESPONSE: On the Appx B tables of detections, or the raw complete data summary tables forwarded by Lan Reeser, January 14, 2014, the subsurface samples have the depth as the last character in the name, within parenthesis.

Section 3.4.2. The term "conservatively" is a value judgment and should be deleted. **USACE RESPONSE:** This term has been deleted.

Section 3.5.1. EPA's 2002 draft vapor intrusion guidance is considered to be obsolete. EPA's web site (://www.epa.gov/oswer/vaporintrusion/) should be consulted for more recent developments concerning vapor intrusion assessments. Mercury should be included in the vapor intrusion assessment since elemental mercury has been found at SVFUDS. This section and Figure 6 include home-grown vegetable ingestion as an exposure scenario. AU supports this inclusion; however, no further information is included in the work plan. This scenario should be fully detailed in Section 4.5 and the exposure factors tables. In addition, necessary parameters such as transfer coefficients should be presented in chemical-specific tables.

USACE RESPONSE: According to the website cited, EPA is currently preparing its final guidance for the vapor intrusion pathway, and up to this point in time, only external review drafts of the guidance documents (annotated with "Do Not Cite or Quote") have been made public. However, a Vapor Intrusion Screening Levels spreadsheet calculator that lists chemicals considered to be volatile and sufficiently toxic through the inhalation pathway has been added to the EPA website. This EPA reference will be used in place of the 2002 guidance document to support the vapor intrusion screening approach outlined in the Work Plan. Mercury will be included in the vapor intrusion assessment, if it is selected as a COPC. The specific information for the vegetable ingestion pathway will be provided in the HHRA, along with transfer coefficients.

Section 4.1. Although several guidance documents are cited in this section, it is unclear if the HHRA will be compliant with the requirements in these documents. For example, RAGS D is prominently cited; however, risk assessments performed by USACE contractors at the SVFUDS have never been compliant with RAGS D. In the 13 years since RAGS D was published, its use has become commonplace and risk assessors have come to rely on the information in the planning tables. The Tables in the HHRAWP are not as informative as the RAGS D planning tables. For example, RAGS D Table 2 includes the exposure point, minimum concentration, qualifiers, location of maximum concentration, detection frequency, and range of detection limits. None of this information is presented in the HHRAWP Table C.3. The guidance explicitly states, "The approach contained in RAGS Part D is strongly recommended for all CERCLA human health risk assessments." EPA Region III requires private PRPs to be fully compliant with RAGS D and there is no reason why a federal agency should not adhere to this same standard. AU's position is that this HHRA should be fully compliant with EPA guidance and that EPA should not approve the HHRA unless this compliance is demonstrated.

USACE RESPONSE: As noted in Section 1.3.1 of the Work Plan, the RAGS D table formats will be used in the HHRA.

Section 4.2 discusses several elements considered during data evaluation; however, the data evaluation is not presented in the document. The suitability of data for use in the HHRA should be fully evaluated based on EPA Guidance2. The impact of data quality issues on the HHRA should be addressed in the uncertainty section.

USACE RESPONSE: Each of the individual sampling efforts upon which these HHRAs are built, has had work plans reviewed, commented upon, and approved, prior to work commencing. Each of the reports has included discussion of data usability in data validation sections.

Section 4.2.1. Background comparison—Although never explicitly discusses, for screening purposes, USACE appears to continue to rely on a point estimate of background (UTL) rather than the entire distribution as per EPA guidance3. The statistical meaning of comparing a maximum to a UTL is not clear. Although UTLs are useful for identifying outliers, they are not advocated by EPA for background

comparisons. As noted on prior comments, the reasons for this include the sensitivity of the UTL to the form of the underlying distribution and the fact that the UTL is intrinsically non-conservative. As the uncertainty in the background dataset increases, it becomes easier to dismiss site contamination as representing background conditions using a UTL. The reasons for disregarding EPA guidance are inexplicable especially since all of the data have been or will be input to ProUCL which contains all the necessary routines to perform the statistical calculations of the types called for in the guidance. **USACE RESPONSE:** As described in the Section 4.2.1, "The COPCs are typically derived during the actual RA. However, because they have already been screened for these EUs in the Addendum 1 [to the Pre-2005 HHRA Review] document, they are included as Appendix C in this Work Plan. The Appendix C tables represent the screen of all available data for that EU, screened to the provisional COPC stage (as defined in that document). That is, all provisional COPCs derived in Addendum 1 for the three EUs (and as shown in Appendix C Tables C.1, C.2, C.3, and C.4) are COPCs for the quantitative RA." The screen at the Provisional COPC stage was done using the standard SVFUDS background values as determined in the SVFUDS Background Soil Sampling Report (2008).

Section 4.2.2. AU continues to have reservations regarding the handling of exposure units. The EU should be based on exposure scenarios and activity patterns. As stated earlier, residential exposure units of 0.5 acre are not unusual and, in fact, are consistent with the SSL guidance for soil sampling. **USACE RESPONSE:** Noted

Section 4.3. The version of ProUCL used should be cited. Line 22 refers to the "latest version of USEPA's ProUCL", however the citations point to 2010 releases which do not reflect the latest version (ProUCL 5, released in 2013). AU assumes that the latest version (ProUCL 5) will be the version used. This section also discusses summarization of exposure point concentrations. The appropriate means for doing this is RAGD D Table 3. In Addition, EPA Region 3 requires private PRPs to provide copies of all ProUCL inputs and outputs that are used in the risk assessment. There is no reason that this requirement should not apply to federal facilities in Region 3.

USACE RESPONSE: The most current version of ProUCL will be used (ProUCL version 5.0.00), and the reference will be updated in the Work Plan. The ProUCL output will be provided in an appendix to the HHRA.

Section 4.4.6. There is no evidence to support the contention that a groundkeeper/landscaper/gardener will have a lower exposure to soil than a construction worker. EPA's dermal exposure guidance4, in fact, shows that a gardener has one of the highest adherence factors of all occupations cited. It is hard to visualize a gardener who has less intensive soil contact than a heavy equipment operator. This sentence should be deleted and the exposure assumptions for the outdoor worker should be revised to reflect intensive exposures.

USACE RESPONSE: As mentioned in the second paragraph of Section 4.4.6, and as shown in Tables 4.3 and 4.7, the exposure assumptions are the same for both construction and outdoor workers (RME incidental soil ingestion rate of 330 mg/day and CTE soil ingestion rate of 100 mg/day; soil-to-skin adherence factor of 0.1566 mg/cm²), except for exposure duration.

Section 4.4.7. This should be made consistent with RAGS E as noted above.

USACE RESPONSE: The dermal exposure assessment will be conducted in accordance with RAGS Part E, as described in Section 4.5.2. However, the dermal adherence factors used have been updated by EPA, and are found in the EPA's Exposure Factors Handbook (EPA, 2011).

Section 4.5.4. AU has a standing objection to the use of a PEF intended for residential exposure to calculate particulate exposure to construction workers and grounds crew who have much more

intensive exposure to soil borne dust. The PEF derived in the HHRAWP is based on a mean wind velocity at Philadelphia. Grounds workers use equipment such as leaf blowers, outdoor vacuums, lawn mowers, etc which generate significant more particulate matter than an average wind. For example, Fitz et al.5 have measured emission factors for PM10 up to 130 mg/m2 for leaf blowing. Even using a push broom on a concrete surface generated PM10 up to 80 mg/m2. Use of a generic PEF for these work practices would significantly under-estimate exposures. In cases where particulate exposure is greater than that described by the assumptions of the PEF, EPA6 recommends using a site-specific method to calculate particulate exposure. EPA has also developed a series of equations specifically for construction workers in this regard. AU endorses this recommendation by EPA for outdoor workers and construction workers at the AU EU.

USACE RESPONSE: USACE stands by its initial response to this issue, one provided in response to AU comments on the Lot 18 risk assessment (2008) wherein AU had asked USACE to consider AU's industrial hygiene measurements for dust for groundskeepers and asked that they be used in place of default values. That response is as follows:

"Standard EPA defaults that are very conservative were used to estimate risk associated with exposure to soil at this site. USACE will not use AU's unpublished data without validation from EPA. Should EPA provide validation of these values, USACE would consider using them, but our communication with EPA suggests that their acceptance of AU inputs would require an intensive peer-review process that would likely be a lengthy process. USACE reviewed the 2001 report AU provided with site-specific measurements. These have been reviewed and considered qualitatively in the uncertainty discussion in this document."

The use of a default PEF is a standard approach for HHRAs, and previous SVFUDS HHRAs, reviewed and accepted by regulators, in addition to Lot 18 and the PSB, have used this approach (4825 HHRA - Section 3.5.1.1, and 4835 HHRA - Section 3.4.1.1).

Section 4.7. Risk characterization should be presented as described in RAGS D, especially Tables 7-10. This will ensure that all appropriate combinations of exposure routes, exposure pathways and receptors have been assessed.

USACE RESPONSE: The HHRA tables will be presented in RAGS D formats, as explained in Section 1.3.1 of the Work Plan.

Section 4.8. . The uncertainty analysis discussed here is totally inadequate and is not consistent with EPA guidance. Rather than presenting a complete uncertainly analysis, USACE has opted to use a *pro forma* discussion that does not fully characterize site uncertainties. Since the publication of the Superfund Public Health Evaluation Manual in 1986, EPA has emphasized a complete and transparent discussion of uncertainties in the Superfund risk assessment process including an overall expression of confidence in the risk estimates. This was followed by a continued emphasis on uncertainty in virtually every guidance document produced by EPA in addition to reports of the National Academy of Sciences regarding risk assessment in the federal government. Two specific requirements for inclusion in risk characterization from EPA's Risk Assessment Guidance for Superfund are especially important:

• level of confidence in the quantitative toxicity information used to estimate risks and presentation of qualitative information on the toxicity of substances not included in the quantitative assessment.

• level of confidence in the exposure estimates for key exposure pathways and related exposure parameter assumptions.

Neither of these requirements is included in this HHRAWP. This is particularly important given the lack of adequate site characterization and the failure to toxicologically evaluate most of the COPCs. It needs to be kept in mind that this assessment is built on the shoulders of several other assessments, all with a degree of uncertainty. The uncertainty from these early assessments may be propagated through and compounded in the final result. In an assessment as complex as the one USACE is proposing here, a quantitative uncertainty analysis using Monte Carlo or error propagation analysis needed. This section, especially Part 1 –data evaluation and identification of COPCs" discusses the "representativeness" of soil sampling and analysis, but not the adequacy. AU is highly concerned that an insufficient number of samples have been obtained or that the samples have not been analyzed for an adequate number of parameters. The only statements regarding adequacy that have been made by USACE refer to the number of samples per acre, which is a highly subjective criterion. For example, in a previous comment response USACE stated that there were "115 sets of results from 86 sample locations for an approximately 9 acre area, averaging to approximately 12+ samples per acre." Not only is this a subjective criterion of representativeness, it is actually inaccurate. Although there may have been 115 samples, there appear to be only 82 valid datapoints for arsenic, the primary COPC at the site. This translates into about 9 samples per acre or about 4 samples per exposure unit. Additionally almost all (over 90%) of the arsenic samples are concentrated in one portion of the AU EU.

USACE RESPONSE: The Work Plan Uncertainty section is a general presentation of the potential uncertainties associated with any HHRA; the site-specific uncertainties associated with the data used, exposure assessment, and toxicity assessment, will be addressed in the uncertainty section of the HHRA. Further, USACE is using EPA approved toxicity values to toxicologically evaluate these COPCs. With regard to the comment about error propagation, by updating these older studies with toxicity and exposure inputs based on newer and more updated studies, our evaluations would tend to decrease uncertainties rather than "compound" them.

A simple way of doing an objective analysis of adequacy and representativeness is to calculate the number of samples necessary to meet a DQO with acceptable levels of Type I and Type II errors. EPA statistical guidance7 discusses this concept and presents calculation examples for parametric (Box 3-1) and non-parametric (Box 3-18) evaluations. Similar methods are presented in EPA's SSL guidance. Supplementary material may be found in texts such as W. Ott's *Environmental Statistics and Data Analysis* or R.O. Gilbert's *Statistical Methods for Environmental Pollution Monitoring*. Since all of the data will have been input to ProUCL, implementation of these calculations is a simple task. An important part of this evaluation should be an investigation into the probability that all hotspots have been identified.

USACE RESPONSE: USACE has previously explained, primarily in the development of the Evaluation Document (June 2012) that laid the groundwork for the screening and evaluation of all data, old and new, why it believes the number of samples for the subject area is sufficient.

AU previously has been on record advocating the use of state-of-the-art geostatistical techniques to evaluate adequacy of sampling8. USACE has been resistant to using these methods. AU recommends that calculations of sample size be performed as above to determine sample number adequacy for RSL comparison and that geostatistical methods, as outlined in our earlier comments, be used to determine spatial adequacy.

USACE RESPONSE: USACE has previously explained, primarily in the development of the Evaluation Document (June 2012) that laid the groundwork for the screening and evaluation of all data, old and new, why it believes the number of samples for the subject area is sufficient.

Finally, there is little information available regarding quality assurance of the data that was obtained in early investigations. Concepts of DQOs, validation, and analytical methods have changed over the years since SVFUDS investigations started. This uncertainty section should include a complete evaluation of data validity in the light of contemporary quality assurance requirements for Superfund sites. **USACE RESPONSE:** Each of the individual sampling efforts upon which these HHRAs are built, has had work plans reviewed, commented upon, and approved, prior to work commencing. Each of the reports has included discussion of data usability in data validation sections. The uncertainty section will acknowledge that analytical methods have changed over the years.

Table 4.3-4.7 mentions chemical-specific DAFs, however, values are not provided for these factors anywhere in this HHRAWP. In standard risk assessment practice, oral absorption efficiency and dermal absorbed cancer slope factors are included in RAGS D Table 6 which should be provided in this HHRA. The exposure factors presented in Table 4.4 do not seem to accurately reflect student activities. The most exposed students will be athletes and this activity should be taken into account. For example, EF is an over-estimate, and both IR and AF values are under-estimates. All of the values in this table should accurately reflect a student athlete based on data presented in the Exposure Factors Handbook and scientific literature.

USACE RESPONSE: The RAGS D Table 6 will be provided with the HHRA and will include the information mentioned. The IR and AF exposure factors used for the student athlete are those that are standard for adults, and, while the exposure frequency is likely an over-estimate, as stated in Section 4.4.2, "The standard high-end default residential exposure frequency of 350 days/year recommended by USEPA (1991a, 1997a) will be used for both residents and students for the RME scenario. This value is based on the assumption that residents and students might be exposed to contaminants on a daily basis, except during a two-week period when they are away from the home or school (e.g., on vacation) (USEPA, 1991a, 1997a)". Although the actual outdoor time for students may be lower, this value was selected as a conservative approach.

Table 4.8. This table seems to omit many toxicity values for significant COPCs. Despite the fact that inhalation exposure is to be evaluated as evident in Section 4.5.3, there are no RfCs or IURs. There is no oral slope cancer factor for arsenic listed although oral exposure to arsenic is certainly driving the activities at the SVFUDS. The table has listings for both chromium (VI) and chromium (III) despite the fact that chromium speciation has not been performed at this site. In lieu of speciation evidence, a protective approach should be taken and all chromium should be assumed to be chromium VI. The entry under lead refers to use of a blood lead model but no information is provided regarding the model or its parameterization. Also note that the target organ(s) for lead overlap with target organs for other COPCs and the effects could be additive. The table does not show the combined uncertainty/modifying factors for RfDs. Again, many of the problems in this section could be avoided if the SOW was compliant with RAGS D.

USACE RESPONSE: Table 4.8 lists both chromium VI and chromium III for completeness, but for the HHRA, both for the screening of COPCs and for the risk calculations, we will assume that chromium in soil is chromium III. For various previous investigations, chromium VI has been analyzed but has not often been detected. It is a reasonable assumption that chromium is chromium III; there are no known sources of chromium VI based on AUES activities. Further, Kimbrough et al., 1999, concluded that most naturally occurring chromium is trivalent. Therefore, it is our conclusion that trivalent chromium is likely the predominant species at the site. Table 4.8 has been updated for all selected COPCs that will be carried through the risk assessment.

Figures

An overall figure showing the context needs to be provided. This would include the currently proposed AU EU along with other parts of the SVFUDS that may have considered elsewhere but are still part of the site-wide context. These should include Lot 18, SB, CDC, Glenbrook Road properties, the athletic field TCRA as well as another other important locations. It would be useful to include sample locations and arsenic concentration contours in these figures.

USACE RESPONSE: The figure shows the EU footprint that is the subject of the HHRA.

Fig 5 – in a previous response to comments, USACE noted that a portion of this EU had been backfilled with clean fill. It would be useful to show this area on this or a similar figure. USACE RESPONSE: The sample data summary previously submitted indicates which sample locations were replaced by clean fill. This is an HHRA Work Plan and is not intended to provide information previously provided in much more detail in reports such as the TCRA Athletic Fields Post Removal Report, etc.

Fig 6 – although a graphic conceptual model is useful, it should not take the place of the appropriate AGS D tables, particularly Table 1 and subsequent tables that refer to exposure points. **USACE RESPONSE:** All required RAGS D tables will be included in the HHRA.

Additional Delineation

The excavation and replacement activities in the AU EU have never been verified. In addition, because of the nature of the activities that have been conducted to date, many data gaps remain. Investigations have been discrete and limited rather than comprehensive and coordinated9, some investigations have measured only a limited number of chemicals of concern, very few subsurface samples have been obtained, some investigations have measured only metals despite a reasonable probability that organics were present. TICs have not been adequately assessed, previously unsuspected contaminated areas have been discovered serendipitously, scientifically unsubstantiated statements regarding the adequacy of sampling have been made, and geographical locations remain unsampled. AU proposes that the USACE undertake a comprehensive verification or confirmatory site investigation of the portion of the AU campus that is suspected to have been impacted by AUES activities or that has been a component of a limited investigation or removal action. This area would not be limited to the AU EU but would include Lot 18, CDC, PSB, SDA, Critical Lots TCRA areas and others. This proposal is consistent with the NCP concept of transition from a removal program to a remedial program. The investigation should be conducted in accordance with EPA guidance10and include:

a. A statistical sampling plan over a randomly spaced grid

b. Power calculations to assess the adequacy of sampling

c. Confirmation sampling and analysis of all significant Spring Valley parameters (CWM, ABP, explosives, VOC, SVOC, metals, inorganics including perchlorate)

d. Adequate evaluation of TICs

e. Integration into the site-wide risk assessment.

USACE RESPONSE: USACE has previously explained, primarily in the development of the Evaluation Document (June 2012) that laid the groundwork for the screening and evaluation of all data, old and new, why it believes the number of samples for the subject area is sufficient.

A simple method for planning confirmation sampling is the random grid over the area of concern. This can be developed using a variety of simple formulas available in the regulatory and scientific literature. Once the grid is developed, a fixed number, usually 25%, of the grid nodes can be sampled at random using a random number generator. Since exposure pathways involve contacts with soil to a depth of

10feet, sampling should occur to this depth. A full range of QA/QC sampling should accompany the soil samples to include duplicates and field blanks

USACE RESPONSE: USACE has previously explained, primarily in the development of the Evaluation Document (June 2012) that laid the groundwork for the screening and evaluation of all data, old and new, why it believes the number of samples for the subject area is sufficient.

¹EPA 1989. Risk Assessment Guidance for Superfund Volume I, Human Health Evaluation Manual (Part A). EPA/540/1-89/002. The material in Chapter 1 is particularly instructive regarding the role and timing of risk assessment activities in the RI/FS process .

² In addition to EPA 1992 Guidance for Data Usability in Risk Assessment, other data quality documents found at http://www.epa.gov/quality/qa_docs.html should be consulted.

³ Guidance for comparing background and chemicals concentrations in soil for CERCLA sites. EPA 540-R-01-003 ⁴ EPA 2004. RAGS Part E, Supplemental Guidance for Dermal Risk Assessment.

s Fitz, D. et al. 2006. Determination of Particulate Emission Rates from Leaf Blowers.

⁶ EPA 2002. Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24 ⁷ EPA 2006. Data quality assessment: statistical methods for practitioners. EPA QA/G-9S

8 AU (2012) American University Response to "Final Evaluation of Remaining Sampling Requirements": Site-Wide Remedial Investigation/Feasibility Study dated June 22, 2012

⁹ A good example of this is the several investigations at the Small Disposal area, Lot 18, Bamboo Area, Kreeger, and Public Safety Building. Although these areas are proximate to each other, they have been investigated individually and no comprehensive assessment has been made of chemical or geographical data gaps.

¹⁰ See Soil Sampling Quality Assurance User's Guide EPA 600/8-89/046 and Data Quality Assessment: Statistical Methods for Practitioners EPA/240/B-06/003

FINAL

SVFUDS SITE-WIDE HUMAN HEALTH RISK ASSESSMENT WORK PLAN

SPRING VALLEY FORMERLY USED DEFENSE SITE (SVFUDS) WASHINGTON, DC

DERP FUDS MMRP/CWM Project No. C03DC091801 and HTRW Project No. C03DC091802 Contract No.: W912DR-09-D-0061, Delivery Order 0011

Prepared for:

Baltimore District

US Army Corps of Engineers. BUILDING STRONG.

Prepared by:

ERT, Inc.

14401 Sweitzer Lane, Suite 300 Laurel, Maryland 20707

February 10, 2014

Prepared by:

amy Rosenstein

Amy B. Rosenstein SR RISK ASSESSOR Date: 2/07/14

Approved by:

Thomas Bachovchin, PG PROJECT MANAGER Date: 2/07/14

COMPLETION OF SENIOR TECHNICAL REVIEW

This document has been produced within the framework of the ERT, Inc. (ERT) quality management system. As such, a senior technical review has been conducted. This included review of all elements addressed within the document, proposed or utilized technologies and alternatives and their applications with respect to project objectives and framework of U.S. Army Corps of Engineers regulatory constraints under the current project, within which this work has been completed.

Date: 11/15/13

Jennifer Harlan, PMP SENIOR TECHNICAL REVIEWER/PROGRAM MANAGER

TABLE OF CONTENTS

1.0	RI	SK ASSESSMENT OVERVIEW1	
1.1	.1 Project Overview		
1.2	1.2 Risk Assessment Process for the SVFUDS		
1.3 Scope of the Site-Wide Risk Assessment		cope of the Site-Wide Risk Assessment	
1	.3.1	Quantitative RAs for Identified EUs	
1	.3.2	Site-Wide RA	
2.0	PF	OJECT BACKGROUND 4	
2.1	S	VFUDS Background	
2.2	.2 Previous Investigation Activities and Findings		
2.3	S	Summary of Sample Data Used in the RA	
3.0	CO	ONCEPTUAL SITE MODEL 6	
3.1	S	Suspected Sources and Types of Contaminants Present	
3.2	(Contaminant Release and Transport Mechanisms	
3.3	A	Affected Media	
3.4	F	Potential Receptors	
3	.4.1	Residential Use EUs7	
3	.4.2	Southern AU EU	
3.5	F	Potential Exposure Pathways	
3	5.5.1	Southern AU EU	
3	5.2	Residential Use EUs	
4.0	H	UMAN HEALTH RISK ASSESSMENT PROCESS 10	
4.1	Ι	ntroduction	
4.2	Ι	Data Evaluation 10	
4.2.		COPC Selection Process	
4	.2.2	Additional Screen for Outlier Locations	
4.3	Ι	Derivation of Exposure Point Concentrations	
4.4	E	Exposure Assessment	
4	.4.1	Body Weight	
4	.4.2	Exposure Frequency	
4	.4.3	Exposure Duration	
4.4.4		Averaging Time	

4.	.4.5	Skin Surface Area 1	4
4.	4.6	Incidental Soil Ingestion Rate 1	4
4.	.4.7	Soil Adherence Factors 1	4
4.	.4.8	Inhalation Rates 1	5
4.	.4.9	Fraction Ingested from Site 1	5
4.	4.10	Other Exposure Parameters	5
4.5	Esti	mation of Intake 1	5
4.5.1		Incidental Ingestion of Contaminants in Soil 1	6
4.5.2		Dermal Contact with Contaminants in Soil 1	6
4.5.3		Inhalation of Particulates from Soil 1	7
4.	.5.4	Age-Adjusted Residential Exposure 1	7
4.6	Tox	icity Assessment 1	8
4.7	Risl	k Characterization 1	9
4.8	.8 Uncertainty Discussion		20
5.0	REF	ERENCES	13

LIST OF TABLES

Table 4.1: Provisional COPCs from the Initial Screen ¹	. 22
Table 4.2: Screening of Outlier Samples for Additional COPCs at the Southern AU EU	. 23
Table 4.3: Exposure Factors for the Outdoor Worker Exposure Scenario	. 24
Table 4.4: Exposure Factors for the Student Exposure Scenario	. 25
Table 4.5: Exposure Factors for the Adult Resident Exposure Scenario	. 26
Table 4.6: Exposure Factors for the Child Resident Exposure Scenario	. 27
Table 4.7: Exposure Factors for the Construction Worker Scenario	. 28
Table 4.8: Toxicity Values	. 29

LIST OF APPENDICES

APPENDIX A: SITE FIGURES

APPENDIX B: DATA SUMMARY TABLES

APPENDIX C: COPC SCREENING TABLES

LIST OF ACRONYMS AND ABBREVIATIONS

AF	Adherence Factor
AU	American University
AOI	Area of Interest
AUES	American University Experiment Station
bgs	Below Ground Surface
CDI	Chronic Daily Intake
CENAB	United States Army Corps of Engineers, Baltimore District
COPC	Chemical of Potential Concern
CSEFH	Child-Specific Exposure Factors Handbook
CSM	Conceptual Site Model
CTE	Central Tendency Exposure
CWM	Chemical Warfare Materiel
DAF	Dermal Absorption Factor
DERP	Defense Environmental Restoration Program
EFH	Exposure Factors Handbook
EPC	Exposure Point Concentration
ERT	ERT, Inc.
EU	Exposure Unit
FUDS	Formerly Used Defense Site
HEAST	Health Effects Assessment Summary Tables
HI	Hazard Index
HQ	Hazard Quotient
HTRW	Hazardous, Toxic, and Radiologic Waste
IRIS	Integrated Risk Information System
IUR	Inhalation Unit Risk
kg	Kilogram
m	Meter
MEC	Munitions of Environmental Concern
mg	Milligram
MMRP	Military Munitions Response Program

PEF	Particulate Emission Factor
POI	Point of Interest
PPRTV	Provisional Peer Reviewed Toxicity Value
Q/C	Inverse of Mean Concentration at Center of Source
RA	Risk Assessment
RAGS	Risk Assessment Guidance for Superfund
RfC	Reference Concentration
RfD	Reference Dose
RI/FS	Remedial Investigation and Feasibility Study
RME	Reasonable Maximum Exposure
RSL	Regional Screening Level
SA	Skin Surface Area
SF	Slope Factor
SVFUDS	Spring Valley Formerly Used Defense Site
UCL	Upper Confidence Limit
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency

1.0 RISK ASSESSMENT OVERVIEW

1.1 Project Overview

This document is a Work Plan for the Spring Valley Formerly Used Defense Site (SVFUDS) Site-Wide Risk Assessment. The Work Plan documents the procedures to be used to perform Human Health Risk Assessments (RAs) to estimate the potential risks/hazards to current and future receptors from site-related contamination at three exposure units (EUs) within the SVFUDS in Washington, D.C. One RA will assess risk at two residential use EUs within the residential section of the SVFUDS and be completed as a standalone report, and another RA will be completed for the Southern American University (AU) EU (completed as a standalone report). The RAs, which will be presented in the Site-Wide Remedial Investigation (Site-Wide RI) document, will be based on historical information and analytical data from previous investigation reports. This Work Plan also describes risk-related elements, beyond these quantitative RAs, that will be included in the Site-Wide RI.

ERT, Inc. (ERT) has been contracted by the U.S. Army Corps of Engineers (USACE), Baltimore District (CENAB), to perform a Remedial Investigation and Feasibility Study (RI/FS) for the SVFUDS (Defense Environmental Restoration Program [DERP] Formerly Used Defense Sites [FUDS] Military Munitions Response Program/Chemical Warfare Materiel [CWM] Project No. C03DC091801 and DERP FUDS Hazardous, Toxic, and Radioactive Waste (HTRW) Project No. C03DC091802). ERT is performing activities in support of ongoing sampling and remedial investigations addressing munitions and explosives of concern (MEC) and CWM under Contract W912DR-09-D-0061, Task Order 0011.

1.2 Risk Assessment Process for the SVFUDS

Significant investigation, sampling, and remediation, has been performed at the SVFUDS over the course of many years of ongoing project activity. Several discrete RAs of individual areas, a Site-Wide Screening Level Ecological RA, and a Site-Wide Groundwater RA, prepared by multiple contractors at various times, have been completed or are in process.

In order to develop a strategy to organize and assess this existing information, to evaluate the need for additional data, and to integrate this information into a cohesive plan, USACE convened a meeting of key SVFUDS stakeholders in 2010 and presented a Position Paper that outlined a path forward for resolving these issues. The stakeholders included personnel from the US Environmental Protection Agency (USEPA), the District of Columbia Department of the Environment, the community Restoration Advisory Board consultant, and American University personnel.

The overall goal was to integrate the previous and ongoing risk assessment studies and findings into a comprehensive site-wide risk assessment that would address all elements of human health and ecological risk, and which would be presented as part of the Site-Wide RI/FS for the SVFUDS. The primary actions determined to be required included review of the previously completed (pre-2005) human health RAs to assess whether they remained protective, and additional soil sampling to address data gaps. To achieve the overall goal, three separate efforts were conducted, each one building off of the findings of the previous one. The efforts focused on identifying specific areas where further risk assessment was warranted, concluding with the identification of the EUs requiring full RAs, as described in this RA Work Plan.

The first effort was the completion of the *Final Evaluation Document for the Spring Valley FUDS Integrated Site-Wide Remedial Investigation/Feasibility Study, Washington, DC* (USACE, 2012). This 'Evaluation' document was a work plan presenting the methodology to review pre-2005 human health RAs completed at various times for various areas of the SVFUDS. The objective was to determine whether the chemicals of potential concern (COPCs) identified, the exposure pathways considered, and the toxicity evaluations, would still be appropriate when considering updated USEPA guidance and site-specific background concentrations, and to identify remaining areas that required additional risk screening and risk assessment. Additionally, this document presented a plan for supplemental sampling to fill identified data gaps and to ensure that areas were fully characterized with regard to making conclusions about risk posed to human receptors; the sampling was completed in late 2012.

The second effort (using the Evaluation document as a work plan) was completion of the *Final Pre-2005 Human Health Risk Assessment (HHRA) Review* (USACE, August 2013). This document provided the results of a review of the five pre-2005 HHRAs and conducted rescreening of all soil data from SVFUDS using updated risk-based screening levels and background data, to ensure that any potential risks associated with soils still in place were evaluated. The review was based on the historical information, analytical data, and conclusions presented in the five pre-2005 discrete HHRAs. The review resulted in the development of multiple EUs still containing COPCs, for which further risk assessment was recommended.

The third effort was the completion of *Addendum 1 to the Final Pre-2005 Human Health Risk Assessment Review* (USACE, 2013). Addendum 1 started with the EUs identified in the Pre-2005 HHRA Review document, and using the screening procedure developed for that document, presented a follow-on screening effort that incorporated additional sampling data collected during investigations not associated with the older RAs. The objective was to integrate all remaining sampling results in the SVFUDS and identify remaining areas that required additional human health risk assessment. Addendum 1 concluded with the recommendation of RAs for the three EUs that are the subject of this work plan.

1.3 Scope of the Site-Wide Risk Assessment

This Work Plan addresses both the quantitative RAs to be conducted on the identified EUs, and the other risk-related elements that will be presented in the Site-Wide RI document.

1.3.1 **Quantitative RAs for Identified EUs**

The scope is to conduct a site-specific quantitative risk assessment for human receptors at the three EUs that remain following the screening process described above. Data previously collected during site investigation activities, suitable for use in an RA as defined by the USEPA (USEPA, 1992c), will be used to identify and screen COPCs at each EU. For the receptors present at each EU, the RA will estimate the magnitude of exposure to COPCs, identify potential exposure pathways, and quantify exposure. This information, in conjunction with toxicity information for the COPCs, will be used to quantitatively estimate the risk posed to human receptors associated with exposure to the COPCs in soil at each of the three EUs. This RA does not address explosive hazards that may exist due to the presence of ordnance; those hazards are addressed separately in the MEC Hazard Assessment.

The project background and a summary of previous investigative activities are discussed in Section 2. A Conceptual Site Model for the three EUs is presented in Section 3. The

methodology to be used for evaluating potential human health risks is presented in Section 4. References are provided in Section 5. USEPA Risk Assessment Guidance for Superfund (RAGS) Part D tables (USEPA, 2001) will be included in the RA as appropriate.

1.3.2 Site-Wide RA

The assessment of remaining risk at the identified EUs will be presented in the Risk Assessment section of the Site-Wide RI. However, to ensure that the presentation of risk within the SVFUDS integrates all risk-related issues on a site-wide basis, that section will also address various other topics. Other risk-related elements that contribute to a comprehensive understanding of risk within the SVFUDS include:

- Ecological Risk Assessment;
- Groundwater Risk Assessment;
- MEC Hazard Assessment (MEC HA);
- External Health-related Studies (prepared by others, to be summarized only);
- Derivation and Protectiveness of 20 parts-per-million (ppm) of arsenic as the SVFUDS soil cleanup goal;
- Arsenic in soil potentially remaining beneath city streets (where excavation is impractical); and
- Sufficiency of the existing sampling to adequately characterize risk within the SVFUDS.

Each of these efforts has largely been completed as separate studies or investigations, and they will be presented in detail in the Site-Wide RI.

2.0 PROJECT BACKGROUND

2.1 SVFUDS Background

The SVFUDS is an area of northwest Washington, DC, that was formerly occupied by the American University Experiment Station (AUES). During World War I, the U.S. government established the AUES to investigate the testing, production, and effects of noxious gases, antidotes, and protective masks. The AUES was located on the grounds of the current AU and used additional property in the vicinity to conduct this research and development on CWM, including mustard and lewisite agents, as well as adamsite, irritants, and smokes. After the war, these activities were transferred to other locations and the site was returned to the owners. The SVFUDS site location is shown in Figure 1. A map of the three EUs is presented as Figure 2 (all figures are presented in Appendix A).

2.2 Previous Investigation Activities and Findings

Each of the efforts described in Section 1.2 above provided greater focus on identifying specific areas of the SVFUDS requiring formal risk assessment. The Pre-2005 HHRA Review document showed that for some of the five previously conducted HHRAs, COPCs still remained in various Points of Interest (POIs) or areas of investigation through the initial and additional screening steps. The POIs or areas of investigation with remaining COPCs were developed into larger EUs based on similar past practices, similar receptor populations and exposure pathways, and geography, so that the area could be assessed based on all data available, without regard as to when the data were collected. Recommendations to address the remaining COPCs focused on integrating the pre-2005 HHRA samples with more recent samples and conducting risk evaluations on a single data set for each larger EU.

Using the screening procedure presented in the Pre-2005 HHRA Review, the Addendum 1 document conducted the follow-on screening of the larger EUs with the objective of further identifying specific remaining areas of the SVFUDS that required formal RAs. The older pre-2005 risk assessment samples were combined with the newer more recent sample results into a single data set for each of the EUs, and then the screening steps were applied. This follow-on screening of the combined data sets was completed for all chemicals in the data set.

The follow-on screen determined that three EUs required formal RAs (see Figure 2):

- The Area of Interest (AOI) 9 EU;
- The Spaulding-Rankin EU; and,
- The Southern AU EU.

The AOI 9 EU contains POI 1, the circular trenches where static testing of CWM munitions was conducted, and POI 7, where agent persistency testing was reportedly conducted. There are also a number of ground scars in AOI 9 in the vicinity of POI 1 that became POIs 2, 3, 4, 5, 6, and 8. Portions of AOI 9 fall within the downrange impact areas of the Range Fan. This EU currently comprises neighborhood residential properties.

The Spaulding-Rankin area EU is defined by previous areas of investigation at this location. It is limited to a single residential property where the Range Fan firing point and concrete shell pits were located. The EU includes POIs 21, 22, 23, and 25. Although there are other residential properties nearby that were included in the pre-2005 HHRAs, the Pre-2005 HHRA Review

document recommended that this property be maintained as a separate EU based on past activities that occurred within it versus the other nearby residential properties.

The Southern AU EU is an active university campus with no full time permanent residences and is defined by previous areas of investigation at this location. The intent of this EU boundary was to integrate all previous investigations and define an area with common receptors and exposure pathways.

2.3 Summary of Sample Data Used in the RA

As described in the Addendum 1 document, three sets of sample data were used in the follow-on screen. Each of the three EUs contained samples from all three sets. The first data set comprised all of the samples used in the pre-2005 risk assessments, i.e., all the data points used in the Pre-2005 HHRA Review document. On Figures 3, 4, and 5 (Apprendix A), these samples are color-coded using black dots.

The second data set comprised samples from miscellaneous sampling efforts conducted during anomaly investigations, or other samples collected for various reasons, which were not captured in any prior risk assessments. These included samples with collection dates from as early as 2001 to as late as 2011. On the figures, these samples are color-coded using blue dots.

The third data set comprised samples resulting from the Evaluation document recommendations. The sampling was based on possible historical AUES impacts not addressed in ongoing investigations, or possible data gaps. This relatively recent sampling was primarily completed in 2012. On the figures, these samples are color-coded using red dots.

These three data sets, specific to the three identified EUs requiring an RA, will be used in the quantitative RA. Figures 3, 4, and 5 (Appendix A), present the sample locations for the AOI 9, Spaulding-Rankin, and Southern AU EUs, respectively. Note that in some cases, these locations represent more than one sample result, for example, where a sample location contained multiple depth increments, or where a single location contained a split result (as was the case for some of the USACE 1995 and USEPA 1999 risk assessment locations). Due to map scale and space limitations, not every individual sample name is shown on the figures and some of the sample names shown are abbreviated. Also, multiple results for a single location, as in the case of split samples, are not shown (i.e., a dot may represent more than one set of data). However, all results will be used in the RA, including all depth increments and all split results.

For areas that have previously been excavated and the locations backfilled with clean soil, Appendix C of the Pre-2005 HHRA Review document details how the backfill data results were used in place of the original sample result for the screening process presented in the two screening documents. Those backfill results will similarly be used, where applicable, in the data set for the quantitative RA.

Data tables containing all the detected analytes for each of the three EUs are presented in Appendix B. A CD has also been included presenting the more complete raw data sets for each EU (the difference between what is presented in the Appendix B tables and what is presented on the CD are the non-detect results, i.e., analyzed chemicals that were never detected).

3.0 CONCEPTUAL SITE MODEL

To begin the RA, a conceptual site model (CSM) was completed. A CSM is an effective tool to define site dynamics, streamline the risk evaluation, and develop appropriate response actions. The CSM provides an overall assessment of the primary and secondary sources of contamination at a site and the corresponding release mechanisms and impacted media. The CSM also identifies the potential human receptors and the associated pathways of exposure to the affected media. CSMs are dynamic tools that can be updated as necessary. For example, if changes in site conditions occur, or additional site characterization information is collected, the CSM can be revised to more accurately reflect the most current information. Additionally, the CSM can be revised during the risk assessment planning process to include input from stakeholders. Understanding site conditions and land uses helps to accurately identify potential receptors under current and likely future scenarios, as well as the most appropriate corrective action(s) necessary.

A preliminary CSM for current and future human receptor exposure scenarios at the three EUs has been developed following USEPA (1989a, 1996a) guidance and is included as Figure 6 to aid in understanding and describing the EUs, and to present assumptions regarding:

- Suspected sources and types of contaminants present,
- Contaminant release and transport mechanisms,
- Affected media,
- Potential receptors that could contact site-related contaminants in affected media under current or future land use scenarios, and
- Potential routes of exposure.

An exposure pathway is not considered to be complete unless all five of the elements listed above are present.

3.1 Suspected Sources and Types of Contaminants Present

Based on the historical use of the site, buried wastes and testing associated with the AUES research and development of CWM are potential sources of contamination. Historical sampling of the SVFUDS has included analyses for metals, organics, CWM, and CWM breakdown products. The previously referenced Pre-2005 HHRA Review and Evaluation documents contain more detailed summaries of the past activities that could contribute to contamination in the SVFUDS.

3.2 Contaminant Release and Transport Mechanisms

Release of contaminants from past practices would be directly to surface or subsurface soil. Excavation activities (e.g., tree planting or construction) could transport contaminants to the surface through mixing of the soil column associated with digging. Leaching of soil contaminants to groundwater is also a potential transport mechanism; however, this will be evaluated in a separate site-wide groundwater RA (in process).

3.3 Affected Media

This RA Work Plan focuses on the three EUs with potential COPCs in soil. Previous investigations at the SVFUDs have shown that past activities have impacted surface and subsurface soil. There are no surface water and sediment locations at the three EUs that are the

focus of this RA Work Plan. SVFUDS groundwater data will be assessed in a separate site-wide groundwater RA.

3.4 Potential Receptors

A potential receptor evaluation should consider criteria such as:

- Current and future land use on and near the site;
- Zoning status and/or deed restrictions of the site and adjacent properties;
- Current and future access to the site and to the affected media;
- Existing and/or planned exposure controls (e.g., engineered containment structures);
- Present and planned site activities;
- Extent that the site is developed and vegetated; and
- Potential for soils to be disturbed (e.g., soil-invasive activities).

Potential human receptors are defined as individuals who may be exposed to site-related contaminants in environmental media. Consistent with USEPA (1989a) guidance, current and reasonably anticipated future land uses were considered in the receptor selection process.

3.4.1 <u>Residential Use EUs</u>

The two residential use EUs are AOI 9 and Spaulding-Rankin. Currently, these two EUs comprise residential properties and their future use is not expected to change. Current potential exposure to surface soil will be evaluated for:

- Outdoor workers (i.e., landscapers); and
- Adult and child residents.

Future exposures to mixed surface/subsurface soil will be evaluated for:

- Outdoor workers (i.e., landscapers);
- Construction workers; and
- Adult and child residents.

3.4.2 Southern AU EU

As a currently active university campus, current groups that may contact surface soil include:

- Outdoor workers (i.e., landscapers and maintenance); and
- Student recreational users (as associated with a 4-year college student).

Future exposures to surface/subsurface soil for the following receptors will be evaluated:

- Outdoor workers;
- Student recreational users;
- Construction workers and
- Adult and child residents.

3.5 Potential Exposure Pathways

USEPA (1989a) defines an exposure pathway as: "The course a chemical or physical agent takes from a source to an exposed organism. An exposure pathway describes a unique mechanism by which an individual or population is exposed to chemicals or physical agents at or originating from a site. Each exposure pathway includes a source or release from a source, an exposure point, and an exposure route. If the exposure point differs from the source, a transport/exposure medium (e.g., air) or media (in cases of intermedia transfer) is also included." The CSM links the sources, locations, and types of environmental releases with receptor locations and activity patterns to determine exposure pathways of potential concern.

Two different soil exposure intervals will be evaluated. The current potential receptors will be evaluated using an exposure interval of 0 to 2 feet below ground surface (bgs), to represent routine landscaping, gardening, and outdoor play activities. The soil exposure interval for future potential receptors includes mixed soils from 0 to 10 feet bgs, which includes the 0 to 2 foot interval to which current receptors could be exposed. This exposure interval takes into account soil mixing that may occur due to construction.

3.5.1 Southern AU EU

Currently, the Southern American University EU is an active university campus, where outdoor workers and students spending time outdoors could be exposed to surface soil (0 to 2 foot interval) by incidental soil ingestion, dermal contact, and inhalation. The potential for surface soil COPCs to migrate to indoor air will be evaluated based on their volatility, as defined by USEPA, 2002a (chemicals with a Henry's law constant greater than 10⁻⁵ atm m³ mol⁻¹ at room temperature), and as listed in an USEPA Excel spreadsheet, the Vapor Intrusion Screening Levels spreadsheet calculator, as chemicals with sufficient volatility and toxicity. (Note that USEPA's draft vapor intrusion guidance USEPA, 2002b, is scheduled to be finalized in 2014.) If indoor air is a potential exposure route, the Johnson-Ettinger vapor intrusion model (USEPA on-line tool) will be used to estimate indoor air concentrations, in order to evaluate the exposure pathway of inhalation of indoor air for current students based on current surface soil concentrations. The vegetable ingestion exposure pathway will be included for the 0 to 2 foot depth at Southern AU for current students and for the 0 to 10 foot depth for future students to account for any gardening that may be occurring on the site.

In the future, construction workers, outdoor workers, and students using outdoor areas could be exposed to mixed surface/subsurface soil (0 to 10 foot interval) by incidental soil ingestion, dermal contact, and inhalation outdoors, and students could be exposed to inhalation of vapors indoors, if the criteria described above for volatility are met. Also, possible future exposures to mixed surface/subsurface soil for students and residents will be evaluated, and will include the exposure pathways of incidental soil ingestion, dermal contact, inhalation outdoors, home-grown vegetable ingestion, and inhalation of vapors indoors, if the criteria described above for volatility are met.

For both current and future scenarios, the inhalation of dust indoors will be discussed qualitatively, based on published studies of transfer factors for outdoor-to-indoor transfer of dust.

3.5.2 <u>Residential Use EUs</u>

The AOI 9 and Spaulding-Rankin EUs comprise residential properties and their future use is not expected to change. For these EUs, the potential soil exposure pathways, both currently to surface soil and in the future to mixed surface/subsurface soil, include the exposure pathways of incidental soil ingestion, dermal contact, inhalation outdoors, inhalation of vapors indoors, and home-grown vegetable ingestion.

Inhalation of dust indoors will be discussed qualitatively, based on published studies of transfer factors for outdoor-to-indoor transfer of dust.

Infiltration of volatile compounds from soil can occur due to vapor intrusion through basements. The potential for vapor intrusion into current or future buildings will be evaluated as described above.

4.0 HUMAN HEALTH RISK ASSESSMENT PROCESS

4.1 Introduction

The RA will be conducted using reference and guidance documents from USEPA and will include:

- Risk Assessment Guidance for Superfund (RAGS), Volume 1, Human Health Evaluation Manual (Part A), Interim Final (USEPA, 1989a);
- Risk Assessment Guidance for Superfund (RAGS): Volume I Human Health Evaluation Manual, Part D, Standardized Planning, Reporting and Review of Superfund Risk Assessments, Final (USEPA, 2001);
- Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final (USEPA, 2004);
- Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual, Part F, Supplemental Guidance for Inhalation Risk Assessment (USEPA, 2009a);
- Exposure Factors Handbook (USEPA, 2011); and Child-Specific Exposure Factors Handbook (CSEFH) (USEPA, 2008a);
- Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions (USEPA, 1991b);
- Guidance for Data Usability in Risk Assessment (Part A) (USEPA, 1992c);
- Supplemental Guidance to RAGS: Calculating the Concentration Term (USEPA, 1992d);
- Guidance for Risk Characterization (USEPA 1995);
- Soil Screening Guidance (USEPA, 1996a); and
- Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA, 2002).

The specific sub-tasks to be performed for the development of the RA will include:

- Data evaluation (including COPC selection);
- Exposure assessment;
- Toxicity evaluation;
- Risk characterization; and
- Qualitative uncertainty analysis.

The following sections provide the details of these steps.

4.2 Data Evaluation

Section 2.3 describes the data that will be used to perform the RA (see Appendix B). The available analytical data have been evaluated based on USEPA protocols to determine an appropriate set of data for use in performing a quantitative RA. Data previously collected during site investigation activities are suitable for use in an RA as defined by USEPA (1992c). Data elements considered included:

- Type of validation (including an assessment of blanks)
- Sample locations and parameters
- Number of samples
- Sample quantitation limits
- Laboratory qualifiers and codes (e.g., J-qualified [estimated] data will be used in the RA, R-qualified [rejected] data will not)
- Likelihood of a contaminant to be present given site history

These data were generated during various investigation activities as previously described and additional details concerning data quality can be found in reports specific to those investigations. The quantitative RA will be performed on the soil within the EUs as represented by the samples shown on Figures 3, 4, and 5 (Appendix A).

4.2.1 <u>COPC Selection Process</u>

The Addendum 1 document identified the three EUs requiring a formal RA. The basis of identifying the three EUs was a COPC screen that will also be used for this RA. The initial screen of all detected chemicals in soil was conducted using current criteria, comparing the maximum detected value of each constituent against current risk-based screening levels and current background concentrations. Analytes were eliminated as COPCs if the maximum detected concentration was less than the greater of the background value or the RSL. The two steps used to select COPCs in Addendum 1, the results of which will be used in the HHRA, are listed below, and are presented in the tables in Appendix C:

- The maximum detected concentration of a chemical in soil was compared to the USEPA residential soil risk-based screening level (RSL) that is protective to a risk level of 1 x 10⁻⁶ (for carcinogens) or a hazard quotient level of 0.1 (to account for cumulative effects for non-carcinogens). The generic residential soil RSLs are based on potential exposures via the dermal, ingestion, and inhalation routes, and reflect current toxicity values from sources used in the USEPA's toxicity hierarchy.
- Additionally, the maximum detected concentration was compared to the current 2008 SVFUDS soil background data (*Background Soil Sampling Report for SVFUDS*, USACE, 2008). In general, COPCs may be eliminated from quantitative evaluation in the HHRA if the maximum detected concentration is less than the background concentration. Comparison to background to determine which COPCs are elevated over background is consistent with USEPA (1989, 1992b, 2002) guidance.

The COPCs are typically derived during the actual RA. However, because they have already been screened for these EUs in the Addendum 1 document, they are included as Appendix C in this Work Plan. The Appendix C tables are a screen of all available data for each EU, screened to the provisional COPC stage (as defined in the Addendum 1 document). That is, all provisional COPCs derived in Addendum 1 for the three EUs (and as shown in Appendix C Tables C.1, C.2, and C.3) are COPCs for the quantitative RA. The COPCs are also shown in Table 4.1.

4.2.2 Additional Screen for Outlier Locations

As part of the Addendum 1 additional screen, detected concentrations using the combined data sets were reviewed to ensure that the identified EUs were not so large that they diluted higher concentrations of a chemical over the larger area. This process evaluated whether maximum concentrations of each chemical were more than 10 times higher than the average of the remaining concentrations of that chemical (i.e., identifies whether the maximum was an outlier). Where an outlier was determined, that sample location was removed from the data set and the EU was evaluated using the remaining samples. Eight samples from six discrete locations were identified as outliers for the Southern AU EU. Each of these six discrete outlier locations will be evaluated separately for risk (i.e., a risk determination will be made about that discrete location). The outlier locations and the samples they represent are shown in Figure 5 (Appendix A). Note that there were no outliers for the two residential use EUs.

These six outlier locations were not screened through the provisional COPC step in the Addendum 1 document, but have been screened for this Work Plan; they are included in Appendix C. Tables C.4A, B, C, D, E, and F, represent the six outlier locations (comprising eight total samples). Table 4.2 also summarizes the selected COPCs for each outlier location.

4.3 Derivation of Exposure Point Concentrations

Exposure Point Concentrations (EPCs) are the concentrations of constituents in a given medium to which human receptors are exposed at the point of contact (e.g., exposure to soil during gardening). EPCs are used to calculate the constituent intakes for human receptors based on methodology provided in RAGS (USEPA, 1989a).

The 95% Upper Confidence Limit of the mean (95% UCL) of each COPC can be used to estimate the concentration of a contaminant that a receptor would be exposed to over a length of time. This EPC can then be used to estimate risk. For selected COPCs, the 95% UCL concentration will be calculated using the latest version of USEPA's ProUCL software version 5.0.00 (USEPA, 2013b, c), and using the method recommended by the software. The lesser of the recommended UCL and the maximum detected value will be used as the EPC for the Reasonable Maximum Exposure (RME) scenario. For the Central Tendency Exposure (CTE) scenario, the central tendency estimate from the method used to calculate the recommended UCL will be used as the EPC. ProUCL uses the Kaplan-Meier method to account for non-detects in the calculation of UCLs (USEPA 2013c, d).

For sample sets with few detects (either <4-6 detected samples, or <4%-5% detects) or a small sample size (<5 samples), the maximum detected concentration will be used as the EPC for the RME scenario and the mean of the detected concentrations (using $\frac{1}{2}$ the detection limit for non-detects) will be used as the EPC for the CTE scenario.

The EPCs for RME and CTE scenarios calculated using ProUCL will be summarized in a table, and the summary statistics for the RME and CTE EPC values will be shown in an appendix.

4.4 Exposure Assessment

The objectives of the exposure assessment are to characterize the exposure setting, identify potentially exposed populations and potential exposure pathways, and quantify the exposures to potential human receptors at the site. The potentially exposed populations, exposure media, and exposure pathways were presented in the CSM (Section 3).

USEPA (1992d, 1995) typically requires two types of exposure evaluations: an RME and an average, or CTE, estimate. The RME scenario is defined as the maximum exposure that is reasonably expected to occur (USEPA, 1989a), while the CTE scenario is defined as the average exposure that is expected to occur. For the RME exposure scenario, exposure parameters were chosen so that the combination of variables for a given pathway would result in an estimate of the RME for that pathway (USEPA 1992d, 1995). Under this approach, some variables may not be at their individual maximum values, but when combined with other variables, they will result in estimates of the RME. CTE risk estimates will be calculated using central tendency, or average, estimates for each of the exposure parameters (USEPA, 1992d, 1995).

Default and site-specific exposure assumptions are selected in this section in order to quantify the magnitude, frequency, and duration for each exposure pathway. The RME and CTE exposure parameters for each potentially exposed population are outlined in Tables 4.3 through 4.7. Generally, contact rate, exposure frequency, and exposure duration are the most sensitive parameters (i.e., most likely to drive exposure estimates). The following subsections discuss the justification for the selected exposure parameters.

4.4.1 Body Weight

Although the USEPA Exposure Factors Handbook (EFH) (USEPA, 2011) reports an average body weight for all adults (males and females between the ages of 18 and 75 years) of 80 kilograms (kg), the previous USEPA default value of 70 kg is still generally used in risk assessments. This body weight will be used for all adult exposure scenarios.

An average body weight of 15 kg will be used for children. The average body weight for children ages 1 year to 6 years as presented in Table 8-1 of the Child-Specific Exposure Factors Handbook (CSEFH) (USEPA, 2008a) is 14.6 kg, which is rounded to 15 kg.

4.4.2 Exposure Frequency

Exposure frequency is based on expected activities for each of the receptors at the site. USEPA standard default values based on national data on the distribution of exposure frequencies will be used.

For the outdoor worker, a high-end exposure frequency of 250 days/year will be used for the RME scenario, representing a worker that is present on site every working day during the year, assumed to be 5 days/week for 50 weeks/year. The estimated CTE outdoor worker exposure frequency will be one-half a year, or 125 days/year, in order to account for time likely spent landscaping at other locations, and to account for lower work levels in the winter months.

For the construction worker, an exposure frequency of 250 days/year will be used for both the RME and the CTE scenarios.

The standard high-end default residential exposure frequency of 350 days/year recommended by USEPA (1991a, 1997a) will be used for both residents and students for the RME scenario. This value is based on the assumption that residents and students might be exposed to contaminants on a daily basis, except during a two-week period when they are away from the home or school (e.g., on vacation) (USEPA, 1991a, 1997a). For the CTE scenario, an exposure frequency of 160 days/year is assumed, based on eight months per year (March through October) for 5 days/week.

4.4.3 Exposure Duration

The outdoor worker exposure durations are 30 years for the RME scenario and 8 years for the CTE scenario (USEPA, 2011). For the student, a four-year exposure period is assumed for both the RME and the CTE scenario. For the future construction worker, an exposure duration of 1 year is assumed to be the time period of construction for the RME scenario and one-half year for the CTE scenario.

National statistics are available for residential occupancy periods based on U.S. Bureau of Census data, as summarized in the USEPA (2011) EFH. The residential exposure durations of 33 years for RME and 8 years for CTE will be used (USEPA, 2011). Although there are no statistical data available on childhood residential occupancy periods, it will be assumed that a child (0-6 years old) would reside for six years at a residence.

4.4.4 Averaging Time

The averaging time selected depends on the type of toxic effect being assessed (USEPA, 1989a). For non-carcinogens, exposure is averaged over the period of exposure (i.e., the exposure duration). For carcinogens, exposure is averaged over an individual's lifetime; although current data suggest that 75 years would be an appropriate value to reflect the average life expectancy of the general population (USEPA, 1997a), an averaging time of 70 years will be used to be consistent with the use of 70 years in the derivation of USEPA cancer slope factors and unit risks.

4.4.5 Skin Surface Area

The surface area (SA) parameter describes the amount of skin exposed to the contaminated media. The amount of skin exposed depends upon the exposure scenario. Clothing is expected to limit the extent of the exposed SA in cases of soil contact. Body-part-specific SAs were calculated using those listed by USEPA (2011) for adults and children assuming that head, arms, hands, legs, and feet could be exposed to soil, and for workers assuming that head, arms, and hands could be exposed to soil (Tables 4.3 to 4.7).

4.4.6 Incidental Soil Ingestion Rate

Incidental soil ingestion rates are receptor-specific. The recommended incidental soil ingestion rates from the USEPA's Exposure Factors Handbook (USEPA, 2011) are a CTE of 50 milligrams per day (mg/day) for an adult; because no RME value was derived by USEPA, 50 mg/day will also be used for the RME estimate for adult incidental soil ingestion. The recommended soil ingestion rates (which are combined soil + dust) for children are 100 mg/day for CTE and 200 mg/day for RME (see Table 5-1 of EFH, USEPA, 2011).

For the outdoor worker and construction worker, the EPA default intensive contact ingestion rate of 330 mg/day (USEPA, 2002) will be used to represent the RME incidental soil ingestion by a groundskeeper or landscaper, and 100 mg/day will be assumed for the CTE incidental soil ingestion rate. It is noted that this RME soil ingestion rate is for intensive contact, and is usually applied only to construction workers, and it may be too conservative for the outdoor worker scenario.

4.4.7 <u>Soil Adherence Factors</u>

The soil adherence factors were obtained from USEPA (2011) and represent the recommended soil adherence factors for given receptors and activities.

4.4.8 Inhalation Rates

The inhalation chronic toxicity factors derived by USEPA (2000) (i.e., inhalation unit risks [IURs] and reference concentrations [RfCs]) are expressed as air concentrations. USEPA (1996a) recommends direct comparison of measured or modeled air concentrations to inhalation toxicity factors rather than using daily inhalation rates to convert to internal doses (i.e., mg/kg-day). Given that USEPA uses dosimetric adjustments (e.g., ventilation rate) based on adult ventilatory parameters (2000) in the derivation of select RfCs, a degree of uncertainty is introduced when applying these values to child receptors. However, as stated by USEPA (2000), "An inhalation reference concentration (RfC) is defined as an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population (including sensitive subgroups) that is likely to be without appreciable risk of deleterious non-cancer health effects during a lifetime." Therefore, direct comparison of measured or modeled air concentrations to inhalation toxicity factors, without converting to internal doses, is appropriate.

4.4.9 <u>Fraction Ingested from Site</u>

The fraction ingested from the site is dependent on the medium and exposure pathway being evaluated. A value of 1 (100%) for the fraction ingested from the site will be used for the RME and CTE outdoor worker and construction worker scenarios. For residential receptors and students, a value of 1 (100%) for the fraction ingested from the site will be used for both RME and CTE scenarios. This approach conservatively assumes that 100 percent of a receptor's daily exposure to the specified medium via a particular exposure pathway (e.g., soil ingestion) occurs on-site.

4.4.10 Other Exposure Parameters

Additional pathway- and chemical-specific exposure parameters listed in Tables 4.1 through 4.4 are discussed in this subsection.

Chemical-specific parameters to be used in the quantification of risk/hazard are based on appropriate site-specific data, USEPA recommendations, values reported in the scientific literature, or best scientific judgment. A reference for each value (e.g., dermal soil absorption factors, soil-to-air volatilization factors, etc.) is included in Tables 4.3 through 4.7.

The particulate emission factor (PEF) is defined as the factor that relates the concentration of the COPC in surface soil to the concentration of dust particles in air (USEPA, 1996a). Per USEPA (1996a), the PEF represents an annual emission rate based on wind erosion and should be used only for estimating chronic exposures.

4.5 Estimation of Intake

Human intakes over a long-term period of exposure, called chronic daily intakes (CDIs), will be calculated for each COPC identified. Intake is defined as "a measure of exposure expressed as the mass of a substance in contact with the exchange boundary per unit body weight per unit time (e.g., mg chemical/kg body weight-day)" (USEPA, 1991a). Calculation of the chronic daily intake (CDI) also takes into account exposure variables (assumptions about patterns of exposure

to contaminated media), and whether the chemical is a carcinogen or a noncarcinogen. The total exposure is divided by the time period of interest to obtain an average exposure over time. The averaging time is a function of the toxic endpoint: for carcinogenic effects it is the lifetime of an individual; for non-carcinogenic effects is the exposure duration.

4.5.1 Incidental Ingestion of Contaminants in Soil

To estimate an oral CDI for the incidental ingestion of COPCs in soil by residential receptors and on-site outdoor workers, the following equation (USEPA, 1989a) will be used:

$$CDI = \frac{EC \ x \ IR \ x \ FI \ x \ EF \ x \ ED \ x \ CF}{BW \ x \ AT}$$

Where:

CDI	=	Chronic daily intake (mg/kg-d)
EC	=	Exposure concentration in soil (mg/kg)
IR	=	Soil ingestion rate (mg/day)
FI	=	Fraction ingested from contaminated source (unitless)
EF	=	Exposure frequency (days/yr)
ED	=	Exposure duration (yrs)
CF	=	Conversion factor, 1E-06 (kg/mg)
BW	=	Body weight (kg)
AT	=	Averaging time (days)

4.5.2 Dermal Contact with Contaminants in Soil

Dermal exposure to contaminants in soil will be estimated using the methodology and algorithms described in RAGS, Part E (USEPA, 2004), as follows:

$$CDI = \frac{DA_{event} x EV x EF x ED x SA}{BW x AT}$$

Where:

CDI	=	Chronic daily intake (absorbed dose) (mg/kg d)
DAeve	ent	= Absorbed dose per event $(mg/cm^2 - event)$
SA	=	Skin surface area available for contact (cm ²)
EF	=	Exposure frequency (days/yr)
ED	=	Exposure duration (yrs)
EV	=	Event frequency (events/day)
BW	=	Body weight (kg)
AT	=	Averaging time (days)

DAevent (mg/cm²-event) for contaminants in soil will be calculated using the following equation (USEPA, 2004):

$$DA_{event} = (C_{soil})(AF)(DAF)(CF)$$

Where	:	_
DAevent	=	Absorbed dose per event $(mg/cm^2 - event);$
Csoil =	Contai	ninant concentration in soil (mg/kg);

AF	=	Soil-to-skin adherence factor (mg/cm ² -day);
			0 ,,,

DAF = Dermal absorption fraction (unitless); and

CF = Conversion factor (1E-06 kg/mg).

4.5.3 Inhalation of Particulates from Soil

USEPA (1996a and 2002) guidance does not recommend estimating intakes (i.e., mg/kg-day) for the air inhalation pathway. Rather, risks and hazards are determined by comparing estimated particulate air concentrations, adjusted for exposure frequencies/durations/time, with inhalation toxicity values. This subsection describes methods to be used for estimating concentrations of COPCs entrained in airborne dusts.

Per USEPA (1996a and 2002), exposure-point concentrations for COPCs in airborne fugitive dust should be based on soil exposure-point concentrations and estimated using the following equation:

$$C_{air} = \frac{C_{soil}}{PEF}$$

Where:

 $C_{air} = COPC$ concentration in air at the exposure point (mg/m³); $C_{soil} = COPC$ exposure-point concentration soil (mg/kg); and PEF = Particulate emission factor (m³/kg).

The PEF relates the concentration of the soil COPC to the concentration of dust particles in the air. This calculation addresses dust generated from open sources, which is termed "fugitive" because it is not discharged into the atmosphere in a confined flow. PEF calculations include a Q/C specific to the site's size and meteorological conditions. The PEF calculation is based on default values from USEPA 1996a and 2002 and is provided below:

$$PEF = (Q/C) \left(\frac{3600 s/h}{(0.36)(1-V) \left(\frac{U_m}{U_t}\right)^3 (F(x))} \right)$$

Where:

 $Q/C = 87.37 \text{ g/m}^2$ -s per kg/m³, based on 0.5 acre source for Zone VIII (Philadelphia) PA, from Table 3 of USEPA, 1996a. s/h is seconds per hour.

V = 0.5, fraction of vegetative cover (USEPA, 1996a and 2002)

 $U_m = 4.29$ meter per second (m/s), mean annual wind speed in Philadelphia (PA) (USEPA, 1996a)

 $U_t = 11.32 \text{ m/s}$, equivalent threshold value of wind speed at 7 m (USEPA, 1996a)

F(x) = 0.0993, wind speed distribution function for Philadelphia (PA) (USEPA, 1996a)

4.5.4 Age-Adjusted Residential Exposure

To better protect human health, exposure to carcinogenic compounds is often assumed to occur during the first 30 years of life. Thus, exposure is assumed to occur during childhood when the intake is greater and the child is more susceptible to the effects of carcinogenic compounds.

These 30 years are usually divided into 6 years of child exposure and 24 years of adult exposure. This risk associated with each of these exposures is combined to obtain an age-adjusted risk that is often more conservative than an evaluation of either the child or adult alone. For residential receptors, this risk assessment presents the non-carcinogenic risk to a child, and the carcinogenic risk to an integrated child/adult resident. An adult is evaluated for all outdoor worker exposure pathways.

4.6 Toxicity Assessment

The purpose of the toxicity assessment is to weigh available evidence regarding the potential for COPCs to cause adverse effects in exposed individuals and to provide, where possible, an estimate of the relationship between the extent of exposure to a contaminant and the increased likelihood and/or severity of adverse effects. The steps to be performed in the toxicity assessment will include:

- Gathering toxicity information for the COPCs being evaluated;
- Identifying exposure periods for which toxicity values are necessary (e.g., chronic or subchronic); and
- Compiling toxicity values for carcinogenic and non-carcinogenic effects (i.e., carcinogenic slope factors [SFs] and IURs for carcinogens, and reference dose (RfDs) and RfCs for noncarcinogens).

Following USEPA (2003, 2010a) guidance, as well as the hierarchy provided for the source of toxicity values in the USEPA's RSL table (USEPA, 2013a), toxicity information will be obtained from the following hierarchy of primary sources:

- USEPA's IRIS (2013);
- USEPA's Provisional Peer Reviewed Toxicity Values (PPRTVs);
- Agency for Toxic Substances and Disease Registry's Minimal Risk Levels;
- Office of Environmental Health and Human Assessment's (OEHHA) Toxicity Criteria Database (OEHHA, 2009); and
- USEPA's Health Effects Summary Tables (USEPA 1997b).

The toxicity values are listed in Table 4.8. Some COPCs (e.g., aluminum, cobalt, iron, thallium, and vanadium) are PPRTVs, that is, provisional values are not yet published on USEPA's IRIS database.¹ PPRTVs may be published as regular or "screening" PPRTVs - PPRTVs that are classified as "screening" are considered less well-supported and are approved for use only in a screening assessment (USEPA, 2013a). PPRTVs will be used in these RAs, with the exception of thallium, for which only a screening PPRTV is available. The PPRTV document for thallium (USEPA, 2012) states the following:

¹ A Provisional Peer-Reviewed Toxicity Value (PPRTV) is defined as a toxicity value derived for use in the Superfund Program. PPRTVs are derived after a review of the relevant scientific literature using established Agency guidance on human health toxicity value derivations. All PPRTV assessments receive internal review by a standing panel of National Center for Environment Assessment (NCEA) scientists and an independent external peer review by three scientific experts. The PPRTV review process provides needed toxicity values in a quick turnaround timeframe while maintaining scientific quality. When a final Integrated Risk Information System (IRIS) assessment is made publicly available on the Internet (www.epa.gov/iris), the respective PPRTVs are removed from the database.

"For the reasons noted in the main document, it is inappropriate to derive a subchronic or chronic p-RfD for thallium. However, information is available which, although insufficient to support derivation of a provisional toxicity value, under current guidelines, may be of limited use to risk assessors. In such cases, the Superfund Health Risk Technical Support Center summarizes available information in an appendix and develops a screening value. Users of screening toxicity values in an appendix to a PPRTV assessment should understand that there is considerably more uncertainty associated with the derivation of a supplemental screening toxicity value than for a value presented in the body of the assessment."

The uncertainty section will address the uncertainties associated with the use of these PPRTVs to evaluate the human health toxicity of COPCs, and the limitations on their use for site decision-making.

For the evaluation of carcinogenic polynuclear aromatic hydrocarbons, toxicity equivalency factors based on the toxicity of benzo(a)pyrene will be used (USEPA, 1993).

4.7 Risk Characterization

Following USEPA (1995) guidance, the risk characterization step will integrate the toxicity and exposure assessment outputs into quantitative expressions of risk. Specifically, the carcinogenic risk and non-carcinogenic hazard posed by a given chemical to a given receptor in a given exposure pathway will be calculated as described in the following sections:

Carcinogenic Risk Estimates

 $\mathbf{Risk_{oral/dermal}} = (CDI)(SF)$ $\mathbf{Risk_{inhalation}} = \frac{C_{air} \times EF \times ED \times ET \times IUR}{AT \times 365 \text{ days/year}}$

Where:

Risk = carcinogenic risk posed by the chemical through the pathway CDI = chronic daily intake, the intake of the chemical through the pathway SF = cancer slope factor Cair = COPC concentration in airborne dust or outdoor air ED = exposure duration EF = exposure frequency ET = fraction of day spent at the site IUR = inhalation unit risk factor AT = averaging time

The total carcinogenic risk for a receptor, that is, the risk associated with exposure to all COPCs for all exposure pathways, will be derived by adding all the pathway-specific carcinogenic risks.

Non-carcinogenic Hazards

 $HQ_{oral/dermal} = CDI/RfD$

HO_{inhalation} = $\frac{C_{air} \times EF \times ED \times ET}{RfC \times AT \times 365 \text{ days/year}}$

Where:

HQ = the hazard posed by the chemical through the pathway CDI = chronic daily intake, the intake of the chemical through the pathway RfD = reference dose Cair = COPC concentration in airborne dust or outdoor air EF = exposure frequency ED = exposure duration ET = fraction of day spent at the site RfC = reference concentration AT = averaging time

The total potential non-carcinogenic hazard, that is, the hazard associated with exposure to all COPCs by all exposure routes, will be determined by summing the HQs for all non-carcinogenic COPCs to derive a total hazard index (HI) for each receptor. If a receptor-specific hazard index is greater than one, target organs will be identified based on the critical toxicity study that was used to develop the non-cancer reference dose for each COPC. Those COPCs affecting the same target organ will be summed and a separate HI will be calculated for each target organ.

The risk characterization results will be summarized in tables to facilitate the comparison of the derived total risks and hazards to established risk management criteria as follows:

- The risk range of 1×10^{-6} to 1×10^{-4} will be used when evaluating total cancer risks
- An HI of 1 will be used when evaluating total non-carcinogenic hazards and/or total target organ hazards for each receptor

4.8 Uncertainty Discussion

All RAs involve the use of assumptions, judgments, and imperfect data to varying degrees resulting in uncertainties in the final estimates of risk. These uncertainties are generally associated with each step of the RA process (USEPA, 1989a). The parameters used in the RA are characteristically conservative and tend to over-estimate potential site-related risks. The uncertainty section will qualitatively discuss the inherent and site-specific uncertainties associated with the four steps of the RA.

Some of the assumptions that will be discussed in the uncertainty section of the RA will include:

- 1. Data Evaluation and Identification of COPCs:
 - The representativeness of soil sampling at the site;
 - Lab blank contamination and other data validation conclusions;
 - The use of generic screening levels for selection of COPCs; and
 - The use of screening values based on PPRTVs.
- 2. Exposure Assessment:
 - Generally, the selection of conservative exposure assumptions for the RME scenario;
 - The possible existence of pica (i.e., the deliberate ingestion of soils) on the risk estimates for child residents at the site; and

- The effect of activities that generate dust (e.g., lawn mowing, leaf blowing, soil tilling, etc.) on potential inhalation exposures by outdoor workers.
- 3. Toxicity Assessment:
 - The use of PPRTVs;
 - Treatment of COPCs without toxicity values; and
 - The uncertainties associated with EPA's published toxicity values.
- 4. Risk Characterization:
 - The potential for interactions between multiple chemicals, multiple pathways and other combinations;
 - Uncertainties associated with summing risks or hazard indices for several substances (the assumption of dose additivity); and
 - Combining estimates for different toxic endpoints into a single risk estimate.

СОРС	AOI 9 EU	Spaulding- Rankin EU	Southern AU EU (with outliers removed)
Aluminum	YES	YES	YES
Antimony	YES	YES	YES
Arsenic		YES	YES
Cadmium		YES	
Chromium		YES	
Cobalt	YES	YES	YES
Copper		YES	
Iron	YES	YES	YES
Lead		YES	
Magnesium	YES	YES	YES
Manganese	YES	YES	YES
Mercury		YES	YES
Nickel		YES	YES
Selenium		YES	
Thallium		YES	YES
Vanadium	YES	YES	YES
Zinc		YES	
Benzo(a)anthracene			YES
Benzo(a)pyrene			YES
Benzo(b)fluoranthene			YES

Notes:

¹ Initial Screen from Addendum 1 to the Pre-2005 HHRA Review report.

YES means this chemical is a COPC for this EU.

	Outlier Sample Location Name					
СОРС	SV-04	SV-AU-05	AU-10	SV-12A	AU-03 and SV-AU-03	BAKER-03 and SV-BAKER-03
Aluminum				YES	YES	
Antimony			YES		YES	YES
Beryllium				YES		
Cobalt	YES		YES	YES	YES	
Iron			YES	YES	YES	
Magnesium				YES	YES	
Mercury	YES	YES				
Thallium					YES	
Vanadium			YES	YES	YES	
Benzo(a)anthracene						YES
Benzo(a)pyrene						YES
Benzo(b)fluoranthene						YES
Benzo(k)fluoranthene						YES
Dibenz(a,h)anthracene						YES
Indeno(1,2,3-c,d)pyrene						YES
Phenanthrene						YES

Table 4.2: Screening of Outlier Samples for Additional COPCs at the Southern AU EU

Notes: YES means this chemical is a COPC for this outlier location.

Exposure Variable	Scenario ^{a/}	Rationale	Reference
BW = Body Weight	RME and	Standard reference weight for adult males.	USEPA, 1989a
70 kg ^{b/}	CTE	_	
EF = Exposure Frequency			
250 days/yr ^{c/}	RME	Assumes year-round weekday exposure.	Assumed
125 days/yr	CTE	Assumed some days working at other	
		locations.	
ED = Exposure Duration			USEPA, 2011
30 years	RME	Upper bound time at one place of employment.	05EFA, 2011
8 years	CTE	Average time at one place of employment.	
SA = Surface Area			
$5,000 \text{ cm}^2$	RME	95% percentile and mean adult skin surface	USEPA, 2011
5,900 cm ^{2 d/}	CTE	area for head, arms, hands.	
AT = Averaging Time		Conventional human lifespan. Intakes for	USEPA, 1989a
25,550 days (carcinogens)	RME	carcinogens are averaged over the duration of	
		exposure.	
ED x 365 days/year (noncarcinogens)	CTE	Equal to the exposure duration (in days).	USEPA, 1989a
FI = Fraction Ingested (unitless)		RME conservatively assumes 100 percent of	Professional
1.0	RME	daily soil incidental ingestion occurs on-site.	judgment
0.20	CTE	CTE assumes 1/5 of time spent at this site.	
DAF = Dermal Absorption Fraction	RME and	Chemical-specific.	USEPA, 2004
Chemical-specific	CTE		
IR = Incidental Soil Ingestion Rate		Standard default soil incidental ingestion rate	USEPA, 2002
330 mg/day ^{e/}	RME	for workers.	
100 mg/day	CTE	Assumed.	
AF = Soil-to-Skin Adherence Factor		Activity and body part-specific weighted based	USEPA, 2011
$0.1566 \text{ mg/cm}^{2 \text{ f/}}$	RME	on exposed body parts.	
0.1566 mg/cm^2	CTE	Activity and body part-specific weighted based	USEPA, 2011
		on exposed body parts.	
ET = Exposure Time	RME and	Based on 100 percent of working day spent.	Professional
8 hours/day	CTE		Judgment
PEF = Particulate emission factor	RME and	Calculated using site-specific Q/C term and	USEPA, 1996a,
$3.23E+09 (m^3/kg)^{g/2}$	CTE	default parameters listed in USEPA 1996a and	Equation 10,
		2002.	and 2002
Q/C = Inverse of mean	RME and	Q/C value of 0.5 acre source area of Zone VIII,	USEPA, 1996a
concentration at center of source 3^{10}	CTE	Philadelphia. Philadelphia is the nearest	Table 3.
87.37 g/m ² -s per kg/m ^{3 h/}		eastern seaboard city to Washington, D.C. for	
		which a Q/C is derived.	

Table 4.3: Exposure Factors for the Outdoor Worker Exposure Scena

a/ RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure b/ kg = kilogram c/ days/yr = days per year d/ cm² = square centimeters. For head, arms, hands. e/ mg/day = milligrams per day f/ mg/cm² = milligrams per square centimeter g/ m^3/kg = cubic meters per kilogram h/ g/m²-s per kg/m² = grams per square meters – second per kilograms per cubic meters

Exposure Variable	Scenario a/	Rationale	Reference
BW = Body Weight 70 kg $^{b'}$	RME and CTE	Standard reference weight for adult males.	USEPA, 1989
EF = Exposure Frequency			USEPA, 1991
350 days/yr ^{c/}	RME	Assumes year-round exposure with one 2-week vacation.	
160 days/yr	CTE	Mean exposure to soil by residents.	Assumed based on 8 months March-October, 5 days/week
ED = Exposure Duration	RME	Upper bound time at one residence.	USEPA, 2011
4 years 4 years	CTE	Average time at one residence.	
SA = Surface Area	RME	Skin surface area for head, arms, hands, legs, and	USEPA, 2011
15.474 cm^2		feet.	
12,680cm ² ^{d/}	CTE		
AT = Averaging Time		Conventional human lifespan. Intakes for	USEPA, 1989a
25,550 days (carcinogens)	RME	carcinogens are averaged over the duration of	
ED x 365 days/year (noncarcinogens)	CTE	exposure. Equal to the exposure duration (in days).	USEPA, 1989a
FI = Fraction Ingested	RME and	Conservatively assume 100 percent of daily soil	Professional
1.0 (unitless)	CTE	incidental ingestion occurs on-site.	Judgment
DAF = Dermal Absorption	RME and	Chemical-specific.	USEPA, 2004
Fraction	CTE		
Chemical-specific			
IR = Incidental Soil Ingestion	RME	Assumed adult residential incidental soil ingestion	
Rate		rate.	
50 mg/day ^{e/} 50 mg/day	CTE		USEPA, 2011
AF = Soil-to-Skin Adherence	RME and	Mean adherence factor for face, arms, hands, legs,	USEPA, 2011
Factor	CTE	and feet for gardening activities.	0.52171, 2011
$0.07592 \text{ mg/cm}^{2 \text{ f/}}$			
ET = Exposure Time 8 hours/day	RME and CTE	Assumed 8 hours/day outdoors.	Assumed
PEF = Particulate emission factor 3.23E+09 $(m^3/kg)^{g/2}$	RME and CTE	Calculated using Equation 10 and site-specific Q/C term and default parameters listed in USEPA 1996a and 2002.	USEPA, 1996a, Equation 10, and 2002
Q/C = Inverse of mean concentration at center of source 87.37 g/m ² -s per kg/m ^{3 h/}	RME and CTE	Q/C value of 0.5 acre source area of Zone VIII, Philadelphia. Philadelphia is the nearest eastern seaboard city to Washington, D.C. for which a Q/C is derived.	USEPA, 1996a, Table 3.

 Table 4.4:
 Exposure Factors for the Student Exposure Scenario

b/ kg = kilogram

c/days/yr = days per year

 $d/cm^2 =$ square centimeters

e/ mg/day = milligrams per day f/ mg/cm² = milligrams per square centimeter

 $g/m^3/kg =$ cubic meters per kilogram h/ g/m^2 -s per kg/m² = grams per square meters – second per kilograms per cubic meters

Exposure Variable	Scenario a/	Rationale	Reference
BW = Body Weight 70 kg ^{b/}	RME and CTE	Standard reference weight for adult males.	USEPA, 1989
EF = Exposure Frequency 350 days/yr ^{c/}	RME	Assumes year-round exposure with one 2-week vacation.	USEPA, 1991
160 days/yr	CTE	Mean exposure to soil by residents.	Assumed based on 8 months March-October, 5 days/week.
ED = Exposure Duration 33 years	RME	Upper bound time at one residence.	USEPA, 2011
12 years	CTE	Average time at one residence.	
SA = Surface Area 15,474 cm ² 12,680cm ² d'	RME CTE	Skin surface area for head, arms, hands, legs, and feet.	USEPA, 2011
AT = Averaging Time 25,550 days (carcinogens)	RME	Conventional human lifespan. Intakes for carcinogens are averaged over the duration of exposure.	USPEA, 1989a
ED x 365 days/year (noncarcinogens)	CTE	Equal to the exposure duration (in days).	USEPA, 1989a
FI = Fraction Ingested	RME and	Conservatively assume 100 percent of daily soil	Professional
1.0 (unitless)	CTE	incidental ingestion occurs on-site.	Judgment
DAF = Dermal Absorption Fraction Chemical-specific	RME and CTE	Chemical-specific.	USEPA, 2004
IR = Incidental Soil Ingestion		Assumed adult residential incidental soil ingestion	
Rate 50 mg/day ^{e/} 50 mg/day	RME CTE	rate. Central tendency adult residential incidental soil ingestion rate.	USEPA, 2011
	RME and CTE	Mean adherence factor for face, arms, hands, legs, and feet for gardening activities.	USEPA, 2011
ET = Exposure Time 8 hours/day	RME and CTE	Assumed 8 hours/day outdoors.	Assumed
PEF = Particulate emission factor 3.23E+09 (m ³ /kg) ^{g/}	RME and CTE	Calculated using Equation 10 and site-specific Q/C term and default parameters listed in USEPA 1996a and 2002.	USEPA, 1996a, Equation 10, and 2002
Q/C = Inverse of mean concentration at center of source 87.37 g/m ² -s per kg/m ^{3 h/}	RME and CTE	Q/C value of 0.5 acre source area of Zone VIII, Philadelphia. Philadelphia is the nearest eastern seaboard city to Washington, D.C. for which a Q/C is derived.	USEPA, 1996a, Table 3

 Table 4.5:
 Exposure Factors for the Adult Resident Exposure Scenario

b/ kg = kilogram

c/days/yr = days per year

 $d/cm^2 =$ square centimeters

e/ mg/day = milligrams per day f/ mg/cm² = milligrams per square centimeter

 $g/m^3/kg =$ cubic meters per kilogram h/ g/m^2 -s per kg/m² = grams per square meters – second per kilograms per cubic meters

Exposure Variable	Scenario ^{a/}	Rationale	Reference
BW = Body Weight	RME and CTE	Average body weight for children (1 to	USEPA, 2008a
$15 \text{ kg}^{\text{b/}}$		6 years).	
EF = Exposure Frequency		Assumes year-round exposure with one	USEPA, 1991a,
350 days/yr ^{c/}	RME	2-week vacation.	Section 2.1.
160 days/yr	CTE	Assumed	Assumed
ED = Exposure Duration	RME and CTE	Time for ages 0 to 6 at one residence.	USEPA, 1997
6 years			
SA = Surface Area		Assumed contact with head, arms,	USEPA, 2011
$4,070 \text{ cm}^2$	RME	hands, legs, and feet.	
$3.465 \text{ cm}^{2 \text{ d}}$	CTE		
AT = Averaging Time		Conventional human lifespan. Intakes	USEPA, 1989a
25,550 days (carcinogens)	RME	for carcinogens are averaged over the	
		duration of exposure.	
ED x 365 days/year	CTE	Equal to the exposure duration (in	USEPA, 1989a
(noncarcinogens)		days).	
FI = Fraction Ingested	RME and CTE	Conservatively assume 100 percent of	Professional
1.0 (unitless)		daily soil incidental ingestion occurs on-	Judgment
		site.	
DAF = Dermal Absorption	RME and CTE	Chemical-specific.	USEPA, 2004
Fraction			
Chemical-specific			
IR = Incidental Soil Ingestion Rate			USEPA, 2011
200 mg/day	RME	Default EPA soil ingestion rates for	
100 mg/day	CTE	children.	
AF = Soil-to-Skin Adherence	RME and CTE	Mean adherence factor for arms, hands,	USEPA, 2011
Factor		legs, and feet for daycare children,	
0.054 mg/cm ^{2 f/}		playing both indoors and outdoors.	
ET = Exposure Time	RME and CTE	Assumed 8 hours/day outdoors.	Assumed
8 hours/day			
PEF = Particulate emission factor	RME and CTE	Calculated using site-specific Q/C term	USEPA, 1996,
$3.23E+09 \text{ m}^3/\text{kg}^{\text{g/}}$		and default parameters listed in USEPA	Equation 10, and
		1996a and 2002.	2002
Q/C = Inverse of mean	RME and CTE	Q/C value of 0.5 acre source area of	USEPA, 1996a,
concentration at center of source		Zone VIII, Philadelphia. Philadelphia is	Table 3.
87.37 g/m ² -s per kg/m ^{3 h/}		the nearest eastern seaboard city to	
		Washington, D.C. for which a Q/C is	
		derived.	

TT 11 4 (F F (D 11 / D	· D
Table 4.6	Exposure Factors	s for the Child	Resident Ex	nosure Scenario
	L'Aposule L'actors	s tor the child	itestuent LA	posure beenario

a/ RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure b/ kg = kilogram c/ days/yr = days per year d/ cm² = square centimeters e/ mg/day = milligrams per day f/ mg/cm² = milligrams per square centimeter g/ m^3/kg = cubic meters per kilogram h/ g/m²-s per kg/m² = grams per square meters – second per kilograms per cubic meters

Exposure Variable	Scenario ^{a/}	Rationale	Reference
BW = Body Weight	RME and CTE	Standard reference weight for adult males.	USEPA, 1997a,
70 kg ^{b/}			Section 7.3.
EF = Exposure Frequency		Assumes year-round weekday exposure.	USEPA, 1991a,
250 days/yr ^{c/}	RME		Section 2.1.
125 days/yr	CTE	Default for industrial workers.	USEPA, 2004
ED = Exposure Duration		Upper bound time at one place of	USEPA, 2011
1 year	RME	employment.	
0.5 year	CTE	Average time at one place of employment.	
SA = Surface Area	RME	Skin surface area for head, arms, hands.	USEPA, 2011
$5,000 \text{ cm}^2$			
5,900 cm ^{2 d/}	CTE		
AT = Averaging Time		Conventional human lifespan. Intakes for	USEPA, 1989a
25,550 days (carcinogens)	RME	carcinogens are averaged over the duration of exposure.	
ED x 365 days/year (noncarcinogens)	CTE	Equal to the exposure duration (in days).	USEPA, 1989a.
FI = Fraction Ingested (unitless)			Professional
1.0	RME	RME conservatively assumes 100 percent of	judgment
0.20	CTE	daily soil incidental ingestion occurs on-site.	
		CTE = assumes 1/5 of time spent at this site	
DAF = Dermal Absorption Fraction	RME and CTE	Chemical-specific.	USEPA, 2004
Chemical-specific			
IR = Incidental Soil Ingestion Rate		Default soil incidental ingestion rate for	USEPA, 2002.
330 mg/day ^{e/}	RME	workers.	
100 mg/day	CTE	Assumed	
AF = Soil-to-Skin Adherence Factor	RME	Activity and body part-specific weighted	USEPA, 2011
$0.1566 \text{ mg/cm}^2 \text{ f/}$	CTTE	based on exposed body parts.	
0.1566 mg/cm^2	CTE	Activity and body part-specific weighted	USEPA, 2011
		based on exposed body parts.	
ET = Exposure Time 8 hours/day	RME and CTE	Based on 100 percent of working day spent.	Professional
8 nours/day			Judgment
PEF = Particulate emission factor	RME and CTE	Calculated using site-specific Q/C term and	USEPA, 1996a,
3.23E+09 (m ³ /kg) ^{g/}		default parameters listed in USEPA 1996a	Equation 10,
-		and 2002.	and 2002
Q/C = Inverse of mean	RME and CTE	Q/C value of 0.5 acre source area of Zone	USEPA, 1996a,
concentration at center of source		VIII, Philadelphia. Philadelphia is the nearest	Table 3.
87.37 g/m ² -s per kg/m ^{3 h/}		eastern seaboard city to Washington, D.C. for	
		which a Q/C is derived.	

Table 4.7: Exposure Factors for the Construction Worker Scenario

a/ RME = Reasonable Maximum Exposure; CTE = Central Tendency Exposure

b/ kg = kilogram

c/days/yr = days per year

 $d/cm^2 =$ square centimeters

e/ mg/day = milligrams per day

 $f/mg/cm^2$ -day = milligrams per square centimeter-day

 $g/m^3/kg = cubic meters per kilogram$

 $h/g/m^2$ -s per kg/m² = grams per square meters – second per kilograms per cubic meters

Table 4.8: Toxicity Values

	Non-Cancer To ey Site-Wide HH									
Chemical of Potential Concern	Chronic Oral Reference Dose (RfD) (mg/kg-day)	Primary Target Organ(s)	Uncertainty Factor(UF)/ Modifying Factor (MF)	Oral Absorption Efficiency for Dermal ⁵	Absorbed RfD for Dermal (mg/kg-day)	Source ¹	Inhalation Reference Concentration (RfC) (mg/m ³)	Primary Target Organ(s)	Uncertainty Factor(UF)/ Modifying Factor (MF)	Source ¹
aluminum	1.00E+00	nervous system	UF=100; MF=1	1	1.00E+00	PPRTV, from RSL table and USEPA, 2006b	5.00E-03	nervous system	UF=300; MF=1	PPRTV, from RSL table and USEPA, 2006b
antimony	4.00E-04	hematological	UF = 1000; MF=1	0.15	6.00E-05	IRIS	NA			
arsenic	3.00E-04	cancer: skin	UF = 3; MF=1	1	3.00E-04	IRIS	1.50E-05		NA	RSL table
beryllium	2.00E-03	GI	UF = 300; MF=1	0.007	1.40E-05	IRIS	2.00E-05	beryllium sensitization and progression to chronic beryllium disease	UF=10; MF=1	IRIS
cadmium	1.00E-03	kidney	UF = 10; MF=1	0.025	2.50E-05	IRIS	NA			IRIS
chromium VI	3.00E-03	no effects observed	UF = 300 MF = 1	0.025	7.50E-05	IRIS	1.00E-04	respiratory effects	UF=300; MF=1	IRIS
chromium III	1.50E+00	no effects observed	UF = 100; MF=1	0.013	1.95E-02	IRIS	NA			
cobalt	3.00E-04	thyroid	UF=300; MF=1	1	3.00E-04	PPRTV, from RSL table and USEPA, 2008b	6.00E-06	respiratory effects	UF=300; MF=1	PPRTV, from RSL table and USEPA, 2008b
copper	4.00E-02	GI	NA	1	4.00E-02	HEAST, from RSL table	NA			
iron	7.00E-01	GI	UF=1.5; MF=1	1	7.00E-01	PPRTV, from RSL table and USEPA, 2006c	NA			

SPRING VALLEY FUDS RI/FS Final SVFUDS Risk Assessment Work Plan

February 2014

Chemical of Potential Concern	Chronic Oral Reference Dose (RfD) (mg/kg-day)	Primary Target Organ(s)	Uncertainty Factor(UF)/ Modifying Factor (MF)	Oral Absorption Efficiency for Dermal ⁵	Absorbed RfD for Dermal (mg/kg-day)	Source ¹	Inhalation Reference Concentration (RfC) (mg/m ³)	Primary Target Organ(s)	Uncertainty Factor(UF)/ Modifying Factor (MF)	Source
ead	NA	neurotoxicity, developmental delays, hypertension, impaired hearing acuity, impaired hemoglobin synthesis, and male reproductive impairment				NA ²	NA			
nagnesium	NA	NA				not available in IRIS or RSL table	NA			
nanganese	1.40E-01	nervous system	UF = 1000; MF=1	1	1.40E-01	IRIS	5.00E-05	nervous system	UF = 1; MF=1	IRIS
nercury ⁶	3.00E-04	immune system	UF = 1000; MF=1	1	3.00E-04	IRIS	3.00E-04	nervous system	UF=30; MF=1	IRIS
nickel ⁷	2.00E-02	body weight	UF=300; MF=1	0.04	8.00E-04	IRIS	NA			
elenium	5.00E-03	selenosis (liver, hair, nail effects)	UF=3; MF=1	1	5.00E-03	IRIS	NA			
hallium ⁸	1.00E-05	skin	UF = 3000; MF=1	1	1.00E-05	Screening PPRTV ³	NA			
vanadium	5.00E-03	kidney	UF=100; MF=1	0.026	1.30E-04	IRIS/RSL table ⁴	NA			
tinc	3.00E-01	hematological	UF = 3; MF=1	1	3.00E-01	IRIS	NA			
Jotes: 1. N	ov 2013 RSL Tab	le or currently available		fic references as	noted.					
									ds that soil lead levels le	ess than
	RfD will not be us	or residential use. Aboved in this HHRA for th							for Thallium and Compo	ounds.
I. The vanad for Vanadiur Vanadium Pe	ium RfD is from t n Pentoxide by fac entoxide's oral Rfl	ctoring out the molecular D of 9E-03 mg/kg-day i	ar weight of the o	xide ion. Vanad	ium Pentoxide has	s a molecular weig	ght of 181.88. The tw		is derived from the IRI ontribute 56% of the MV an/rb-	
5. Oral referent toted as beir	n_table/usersguide ence doses are con ng from U.S. EPA ercuric chloride	verted to dermal refere	nce doses by mul in the RSL tables	tiplying by the c , if the oral abso	oral absorption eff rption is >50% the	iciency (USEPA, 2 en it is set to 100%	2004); oral absorptio 6 for the calculation of	n efficiency from USEF of dermal toxicity value	PA RSL table (Novembe s).	r, 2013),
	ckel soluble salts									

February 2014

Table 4.8 B Cancer Spring Valley Site-Wi	Foxicity Data de HHRA							
Chemical of Potential Concern	Oral Cancer Slope Factor (CSF) (mg/kg- day) ⁻¹	Oral Absorption Efficiency for Dermal ³	Absorbed CSF for Dermal (mg/kg-day) ⁻¹	CSF Weight of Evidence	Source ¹	Inhalation Unit Risk (UR) (ug/m ³) ⁻¹	Source ¹	Inhalation UR Weight of Evidence
aluminum	NA					NA		
antimony	NA					NA		
arsenic	1.5	1	1.5	A (Human carcinogen - based on sufficient evidence from human data)	IRIS	4.30E-03	IRIS	A (Human carcinogen - based on sufficient evidence from human data)
beryllium	NA					2.40E-03	IRIS	B1 (Probable human carcinogen - based on limited evidence of carcinogenicity in humans)
cadmium	NA					1.80E-03	IRIS	B1 (Probable human carcinogen - based on limited evidence of carcinogenicity in humans)
chromium VI	NA					1.20E-02	IRIS	A (Human carcinogen) (Inhalation route)
chromium III	NA					NA		
cobalt	NA					9.00E-03	PPRTV, from RSL table and USEPA, 2008b	Likely to be carcinogenic to humans by the inhalation route ⁴
copper	NA					NA		
iron	NA					NA		
lead	NA					NA		
magnesium	NA					NA		
manganese	NA					NA		
mercury	NA					NA		
nickel	NA					NA		
selenium	NA					NA		
thallium	NA	T				NA		
vanadium	NA					NA		
zinc	NA	T				NA		
Benzo(a) anthracene	7.30E-01	1		B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals) (from IRIS)	RSL table ²	NA		

SPRING VALLEY FUDS RI/FS Final SVFUDS Risk Assessment Work Plan

February 2014

Table 4.8 B Cancer T Spring Valley Site-Wi								
Chemical of Potential Concern	Oral Cancer Slope Factor (CSF) (mg/kg- day) ⁻¹	Oral Absorption Efficiency for Dermal ³	Absorbed CSF for Dermal (mg/kg-day) ⁻¹	CSF Weight of Evidence	Source ¹	Inhalation Unit Risk (UR) (ug/m ³) ⁻¹	Source ¹	Inhalation UR Weight of Evidence
Benzo(a)pyrene	7.30E+00	1		B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals) (from IRIS)	IRIS	NA		
Benzo(b)fluoranthene	7.30E-01	1		B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals) (from IRIS)	RSL table ²	NA		
Benzo(k)fluoranthene	7.30E-02	1		B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals) (from IRIS)	RSL table ²	NA		
Indeno(1,2,3-c,d) Pyrene	7.30E-01	1		B2 (Probable human carcinogen - based on sufficient evidence of carcinogenicity in animals) (from IRIS)	RSL table ²	NA		
Phenanthrene	NA	1		D (Not classifiable as to human carcinogenicity)	IRIS	NA		

Notes: 1. USEPA RSL table dated November 2013

2. Noted in RSL table (Nov. 2013) as from: Environmental Criteria and Assessment Office

3. Oral slope factors are converted to dermal slope factors by dividing by the oral absorption efficiency; oral absorption efficiency from USEPA RSL table (November, 2013), noted as being from U.S. EPA 2004 (Exhibit 4-1) (as in the RSL tables, if the GIABS is >50% then it is set to 100% for the calculation of dermal toxicity values).

4. Under the 2005 Guidelines for Carcinogen Risk Assessment (U.S. EPA, 2005a), cobalt sulfate (soluble) is described as "likely to be carcinogenic to humans by the inhalation route," based on both the limited evidence of carcinogenicity in humans and sufficient evidence of carcinogenicity in animals. From: USEPA, 2008. Provisional Peer Reviewed Toxicity Values for Cobalt (CASRN 7440-48-4). Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development. NA=not provided in IRIS or RSL table or COPC not known to be carcinogenic

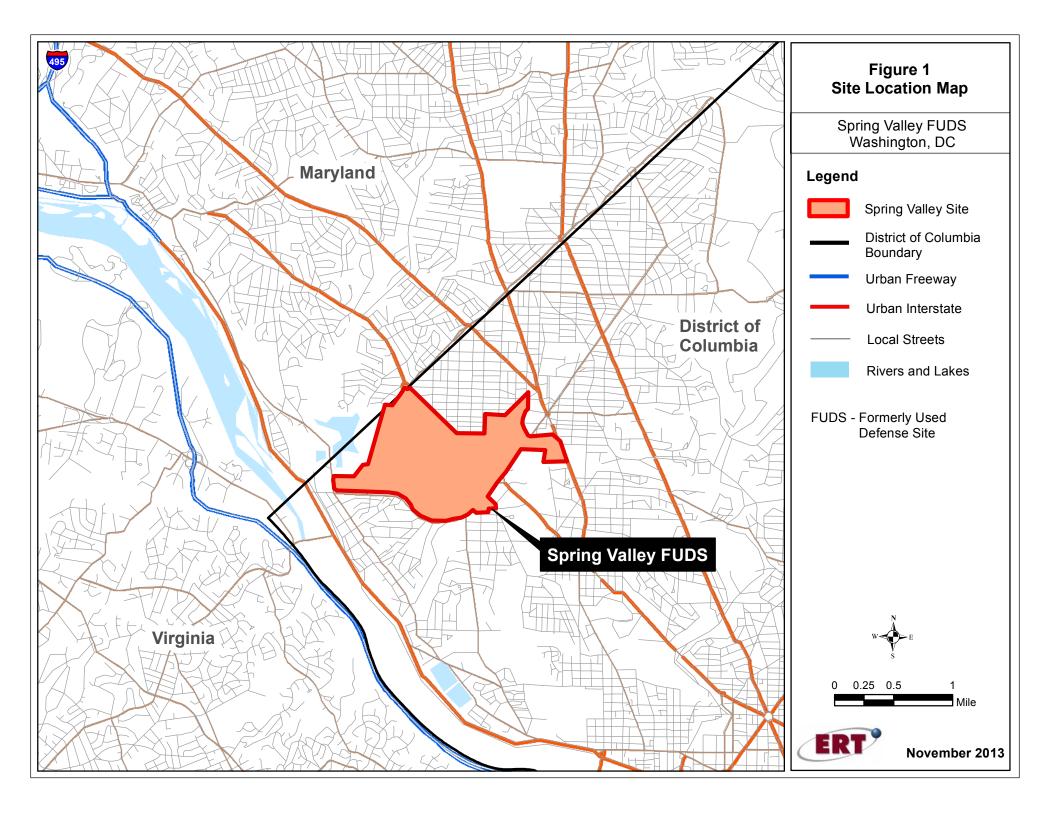
5.0 **REFERENCES**

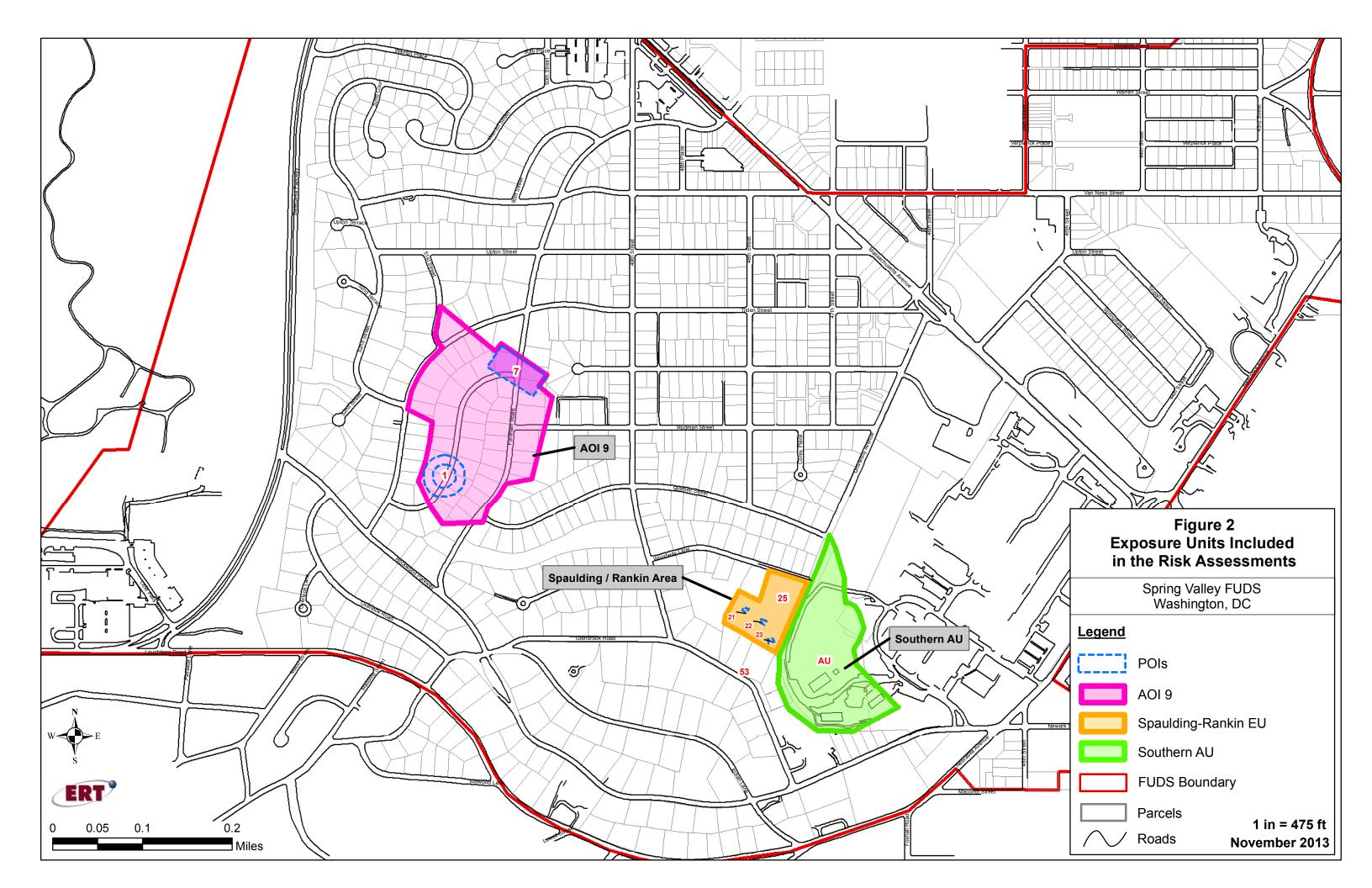
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, 2009. Toxicity Criteria Database. Available online at:
- http://www.oehha.org/risk/chemicalDB/index.asp
- USACE, 2008. Background Soil Sampling Report for SVFUDS. April 2008.
- USEPA. 1989a. Risk Assessment Guidance for Superfund (RAGS), Volume 1 Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response. Washington, DC. EPA/540/1-89/002.
- USEPA. 1989b. Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities. Interim Final Guidance.
- USEPA. 1991a. Human health evaluation manual, supplemental guidance: standard default exposure factors. Office of Emergency and Remedial Response, Washington, DC. OSWER. Directive 9285.6-03.
- USEPA. 1991b. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. Office of Solid Waste and Emergency Response. OSWER Directive 9335.0-30. April.
- USEPA. 1992a. Dermal Exposure Assessment: Principles and Applications, Interim Report, Office of Research and Development. EPA/600/8-91/011B, January.
- USEPA. 1992b. Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities. Addendum to Interim Final Guidance.
- USEPA. 1992c. Guidance for Data Usability in Risk Assessment (Part A), Final. U.S. Environmental Protection Agency, PB9285.7 09A. April 1992.
- USEPA. 1992d. Supplemental Guidance to RAGS: Calculating the Concentration Term. OSWER Directive 9285.7-081. May.
- USEPA. 1992e. Guidance on Risk Characterization for Risk Managers and Risk Assessors. Memorandum from F. Henry Habicht II, Deputy Administrator. Office of Solid Waste and Emergency Response, Washington, DC.
- USEPA. 1993. Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. EPA/600/R-93/089.
- USEPA. 1995. Guidance for Risk Characterization. Office of Research and Development. Washington, DC. http://www.epa.gov/ORD/spc/rcpolicy.htm.
- USEPA. 1996a. Soil screening guidance: user's guide. EPA 540/R-96/018.
- USEPA. 1996b. Descriptive statistics tables from a detailed analysis of the National Human Activity Pattern Survey (NHAPS) data. Washington, DC: Office of Research and Development. EPA/600/R-96/148, as cited in USEPA, 2008a.
- USEPA. 1997b. Health Effects Assessment Summary Tables (HEAST). EPA 540/R-97/036.
- USEPA, Region 3. 2000. Risk-Based Concentration Guidance. Letter from Jennifer Hubbard, EPA Region 3 Senior Toxicologist. April.

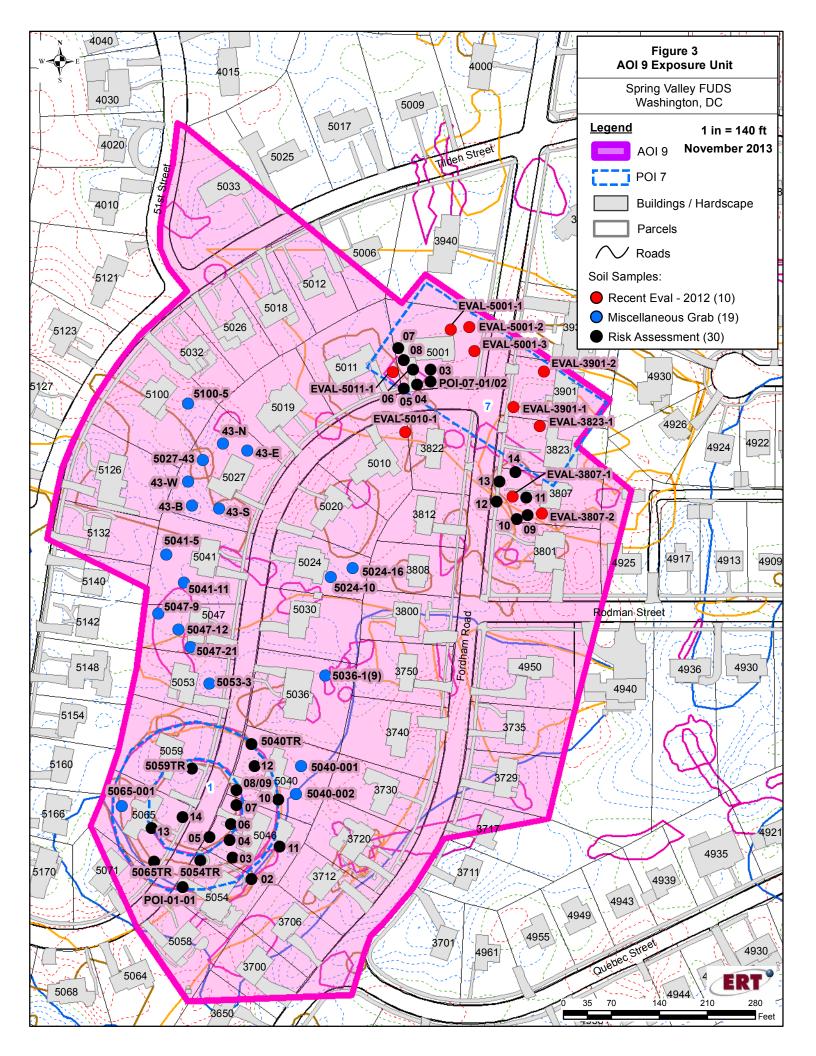
- USEPA, 2001. Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part D, Standardized Planning, Reporting and Review of Superfund Risk Assessments) Final December 2001.
- USEPA. 2002a. Supplemental guidance for developing soil screening levels for Superfund sites. OSWER 9355.4-24.
- USEPA. 2002b. OSWER Draft guidance for evaluating the vapor intrusion to indoor air pathway from groundwater and soils (subsurface vapor intrusion guidance). EPA530-D-02-004.
- USEPA. 2003. Human health toxicity values in Superfund risk assessments. OSWER Directive 9285.7-53.
- USEPA. 2003. User's guide for evaluating subsurface vapor intrusion into buildings.
- USEPA. 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005, July 2004.
- USEPA. 2006a. Data Quality Assessment: Statistical Methods for Practitioners. EPA QA/G-9S. EPA/240/B-06/003.
- USEPA. 2006b. Provisional Peer Reviewed Toxicity Values for Aluminum (CASRN 7429-90-5). Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development, 10-23-2006.
- USEPA. 2006c. Provisional Peer Reviewed Toxicity Values for Iron and Compounds (CASRN 7439-89-6) Derivation of Subchronic and Chronic Oral RfDs. Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development. 9-11-2006.
- USEPA. 2008a. Child-Specific Exposure Factor Handbook. U. S. Environmental Protection Agency, Washington, D. C., EPA/600/R-06/096F, September 2008.
- USEPA. 2008b. Provisional Peer Reviewed Toxicity Values for Cobalt (CASRN 7440-48-4). Superfund Health Risk Technical Support Center, National Center for Environmental Assessment, Office of Research and Development.
- USEPA. 2009a. Risk Assessment Guidance for Superfund. Volume I: Human health evaluation manual. Part F, supplemental guidance for inhalation risk assessment. EPA-540-R-070-002. OSWER 9285.7-82.
- USEPA. 2010a. Integrated Risk Information System (IRIS). Available online at: http://cfpub.epa.gov/ncea/iris/index.cfm
- USEPA. 2010b. Regional Screening Levels Tables. May 2010. Available online at: http://www.epa.gov/reg3hwmd/risk/human/rbconcentration_table/Generic_Tables/index.htm
- USEPA, 2011. Exposure Factors Handbook.
- USEPA, 2012. Provisional Peer-Reviewed Toxicity Values for Thallium and Compounds. Metallic Thallium (7440-28-0), Thallium (I) acetate (563-68-8), Thallium (I) carbonate

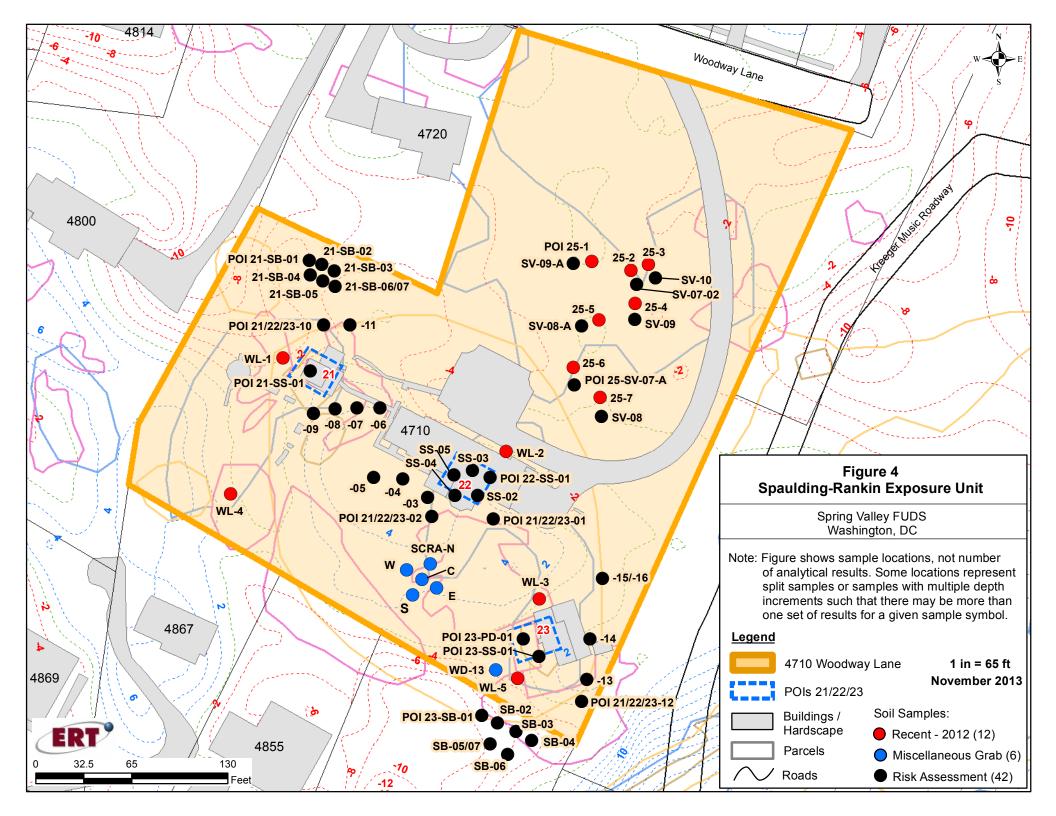
(6533-73-9), Thallium (I) chloride (7791-12-0), Thallium (I) nitrate (10102-45-1), and Thallium (I) sulfate (7446-18-6). Final, 10-25-2012.

USEPA, 2013a. RSLs and FAQs for RSL table, EPA Region 3.


http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/faq.htm


USEPA, 2013b. ProUCL version 5.00.0 Technical Guide. EPA/600/R-07/041.


USEPA, 2013c. ProUCL version 5.00.0 User's Guide. EPA/600/R-07/038.


APPENDIX A: SITE FIGURES

- Figure 1: Site Location Map
- Figure 2: Exposure Units Included in the Risk Assessments
- Figure 3: AOI 9 EU Location
- Figure 4: Spaulding-Rankin EU Location
- Figure 5: Southern American University EU Location
- Figure 6: Conceptual Site Model

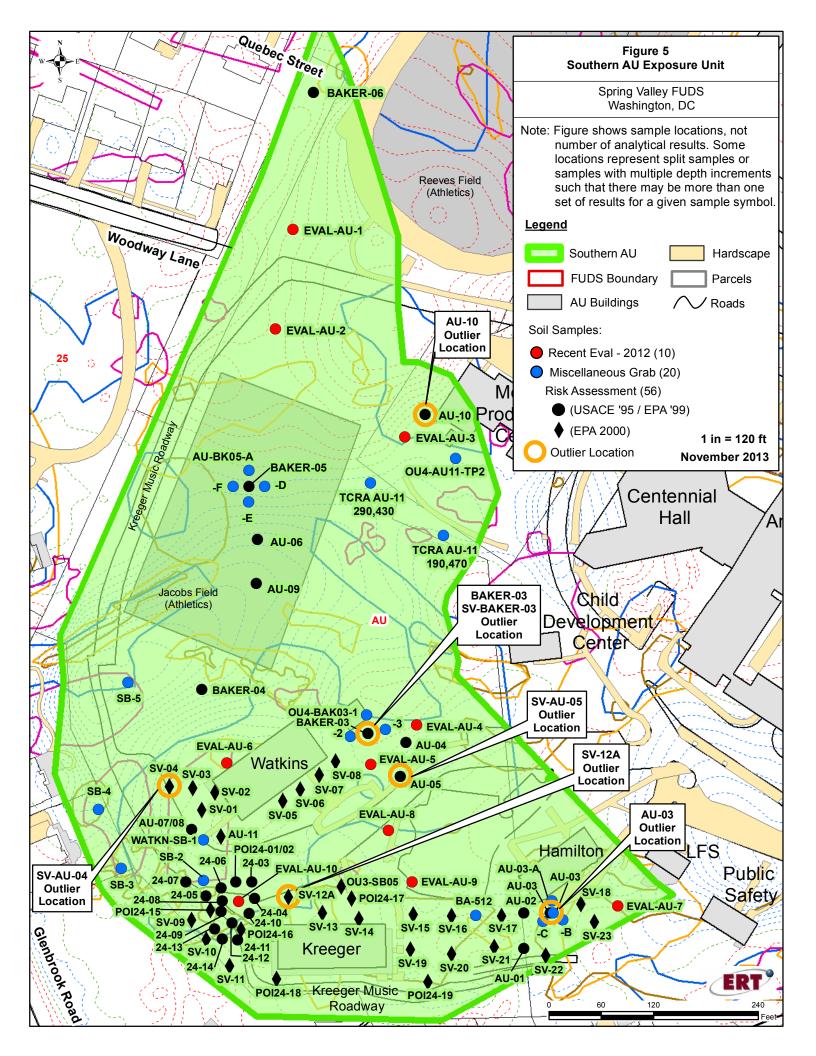
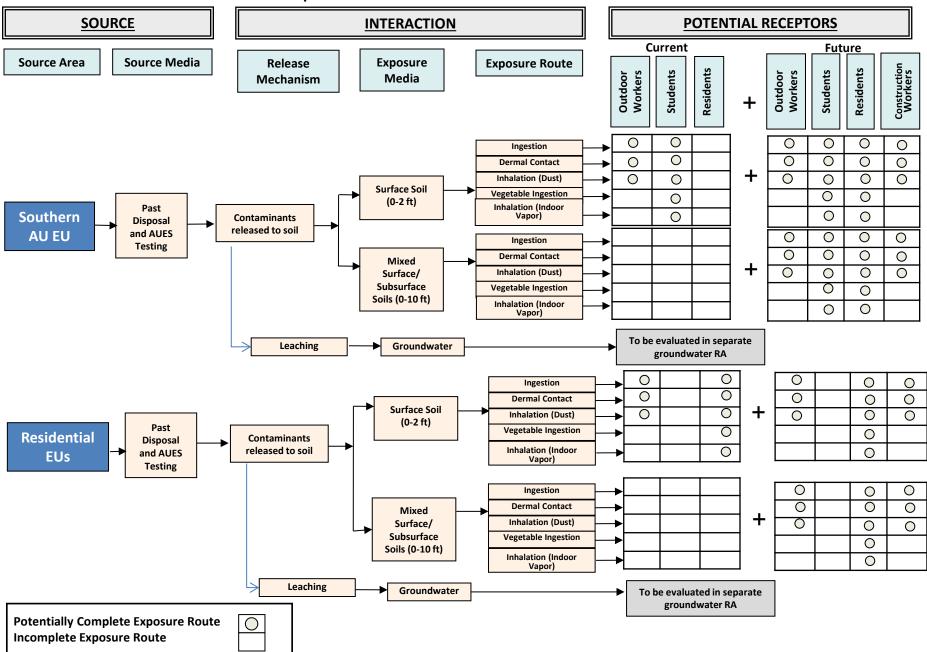



FIGURE 6: Conceptual Site Model

APPENDIX B: DATA SUMMARY TABLES

Table B.1: All AOI 9 EU Detections

 Table B.2: All Spaulding-Rankin EU Detections

 Table B.3: All Southern American University EU Detections

(Also see CD for XL tables presenting all data, detects and non-detects—not presented in hard copy)

Sample D Self-Log S Self-Log	TABLE B.1 AOI 9 DETECTIONS						ERT 'Recent	' Samples							'ОТ	HER' Sampl	es			
Parameter Parameter <t< th=""><th>Sample ID</th><th>3807FR-1</th><th>1(0.5)</th><th>3807FR-2(0</th><th>.5) 3823FR-1(0.5</th><th>5) 3901FR-1(0.5)</th><th>3901FR-2(0.5)</th><th>5001SS-1(0.5)</th><th>5001SS-2(0.5)</th><th>5001SS-3(0.5)</th><th>5010SS-1(0.5)</th><th>5011SS-1(0.5)</th><th>5/24/10</th><th>5/24/10</th><th>5027-5E-45</th><th></th><th></th><th></th><th></th><th>27-SE-43N 2/1/10</th></t<>	Sample ID	3807FR-1	1(0.5)	3807FR-2(0	.5) 3823FR-1(0.5	5) 3901FR-1(0.5)	3901FR-2(0.5)	5001SS-1(0.5)	5001SS-2(0.5)	5001SS-3(0.5)	5010SS-1(0.5)	5011SS-1(0.5)	5/24/10	5/24/10	5027-5E-45					27-SE-43N 2/1/10
Parameter Parameter <t< th=""><th>Sample Date</th><th>9/20/</th><th>2012</th><th>9/20/20</th><th>12 9/20/201</th><th>2 11/7/2012</th><th>11/7/2012</th><th>9/20/2012</th><th>9/20/2012</th><th>9/20/2012</th><th>9/20/2012</th><th>9/20/2012</th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Sample Date	9/20/	2012	9/20/20	12 9/20/201	2 11/7/2012	11/7/2012	9/20/2012	9/20/2012	9/20/2012	9/20/2012	9/20/2012		1						
MANDAM MADE		0,20,		0,20,20				0/20/2012	0/20/2012	0/20/2012	0/20/2012	0/20/2012								
Memory 5.21U Gu Gu O 5.10U Gu O Gu O C S.20U <	Metals (mg/kg)																			
Among Among <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10200 J</td></th<>																				10200 J
Sato		5.26 UL		5.1 UL	UL 0.363	L 0.275 L	0.338	5.1 UL UL	0.194 L	5.36 UL UL	2.36 UL UL	0.319 L								2.3 UL UL
beside																				7.2 J 33.9 J
Seven Seven <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J</td><td>2 J</td></th<>																			J	2 J
Choom Choom <th< td=""><td>Boron</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Boron																			
Code Code <thcod< th=""> Code Code C</thcod<>																				
Copyein Copyein Solution <																			K	13.1 15.6 K
min min <td></td> <td><u> </u></td> <td>24.5</td>																			<u> </u>	24.5
Maganesim													0010		02.0	00.0		10.2		
Manganges													45.5 J	51.6 J	13.9 K	14.6 K	11.5 k	(18.5	K	13.7 K
Minory Minory<													4000							
Nacket Image Image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>J J</td><td>516 J .012 U U</td></t<>																			J J	516 J .012 U U
Phosportule																			K U.	16.1 K
Sincon Sincon<																_				
Silver Silver<																				
Sadum Sadu Sadu <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																				
Suffir																				
Strontum Image: Strontum																				
The line Image														2.6 J	1.6	2.2	1.2	3		2.3
Tin T													0.39 B	0.038 B	0.032 J	0.26 U U	0.028	J 0.24 U	U (0.26 U U
Thandum Image <					0.647	L 0.355 J	2.44 U U	0.266 L	2.26 UL UL	2.23 UL UL	0.98 UL UL	0.573 L	0.74	20.5						
Vanadium Image: Mark and Mark													0.74 J	30.5						
Zincolum Image: Sincolum Image:					22.2	J 26.8 J	20.3 J	20.8 J	45.8 J	20.7 J	23.2 J	35.9 J	29.2 J	27.6 J	25.1 J	21.9 J	22.3	J 21.2	J	20.1 J
Additional Parameters Perchiorate (ug/kg) C <thc< th=""> C C C<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>95.8 L</td><td>82.5 L</td><td>56.4 K</td><td>84.5 K</td><td>49.4 ł</td><td></td><td></td><td>43.8 K</td></thc<>													95.8 L	82.5 L	56.4 K	84.5 K	49.4 ł			43.8 K
Perchlorate (ug/kg) Com Com<													6.38 L	5.07 L	3.38 J	4.37 J	3.28	J 4.31	J	4.17 K
Cyanide (mg/kg) Image: Constraint of (mg/kg) Imag		1			1							1		0.75	24111		24111	2411	111 /	
Fluoride (mg/ng) Image: black mark Ima																				2.6 UL UL .066 U U
ABPS (ug/kg) 1.4-ixitainane 96 U 100 U </td <td>Fluoride (mg/kg)</td> <td></td> <td>0.14 L</td> <td>0.01 L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.2 L</td>	Fluoride (mg/kg)												0.14 L	0.01 L						1.2 L
1.4-coathiane 96 U 0 100 U			1 1	1	1 1														1	
VOCe (uplow) Actione Image: State in the s	1,4-dithiane	96 L	JU	100 U	U 100 U	U 100 U U	100 U U	100 U U	100 U U	100 U U	100 U U	100 U U	100 U U	100 U U	100 U U					
Acetone	1,4-oxathiane	96 L	J U	100 U	U 100 U	U 100 U U	100 U U	100 U U	100 U U	100 U U	100 U U	100 U U								
Acetone													, .						1	
12-Dichloroethane111 <td></td> <td></td> <td> </td> <td></td>																				
2-HEXANONE			+			+														
4-METHYL-2-PENTANONEIII			+ $+$																	
BenzeneImage: Selection of the s																				
CHLOROMETHANE Image: Comparison of the	Benzene																			
DIBROMOCHLOROMETHANE Image: Constraint of the system o						_														
Naphthalene le																				
			+ $+$																	
Ethyl benzene																				
Methyl Tertbutyl Ether																				
Methylene chloride Image: State of the s			+ +																	
Toluene Image: Sector and the sector			+																	
Total Xylenes Image: Constraint of the second of the sec																				

TABLE B.1 AOI 9 DETECTIONS					ERT 'Recent	' Samples							'от	THER' Samples			
Sample ID	3807FR-1(0.5)	3807FR-2(0.5)	3823FR-1(0.5)	3901FR-1(0.5)	3901FR-2(0.5)	5001SS-1(0.5) 5001SS-2(0.5)	5001SS-3(0.5	5010SS-1(0.5)	5011SS-1(0.5)	5024-SE-10 5/24/10 2.0-2.5	5024-SE-16 5/24/10 0-0.5	5027-SE-43 2/1/10	5027-SE-43B 5 2/1/10	027-SE-43E 2/1/10	5027-SE-43W 2/1/10	5027-SE-43N 2/1/10
Sample Date	9/20/2012	9/20/2012	9/20/2012	11/7/2012	11/7/2012	9/20/201	2 9/20/2012	9/20/2012	9/20/2012	9/20/2012							
Parameter																	
SVOCs (µg/kg)	• • •		1 1														
Benzo(a)pyrene																	
Benzo(b)fluoranthene																	
Benzo(k)fluoranthene																	
Anthracene																	
Benzo(a)anthracene																	
Benzo(g,h,i)perylene																	
Benzoic Acid																	
Bis(2-Ethylhexyl)phthalate																	
Chrysene																	
DI - N - BUTYLPHTH ALATE																	
	=NE																
PENTACHLOROPHENOL PHENOL																	
Fluoranthene																	
Phenanthrene																	
Pyrene																	
	I		1 1	1 1	I I	1			1 1	· · · · ·		II	I I				
Pesticides/PCBs (µg/kg) HEPTACHLOR EPOXIDE																	
ENDOSULFAN I																	
DIELDRIN																	
4,4'-DDE																	
ENDOSULFAN II																	
4,4'-DDD																	
4,4'-DDT																	
ALPHA-CHLORDANE																	
GAMMA-CHLORDANE																	
NOTES:																	
Blank cell means no analysis for th	nis parameter.																
																	<u> </u>
																	<u> </u>
																	<u> </u>
																	<u> </u>
																	<u> </u>

TABLE B.1 AOI 9 DETECTIONS						'0	THER' Samp	les											0	Id RA Sample	9S
Sample ID	5027-SE-43S 2/1/10	SW5036SWA N007GS0 1[9]	SW5036SWA N012GS0 1[4]	5040-AN4F- 002; Date: 3/24/2004	5040-AN4F- 001; Date 3/23/2004	SW- 5065SEGS- AN3A-001 3/18/2004	5041-SE-5 2/4/10	5041-SE-11 3/23/10 0-0.5	5047-SE-9 2/3/10	5047-SE-21 2/3/10	5047-SE-12 2/4/10	5053-SE-3 11/17/09 1.0-1.5	5100-TI-5 3/27/10 0-0.5	POI01-01	POI01-02	POI01-03	POI01-04	POI01-05	POI01-06	BACKFILL DATA REPLACES POI01-07	BACKFILL DATA REPLACES POI01- 08/09
Sample Date		12/11/09	12/11/09																		
Parameter																					
Metals (mg/kg)	l		i a a a a l	1 1	1 1						i ana a la sel				1 1	1 1	1 1	1 1	1 1 1		
Aluminum	11000 J	13700	12900				19500 J	20100 J	13800 J	13100 J	12500 J	10800	11300 J	18500	19200	19800	20000	18600	26900	4007	4007
Antimony	2.3 UL UL	2.5 U U	2.8 U U		7.0 1		1.8 UL UL	0.23 UL UL		0.85 UL UL	2 B	1.4 UL UL	2.3 UL UL	9.6 UJ U							1.1 U U
Arsenic Barium	6.7 J 40 J	1.9 72.7	1.5 78.4	5.8	7.6 L	3.5	4.8 J 61 J	3.2 L 110 L	5.3 63.7	4.2	5.7 J 47.9 J	2.6 L 62.3	8.4 L 47.2 L	3.6 72.9	3.3 82.3	0.7	2.4 76.8	4.2	3.8 80.5	2.79 33	2.79 33
Beryllium	2.1 J	0.97	1.4				1.8 J	1.4	1.4	1.3	1.8 J	1.2 J	1.9 J	2.4	1.8	1.5	1.7	3.9	2	0.49	0.49
Boron	2.1 0	8.9 J	7.9 J				1.0 5	1.4	1.4	1.5	1.0 5	1.2 0	1.3 5	2.4	1.0	1.5	1.7	5.5	2	5.92 U U	5.92 U U
Calcium																				858	858
Chromium	16	56.8 L	46 L				25	118 L	29.2	33.4	17.7	15.7	18.9 L	23.3	33.1	28.9	32.3	29.4	45	8.17	8.17
Cobalt	46.8 K	15.1	18.1				25.7 K	20.7 J	20.8 K	18.8 K	24 K	14.7 J	19.9 J	31.3	20.9	16.9	31.3	18	20.9	4.33	4.33
Copper	29	38.7	37				37.1	53.1 L	31.9	37.9	66.2	21 J	34.1 L	39.5	49.6	43.3	45.4	47.6	43.5	8.44	8.44
Iron		25800	22700											21200	31200	24500	31300	36100	39900	16317	16317
Lead	15.7 K	45.1	45				367 K	20.6 L	28.4 K	32.1 K	40.8 K	13.6 J	13.8 J	8.4	25.3	12.3	15	10.9	29.8	6.31	6.31
Magnesium Manganese	675 J	4380 470	5020 370				472 J	799 J	621 J	840 J	523 J	521 J	339 J	6980 355	6490 J 441 J	8190 478 J	5320 799	7520 J 1100	6070 J 477 J	535 89	535 89
Mercury	0.011 U U	0.32	0.16 J				0.065 K	0.062 J	0.076 K	0.087 K	0.036 K	0.032 J	0.026 J	0.11 U	U 0.12 U U	0.11 U	0.12 U U	J 0.11 U U	J 0.12 U U	0.02	0.02
Nickel	17.2 K	25	28.1				29.4 K	50.9 J	26.3 K	32.8 K	23.2 K	17.8 J	26.7 J	36.9	32.6	36.2	28.2	30.9	38.3	9.90	9.90
Phosphorus			2011				2011 11		20.0		2012		20.1 0	0010	02.0	00.2	20.2	00.0		0.00	0.00
Potassium														6130	4760	4410	4230	6050	4840	572.00 B	572.00 B
Silicon																					
Silver														2			2 L			1.00	1
Sodium														145	B 191 B	166 B	201 E	3 169 E	3 196 B	66.00 JB	66 JB
Sulfur Strontium	2.2	5.6	5				3.7	9.3 J	3.3 J	3.8 J	3	2.8	4.4 J								
Tellurium	0.26	2.9	3.4				0.24 U U	0.031 J	0.052 J	0.04 J	0.032 J	1 UL UL	1 U U								
Thallium	0.20	3.8 U U	4.2 U U				12 U U	15 UL UL	14 U U	11 U U	10 U U	9.7 U U	15 UL UL	0.94	0.49 U U	0.44 U U	0.48 U L	J 0.45 U L	J 0.48 U U	1.10	1.099
Tin		6.4 U U	4.1 J				8.8 J	0.36 UL UL	1.7 U U	1.3 U U	3 U U	2 U U	3.6 UL UL								
Titanium		388	701																		
Vanadium	22.7 J	36	26.3				34.9	71.3 J	26.1	26.8	24.7	19.8 J	28.5 J	27.8	43.6	33.2	45.4	45.2	60.4	0.66	0.66
Zinc	43 K	99.5	95.9				127 K	61.2 J	146 K	162 K	138 K	59.4 J	67.9 J	120	J 111 J	104	87.1	J 104 、	J 96.4 J	23	23
Zirconium	4.4 J	0.93 J	1.3 J				4.24 J	2.94 L	4.72	4.24	4.12 J	3.38	2.44 L								
Additional Parameters		07111								0711		0.5111.111					1				
Perchlorate (µg/kg)	2.6 UL UL	2.7 UJ UJ					2.4 UL UL	2.4 UL UL	2.4 UL UL	2.7 UL UL	2.4 UL UL	2.5 UL UL	2.5 U U							0.00.11.11	0.00.11.11
Cyanide (mg/kg) Fluoride (mg/kg)	0.070 U U 1.4 L	0.33 U U 9.7	0.36 U U 9.7				2.1 L	0.069 UL UL 3.8 L	0.066 U U 2.1 L	0.085 J 1.5 L	0.066 U U 2.1 L	0.067 U U 2.3 L	0.066 U U 0.95 L L							0.28 U U	0.28 U U
	1. 4 L	5.7	5.7				2.1 L	3.0 L	2.1 L	1.5 [2.1 [2.5 L	0.33 L								
ABPs (μg/kg) 1,4-dithiane				240 U U	250 U U	240 U U	100 U U	9.6 L	100 U U	100 U U	100 U U	100 U U	100 U U					1			
1,4-oxathiane				480 U U	490 U U	480 U U	100 U U	12 L	100 U U	100 U U	100 U U	100 U U	100 U U								
														1		I I		1			
VOCs (µg/kg) Acetone		429	67.8											14	U 14 U	14 U	14 L	J 14 เ	J 14 U	4.80 U	4.80
Acrolein		429 30.3 J	67.8 61 U U									49.8 R		14						5.00	5.00
1,2-Dichloroethane		2.5 U U	2.4 U U									2 U U		14	U 14 U	14 U	14 L	J 14 L	J 14 U		1.7 U
2-HEXANONE														14							
4-METHYL-2-PENTANONE														14			14 L	J 14 L		7.0 U	3.5 U
Benzene		2.5 U U	2.4 U U									2 U U		14						3.5 U	1.7 U
Chloroethane		6.3 U U	6.1 U U											14							
														14							
DIBROMOCHLOROMETHANE														14	U 14 U	14 U	14 U	J 14 L	J 14 U		1.7 U
Naphthalene Ethyl bonzono		2.5 U U	1 6															<u> </u>		1.0 J	1.0 J 2.99 U U
Ethyl benzene																				2.99 U U	
Methyl Tertbutyl Ether		0.84 J	2.4 U U																	2.99 U U	2.99 U U
Methylene chloride		2.6 J	1.7 J												_					2.99 U U	2.99 U U
Toluene		2.5 U U	2.4 U U									11.3								2.99 U U	
Total Xylenes		7.5 U U	3.5 J									4 U U		14	U 14 U	14 U	14 L	J 14 L	J 14 U	2.99 U U	2.99 U U

TABLE B.1 AOI 9 DETECTIONS					'0	THER' Samp	les												0	old RA Samp	bles
Sample ID	5027-SE-43S SW5036SWA 2/1/10 N007GS0 1[9]	SW5036SWA N012GS0 1[4]	5040-AN4F- 002; Date: 3/24/2004	5040-AN4F- 001; Date 3/23/2004	SW- 5065SEGS- AN3A-001 3/18/2004	5041-SE-5 2/4/10	5041-SE-11 3/23/10 0-0.5	5047-SE-9 2/3/10	5047-SE-21 2/3/10	5047-SE-12 2/4/10	5053-SE-3 11/17/09 1.0-1.5	5100-TI-5 3/27/10 0-0.5	POI01-01	POI01-02	POI01-03	POI01-04	4 POI(01-05	POI01-06	BACKFILL DATA REPLACES POI01-07	BACKFILL DATA REPLACES POI01- 08/09
Sample Date	12/11/09	12/11/09																			
Parameter																					
SVOCs (µg/kg)																					
Benzo(a)pyrene	24.5 J	71.8 U U																		168	
Benzo(b)fluoranthene	28.2 J	71.8 U U											367 U	U 402 U	U 363 U	U 402 L	J U 3	375 U 🛛 U	393 U U	165	
Benzo(k)fluoranthene	25.9 J	71.8 U U																		155	
Anthracene	67.4 U U	71.8 U U											330				U C	330 U			
Benzo(a)anthracene	67.4 U U	71.8 U U											820				D U	820 U			J 103 J
Benzo(g,h,i)perylene	67.4 U U	71.8 U U											330	U 330	U 330	U 330	D U	330 U	330 U		J 62.9 J
Benzoic Acid	419 J	1010 U									830 U U									250 U	
Bis(2-Ethylhexyl)phthalate	27.5 B	144 U U											17					330 U			
	24.3 J	71.8 U U											27					820 U			J 103 J
DI - N - BUTYLPHTH ALATE	135 U U	144 U U											330 330				D U D U	330 U			
Diphenylamine HEXACHLOROCYCLOPENTADIE		388 U U											330					330 U 330 U	330 U		J 58.9 J
PENTACHLOROPHENOL	728 U U	775 U U											330					330 U			J 134 J
PHENOL	364 U U	388 U U											330					330 U			J 204 J
Fluoranthene	58.1 J	71.8 U U											000		0 000			000 0		402	201 0
Phenanthrene	21.9 J	71.8 U U																		350	
Pyrene	35.5 J	71.8 U U											330	U 330	U 330	U 330	D U	330 U	330 U		J 204 J
Pesticides/PCBs (µg/kg)		I I		1 1		I I	1 1			1 1	1 1						1 1	1	1 I	1 1	
HEPTACHLOR EPOXIDE													1.9	U 1.9	10 10	U 1.9	9 U	2.6 J	1.1 J	1.1	U 1.1 U
ENDOSULFAN I													1.9				9 U	1.9 U			
DIELDRIN													3.6				5 U	3.6 U			
4,4'-DDE													3.6				5 U	3.6 U			
ENDOSULFAN II													3.6				6 U	3.6 U			
4,4'-DDD													3.6				6 U	3.6 U			
4,4'-DDT													3.6				6 U	3.6 U			
ALPHA-CHLORDANE													1.4	J 1.9	U 1.9	U 1.9	9 U	1.9 U	1.8 J	1.1	U 1.1 U
GAMMA-CHLORDANE													1.9	U 1.9	U 1.9	U 1.9	9 U	1.9 U	1.9 U	1.1	U 1.1 U
NOTES:																					
Blank cell means no analysis for th																					
														_							
																	<u> </u>				
																	<u> </u>				
														_							
														_							
														_			<u> </u>				
																	+ +				

TABLE B.1																						
AOI 9 DETECTIONS											Olo	d RA Sample	es									
Sample ID	POI01-10	POI01-11	POI01-12	POI01-13	POI01-14	POI07-01/02	POI07-03	POI07-04	POI07-05	POI07-06	POI07-07	POI07-08	POI07-09	POI07-10	POI07-11	POI07-12	POI07-13	POI07-14	5040TR-SB	5054TR-SB	5059TR-SB	5065TR-SB
Sample Date					1				1 1 1			1.1	ĺ	1 1 1	1 1	1	1					
Parameter																						
Metals (mg/kg)			1 1	<u> </u>	1	1	I I I	1	1 1 1	1 1	1 1	1 1	1	1 1	1 1	1	1 1	1		1 1	1	
Aluminum	22400	20700	21600	16800	23200	36800	15900	30900	51900	22700	41100	22900	34200	28800	23200	23000	21700	24400	16100	18800	12600	14800
Antimony	10.4 UJ UJ	10.5 UJ UJ	10.9 UJ UJ	10.4 UJ U		J 31.6 L	11.1 L	26.4 L		17.1 L	31 L	20.9 L	14.1 L	. 11.4 L	7.9 L	10.7 L	8.8 L	9.5 I	L 1.2 U UJ	J 1 UJ UJ	1.1 U UJ	0.97 UJ UJ
Arsenic	1.3	2.2	0.46 UL UL	4	2.4	6.5	2.8 K	5.2	7.2	3.8 K	8.6	4.5	5.3	4.8 K	2.1 K	6.1	4.9	5.4	2.2	1.1	1.3	0.7
Barium	86	75.5	81.6	71.5	79.8	174	54.5 1.5	103	204	34.9	110 2.9	56.3 1.9	104	110	69.1 1.7	91.1	76.1	81.4	75.4	85.4	66.5 1.6	74.6
Beryllium Boron	1.0	1.9	2.6	1.6	1.0	2.2	6.1	2.6	0	1.9	2.9	1.9	1.9	1.8	1.7	2.2	1.5	1.7	1.0	2.1	1.0	1.5
Calcium																						
Chromium	33.6	32.3	28	26.9	33	82.9 L	114 L	67.3 L	. 74.3 L	39.8	66.3	39 L	44.2 L	. 30.7	14 L	16.3 L	23.9 L	22.4	L 26.5	20.3	26.4	21.4
Cobalt	17.1	16.6	18.5	16.8	20.1	41	18.9	68.6	70.1	26.5	39.8	30.7	13.9	16	13.2	21.7	15.4	16.7	18	15.5	21.1	14.4
Copper	40.3	36.4	40.7	37.3	38.3	152	56.8	122	227	60.8	108 L	31.8 L	37.4 L		20.5 L	49.1	31.4 L	35.3	L 31.4	38.2	34.1	27.9
Iron	31800	30500	25600	25400	32100	63000	26200	56800	91100	45000	64400	45700	29600	25000	19100	23100	22400	23700	26800	18000	24200	19400
Lead Magnesium	17.3 6040	31.6 5360	7600	15.2 4540	12.4 5020	20.9 9750	8.2 3090	23.7 4710	23.5 13600	8.6 6080	26.4 7680	10.2 6350	17.5 5300	25.3 5050	18.2 7050	46.2 7190	21.2 5540	27.3 6560	11.1 7490	7440	12.8 6170	7.4 7410
Manganese	376 J	447 J	417 J	381	J 289	J 936	363 J	1480 J	J 2040 J	727 J	789 J	717 J	318 J	J 523 J	448 J	982 J	512 J	532	J 602 J	J 438 J	460 J	384 J
Mercury	0.12 U U	0.12 U U	0.12 U U	0.12 U l	J 0.12 U l	J 0.12 U U	0.12 U U	0.12 U U	0.12 U U	0.12 U U	015 U U	0.11 U U	0.12 U U		0.12 U U	0.12 U U	0.13	0.12 U U	_	J 0.05 U U	0.05	0.04 U U
Nickel	33.2	30.2	34.8	26.3	30.5	39.3	19	39.3	73.5	53.1	60.7	40.1	31.2	26.7	24.4	39.4	26.1	26.2	32.4	32.1	29.3	29.4
Phosphorus	1070																	10	22	502	234	217
Potassium Silicon	4670	4010	5820	3140	3470	9020	2800	3870	10400	2050	5190	4810	5690	4920	7750	7530	5550	5540	6010 2340	5700 2320	4750 2410	6020 2110
Silver	2 U	2 U	2 U	2 ไ	1 2 1	J 2 U	2 U	2 U	J 2 U	2 U	2 U	2 U	2 U	J 2 U	2 U	2 U	2 U	2 ไ		U 0.52 U	0.57 U	0.49 U
Sodium	171 B	181 B	167 B	187	B 189 E	3 1000 U	1000 U	1000 U		232	297	228	256	323	185	1000 U		1000 ไ	J 58.6 U	J 55.9 U	57.3 U	53.7
Sulfur																			116	51	98.8	21
Strontium																			4.2	7.9	2.3	3.9
Tellurium																4 5 11 11						
Thallium Tin	0.48 U; UL	0.49 U U	0.46 UL UL	0.49 U l	J 0.50 U l	J 1.4 U U	2.1 B	1.5 B	1.5 U U	1.4 U U	1.8 U U	1.4 U U	1.4 U U	I 1.5 U U	1.4 U U	1.5 U U	1.4 U U	1.4 U l	J 1.2 U U 2.3 U U	J 1 U U J 2.1 U U	1.1 U U 2.3 U U	
Titanium																			922	930	899	923
Vanadium	45	42.1	35	37	50.2	186	73.9	172	307	58.7	115	64.6	39.5	31.5	15.7	22.3	29.3	29	39.8	23.1	32.8	23.4
Zinc	104 J	93.1 J	107 J	77.3	J 83	J 81.4	33.8	64.8	121	90.9	123	88.2	63.8	65.2	56.4	68.1	74.7	68.9	92.7	96.7	80.4	91.9
Zirconium																						
Additional Parameters	1					1 1			1 1 1		1 1			1 1 1		1	1 1 1		1	1 1		
Perchlorate (µg/kg) Cyanide (mg/kg)						_													0.61 U U	J 0.56 U U	0.58 U U	0.53 U U
Fluoride (mg/kg)						_													1.22 R R			
ABPs (µg/kg)	1 1		1 1	1	1 1	1	· · · ·							1 1			1 1	1	1	.,	.,	
1,4-dithiane																			102 U U	J 90 U U	101 U	87 U U
1,4-oxathiane																			99 U U		101 U	
VOCs (µg/kg)																				1		
Acetone	14 U	6 B	14 U	14 l	J 14 l	J 14 U	14 U	14 U	J 14 U	14 U	14 U	14 U	14 U	J 14 U	14 U	14 U	14 U	14 l	J 1 UB UB	3 UB UB	2 UB UB	2 UB UB
Acrolein																			5.2 U U			
1,2-Dichloroethane	14 U	14 U		14 l				14 U		14 U 14 U	14 U	14 U	14 U		14 U	14 U		14 L	J 1 U.			
	14 U	14 U		14 l				14 U			14 U		14 U		14 U	14 U		14 L				
4-METHYL-2-PENTANONE Benzene	14 U 14 U	14 U 14 U		14 l				14 U 14 U		14 U 14 U	14 U 14 U	14 U 14 U	14 U 14 U		14 U 14 U	14 U 14 U		14 L				1.1 UJ 1.1
Chloroethane	14 U	14 U		14 U		J 14 U		14 U		14 U	14 U	14 U	14 U		14 U	14 U		14 0				
CHLOROMETHANE	14 U	14 U		14 l				14 U		14 U	14 U	14 U	14 U		14 U	14 U		14 L				1.1
DIBROMOCHLOROMETHANE	14 U	14 U	14 U	14 l	J 14 l	J 14 U	14 U	14 U	J 14 U	14 U	14 U	14 U	14 U	J 14 U	14 U	14 U	14 U	14 L				1.1
Naphthalene						-			ļ					ļ								
Ethyl benzene						+								+					1 UJ UJ			
Methyl Tertbutyl Ether																			1 UJ UJ			
Methylene chloride									ļ					ļ					1 UJ UJ			
Toluene										4 4 1 1	4 4 1 1	A			A	A _ 1 ·			1 UJ UJ			
Total Xylenes	14 U	14 U	14 U	14 l	J 14 l	J 14 U	14 U	14 U	J 14 U	14 U	14 U	14 U	14 U	l 14 U	14 U	14 U	14 U	14 l	J 2 J	J 1.3 UJ	1 UJ	1.1 UJ

TABLE B.1 AOI 9 DETECTIONS											OI	d RA Sample	es									
Sample ID	POI01-10	POI01-11	POI01-12	POI01-13	POI01-14	POI07-01/02	POI07-03	PO107-04	POI07-05	PO107-06	POI07-07	POI07-08	PO107-09	POI07-10	POI07-11	POI07-12	POI07-13	POI07-14	5040TR-SB	5054TR-SB	5059TR-SB	5065TR-SB
Sample Date																						
Parameter																						
SVOCs (µg/kg)		1	1	1	1	1 1		1	1 1		1 1	1 1	1		1	I	1 1	I			-1 - 1 - 1	
Benzo(a)pyrene			1	1		1	1 1	1		1	I I I								82 U	U 140	81 U U	74 U U
Benzo(b)fluoranthene	402 U	U 402 U U	J 384 U U	398 U	U 407 U U	446 UJ UJ	J 413 UJUJ	388 UJU	J 413 UJUJ	375 UJUJ	393 U U	380 U U	402 U U	J 413 U U	393 U U	407 U U	398 U U	407 U l	J 82 U		81 U U	74 U U
Benzo(k)fluoranthene	102.0									010 0000			102 0 0		00000				82 U		81 U U	74 U U
Anthracene	330	U 330 U	J 330 U	330	U 330 L	J 330 U	J 330 U	330 L	J 330 U	330 U	330 U	330 U	330 L	J 330 U	330 U	330 U	330 U	330 l	J 82		81 U	
Benzo(a)anthracene	820			820		J 820 U	820 U	820 L		820 U	820 U	820 U	820 U		820 U	820 U	820 U	820 l		J 340	81 U U	74 U U
Benzo(g,h,i)perylene	330					330 U		330 L		330 U	330 U	330 U	330 L		330 U	330 U	330 U	330 l			81 U	74 U
Benzoic Acid																				U 230 U U	240 U U	220 U U
Bis(2-Ethylhexyl)phthalate	330	U 330 U	J 24 J	330	U 330 L	J 330 U	J 330 U	330 L	J 330 U	330 U	330 U	330 U	330 L	J 330 U	330 U	330 U	330 U	330 l	J 82 U		81 U U	74 U U
Chrysene	820					820 U		820 L		820 U	820 U	820 U	820 U		820 U	820 U	820 U	820 l		J 160	81 U	
DI - N - BUTYLPHTH ALATE	330					330 U		330 L		330 U	330 U	330 U	330 L		330 U	330 U	330 U	330 l		U 34 J	81 U	74 U
Diphenylamine	330			330		J 330 U	J 330 U	330 L		330 U	330 U	330 U	330 L		330 U	330 U	330 U	330 l	J 82 U		81 U U	74 U U
HEXACHLOROCYCLOPENTADIE						J 330 U		330 L		330 U	330 U	330 U	330 L		330 U	330 U	330 U	330 l	J 82		81 U	74 U
PENTACHLOROPHENOL	330					J 330 U		330 L		330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 l	J 82 U		81 U U	74 U U
PHENOL	330		J 330 U		U 34 .	J 330 U		330 L		330 U	330 U	330 U	330 U		330 U	330 U	330 U	330 l	J 82 U	J 450	81 U U	74 U U
Fluoranthene																			82 U	J 650	81 U U	74 U U
Phenanthrene																			82 U	J 270	81 U U	74 U U
Pyrene	330	U 330 U	J 330 U	330	U 34 、	J 330 U	J 330 U	330 L	J 330 U	330 U	330 U	330 U	330 U	J 330 U	330 U	330 U	330 U	330 l	J 82 U	J 450	81 U U	74 U U
Pesticides/PCBs (µg/kg)		·											·	· · ·	·			·	•			
HEPTACHLOR EPOXIDE	1.9	U 1.9 U	J 1 J	46	J 4.3	J 1.9 U	J 2.7 J	1.9 L	J 1.9 U	1.9 U	1.9 U	1.9 U	1.9 U	J 1.9 U	1.9 U	1.9 U	1.9 U	1.9 l	ul i			
ENDOSULFAN I	1.9				J 1.9 L	J 1.9 U		1.9 L		1.9 U	1.0 U	1.9 U	1.9 U		1.9 U	1.9 U		1.9 l				
DIELDRIN	3.6					J 3.6 U		3.6 L		3.6 U	3.6 U	3.6 U	3.6 U		3.6 U	3.6 U		3.6 L				
4,4'-DDE	27	J 3.6 U				5.5 J		1.5		31 J	13	50	25	110	17	12	110	250				
ENDOSULFAN II	3.6					J 3.6 U							4.6	3.6 U	3.6 U			3.6 l	J			
4,4'-DDD	3.6									3.6 U 3.6 U	3.6 U		3.6 L		3.6 U			3.6 l				
4,4'-DDT	8.7									20 J	5.5		15	12	3.9 J			58				
ALPHA-CHLORDANE	1.2					J 1.9 U					5.5 1.9 U	52 0.9 J	5.3	1.9 U	1.9 U			58 1.9 l	J			
GAMMA-CHLORDANE	1.9					J 1.9 U								1.9 U				1.9 l				
NOTES:																						
Blank cell means no analysis for th		NA not applica	able																			
				n, µg/kg micro	ograms per kilogi	ram																
					t be accurate or																	
					high, actual valu		r.															
		,			sed low, the actu																	
					ates the approxin		-	essary to be	detected													
					be inaccurate or																	
					accurate or impre	· ·																
		R unreliable re	esult; analyte ma	ay or may not b	e present in the	sample, suppo	rting data neces	sary to confi	rm result													
					cted in the assoc		•															

TABLE B.2 SPAULDING-RANKIN DETECTIONS	ERT 'RECENT' Samples												
Sample ID	A4710WL1(0.5)	A4710WL1(2-4)	A4710WL2(0.5)	A4710WL2(1-3)	A4710WL3(0.5)	A4710WL3(5-7)	A4710WL4(0.5)	A4710WL4(7-9)	A4710WL5(0.5)	A4710WL5(5-7)	A4710WL6(0.5)	A4710WL6(5-7)	A4710WL7(0.5)
Sample Date	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012
Parameter													
Metals (mg/kg)	•						, ,						
Aluminum	12600 J	13300 J	11800 J	17100 J	10700 J	14900 J	11600 J	17600 J	11700 J	17500 J	12100 J	21800 J	13500 J
Antimony	1.44 J	0.798 J	1.2 J	1.47 J	1.37 J	1.33 J	1.25 J	0.454 J	1.39 J	1.24 J	1.38 J	1.32 J	1.26 J
Arsenic													
Barium	69.8 J	36.3 J	91.1 J	32.6 J	91.7 J	41.1 J	105 J	70.3 J	91 J	63.7 J	73.6 J	104 J	76.9 J
Beryllium	0.83	1.07	0.805	1.08	0.774	0.938	0.801	2.08	0.875	1.72	0.774	1.67	0.772
Cadmium	0.811	0.662	0.829	0.731	1.44	0.617	1.19	0.75	3.18	1.1	0.792	1.75	0.828
Calcium	2210 J	398 J	4030 J	811 J	2380 J	656 J	3230 J	328 J	2680 J	250 J	3270 J	346 J	3700 J
Chromium	539 J	392 J	520 J	742 J	443 J	511 J	431 J	164 J	547 J	526 J	626 J	544 J	580 J
Cobalt	52.7	46.7	43.8	92.5	46.3	49	47.8	36.8	51.3	77.8	43.5	87.6	48.9
Copper	20.9 J	28.2 J	25.2 J	22.4 J	19.8 J	29.3 J	38.1 J	16.3 J	15.1 J	56.8 J	17.5 J	23.1 J	19.5 J
Iron	40200 J	46400 J	37500 J	55700 J	32900 J	44000 J	34400 J	50600 J	38400 J	58400 J	42100 J	58600 J	40600 J
Lead	47	6.25	43.8	2.84	76	7.82	93.8	12.6	77.5	3.4	74	2.53	94.4
Magnesium	4170 J	4670 J	3850 J	4950 J	3670 J	4660 J	4580 J	5530 J	3700 J	7000 J	4080 J	14900 J	5690 J
Manganese	1100 J	703 J	1230 J	1010 J	1710 J	743 J	1860 J	848 J	1590 J	1190 J	1230 J	1980 J	1190 J
Mercury	0.09 J	0.055 U U		0.055 U U	0.19	0.07 J	0.16	0.055 U U		0.055 U U		0.055 U U	0.08 J
Nickel	84.4 J	74 J	69.5 J	114 J	75.9 J	89.2 J	83.7 J	66.2 J		156 J	81.7 J	275 J	84.9 J
Potassium	524 J	1680 J	391 J	482 J	443 J	964 J	488 J	2130 J		426 J	394 J	105 J	537 J
Selenium	7.17 L	7.74 L	7 L	9.23 L	5.92 L	7.53 L	6.36 L	8.5 L	7.15 L	9.16 L	7.64 L	8.52 L	7.48 L
Silver	0.752 L	0.633 L	0.725 L	0.871 L	0.668 L	0.655 L	0.742 L	0.73 L	0.822 L	0.784 L	0.734 L	0.883 L	0.778 L
Sodium Strantium Tatal	26.9 J	15.7 J	29.9 J	200.5 U U	44.5 J	25.5 J 4.34	41.2 J	27.7 J 2.97	48.3 J	33.5 J	43.5 J 16.5	31.9 J	33.4 J
Strontium Total	13 3.76 L	3 4.39 L	24 3.6 L	3.85	16.2		22.5		16.6	1.91	4.25 L	2.09	17.6
Thallium Tin	1.75	0.245 J	1.2	6.16 L 0.22 J	3.43 L 4.07	4.28 L 0.301 J	3.18 L 3.51	5.38 L 1.3	3.59 L 1.87	4.8 L 0.023 J	4.25 L 2.72	7.89 L 0.64	4.2 L 1.89
	373 J	0.243 J 492 J	357 J	471 J	296 J	449 J	340 J	685 J	378 J	601 J	426 J		369 J
Titanium Vanadium	83.8 J	492 J 84.6 J	79.6 J	104 J	69.9 J	83.9 J	85.8 J	69.6 J		127 J	93.3 J	319 J 109 J	84.3 J
Zinc	92.2 J	59.5 J	84.8 J	76 J	121 J	65.5 J	139 J	80.5 J		94.5 J	96.9 J	145 J	94.1 J
Zirconium	0.241 U U		0.275 U U		0.2595 U U		0.2935 U U		0.277 U U				
Additional Parameters (mg/kg)													
Cyanide													
VOCs (µg/kg)	1 1	1	1			1 1	1		1 1		1	11	1
2-HEXANONE	1												
ACETONE													
CHLOROFORM													
ETHYLBENZENE	+								+ +				
METHYLENE CHLORIDE									+				
	-												
TOTAL XYLENES													

TABLE B.2 SPAULDING-RANKIN DETECTIONS							ERT 'RECE	NT' Samples					
Sample ID	A4710WL1(0.5)	A4710WL1(2-4)	A4710WL2(0.5)	A4710WL2(1-3)	A4710WL3(0.5)	A4710WL3(5-7)	A4710WL4(0.5)	A4710WL4(7-9)	A4710WL5(0.5)	A4710WL5(5-7)	A4710WL6(0.5)	A4710WL6(5-7)	A4710WL7(0.5)
Sample Date	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012
Parameter													
SVOCs (µg/kg)													
Benzo(a)anthracene													
Benzo(a)pyrene													
Benzo(b)fluoranthene													
Chrysene													
BIS(2 - ETHYLH EXYL) PHTH ALATE													
DI - N - BUTYLPHTH ALATE													
FLUORANTHENE													
Pesticides/PCBs (µg/kg)													
4,4'-DDD													
4,4'-DDE													
4,4'-DDT													
ALPHA-CHLORDANE													
METHOXYCHLOR													
Notes:													
Blank cell means no analysis for													
this parameter.													

TABLE B.2 SPAULDING-RANKIN DETECTIONS			ER	RT 'RECENT' Sam	ples				'OTHER'	-				
Sample ID	A4710WL7(5-7)	POI4710WL1(0.5)	POI4710WL2(0.5)	POI4710WL3(0.5)	POI4710WL4(0.5)	POI4710WL5(0.5)	WD-13 0-0.5	SCRA- BURN- CENTER (2)	SCRA- BURN-SW-N	SCRA- BURN-SW-E	SCRA- BURN-SW-S	SCRA- BURN-SW- W	POI21-23-07	POI21-23-10
Sample Date	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	5/2/2011	2/18/2004	2/18/2004	2/18/2004	2/18/2004	2/18/2004	EPA '99	EPA '99
Parameter														
Metals (mg/kg)		· · ·							1					1
Aluminum	16100 J						2530						9680	4830
Antimony	1.26 J						8.1 J						10.2 U L	
Arsenic	1120 0						7.5 B	27.6 K	6.5 K	14.3 K	K 11.9 K	25.6 K		
Barium	73.8 J						32.4						22.7	27.3
Beryllium	1.57						0.21 J						1.1	0.63
Cadmium	1.57						30.1						10 U L	
Calcium	366 J												957	264
Chromium	491 J						179						988	333
Cobalt	113						22.8						74.4	99.2
Copper	23.1 J						481						21.4	18.5
Iron	52100 J												52200	22900
Lead	3.95						313	135	20.4	66.1	92.1	127	5 J	
Magnesium	6310 J												3300 J	
Manganese	1200 J						1080						409 J	
Mercury	0.055 U U						0.19						0.03	0.03
Nickel	270 J	94.5	J 55.2	J 108	J 62.4	J 49.2	129						120	61.7
Potassium	598 J												148 J	J 5 U
Selenium	7.72 L						17.7						F	• • • • • • • • • • • • • • • • • • • •
Silver	0.691 L												5 U L	J 5 U U
Sodium	47.8 J												30.9	24.4
Strontium Total	3.84						8.4 L							
Thallium	4.89 L	5.21 L	3.43 L	2.05	L 4.63 L	_ 6.91	4.9 J						0.25 UJ L	JJ 0.25 J
Tin	0.628						25.2 B							
Titanium	469 J													
Vanadium	90.9 J	94.4	J 101 .	J 48.6	J 80.8	J 53.7 .	J 24 J						81.3	36.1
Zinc	92.4 J						13600						38.4	19
Zirconium	0.2095 U U						3.94							
Additional Parameters (mg/kg)		1		1										
Cyanide							0.29							
VOCs (µg/kg)														
2-HEXANONE							I 1					1		
												+	14 U L	
ACETONE			+									+	11 J	
	<u>↓</u>												14 U L	
ETHYLBENZENE													14 U L	
METHYLENE CHLORIDE									_				5 E	3 5 B
TOLUENE													14 U L	J 15 J
TOTAL XYLENES													14 U L	J 21 J

		EF	RT 'RECENT' Sam	ples				'OTHER' \$	Samples				
A4710WL7(5-7)	POI4710WL1(0.5)	POI4710WL2(0.5)	POI4710WL3(0.5)	POI4710WL4(0.5)	POI4710WL5(0.5)	WD-13 0-0.5	SCRA- BURN- CENTER (2)	SCRA- BURN-SW-N	SCRA- BURN-SW-E	SCRA- BURN-SW-S	SCRA- BURN-SW- W	POI21-23-07	POI21-23-10
9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	9/19/2012	5/2/2011	2/18/2004	2/18/2004	2/18/2004	2/18/2004	2/18/2004	EPA '99	EPA '99
												•	
							390 U	U 420 U U	J 410 U	U 430 U	U 110 J	810 U U	820 U U
							34	J 420 U U	J 34	J 430 U	U 86 J	I 810 U U	820 U U
												I 810 U U	
							42	J 420 U U	J 42	J 430 U	U 110 J	I 810 U U	
												330 U U	
												700 J	610 J
												330 U U	330 U U
												48	3.6 U U
												26	60
												87 J	32
												1.3 J	1.9 U U
												3.2 B	
				+ +					+ +				
							A4710WL7(5-7) POI4710WL1(0.5) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5	A4710WL7(5-7) POI4710WL1(0.5) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5 BURN-CENTER (2) 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 5/2/2011 2/18/2004 0 0 0 0 0 0 0 0 0 0 0 0/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 5/2/2011 2/18/2004 0 <	A4710WL7(5-7) POI4710WL1(0.5) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5 BURN- CENTER (2) 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 5/2/2011 2/18/2004 2/18/2004 V V V V V V V V V V	A4710WL7(5-7) POI4710WL1(0.5) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5 BURN-SW-N BURN-SW-N BURN-SW-E 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 5/2/2011 2/18/2004 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2014	A4710WL7(5-7) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5 BURN-SW-N BURN-SW-E BURN-SW-E	A4710WL7(5-7) POI4710WL2(0.5) POI4710WL3(0.5) POI4710WL4(0.5) POI4710WL5(0.5) 0-0.5 BURN-SW-N BURN-SW-E BURN-SW-S BURN-SW-S W 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 9/19/2012 5/2/2011 2/18/2004 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2014 2/18/2	A4710WL7(5-7) POI4710WL2(0.5) POI4710WL3(0.5) PO

TABLE B.2 SPAULDING-RANKIN DETECTIONS											Old RA Sam	nples			
Sample ID	POI21-23-12	POI21-23-13	POI21-23-15/16	SVPOI21/23-1	SVPOI21/23-2	SVPOI21/23-3	SVPOI21/23-4	SVPOI21/23-5	SVPOI21/23-6	SVPOI21/23-7	SVPOI21/23-8	SVPOI21/23-9	SVPOI21/23-10	SVPOI21/23-11	SVPOI21/23-12
Sample Date	EPA '99	EPA '99	EPA '99	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95
Parameter															
Metals (mg/kg)	1		l l	•		, , ,					1 1	1 1	1 1	1 1	
Aluminum	17900	9550	8170	18252.86	22683.84	18834.99	19085.5	15596.53	20371.46	22088.34	14645.7	14385.25	16946.38	13467.14	24661.58
Antimony	10.4 U U		10.3 U U	3.4 UJ U		3.64 UJ L									
Arsenic	1 J		2.5 J	2.25 J	6.78 J	6.78		1.26 J	1.38 J	1.72 J	1.26 J	1.54 J	1.42 J	1.6 J	1.54 J
Barium	41.2	49.6	18.1	73.07 J	36.73 JB	78.88	31.16 JE	69.78 JE	3 51.37 JI	B 29.45 JB	32.64 JE	3 28.69 JE	3 33.12 JE	3 25.55 JE	3 31.01 JB
Beryllium	0.87	0.58 J	0.7	0.98 B	1.31 B	1.15 E	3 1.33	1.13 B	1.53 B	1.71 B	1.35 B	0.99 B	2.76 B	1.2	1.37
Cadmium	10 U U	10 U U	10 U U	1.38	1.64 B	1.7	1.51	1.53 B	1.75 B	1.36 B	1.45 B	1.09 B	2.51 B	1.02 B	1.04 B
Calcium	518	800	936	4330.78 J	B 1134.7 JB	25590.57 J	688.81 JE	398.09 JE			545.2 JE	3 715.3 JE	3 120.14 JE	3 234.78 JE	3 365.39 JB
Chromium	453	465	449	353.9	754.31	782.77	1366.05	1794.18	1089.95	2066.87	1460.72	1138.34	15866.71	1202.58	691.83
Cobalt	34.3	27.8	46.8	58.76	40.43	287.82	80.26	210.77	426.52	76.32	78.52	32.41	239.15	142.27	38.3
Copper	29.1	14.2	41.2	32.09	33.5	52.83	51.76	49.58	167.32	33.89	19.17	38.96	96.41	23.49	34.78
Iron	44900	31600	40100	28128.15	61985.95	44962.78	65104.09	76918.32	80030.75	87330.06	76324.78	62480.04	140536.16	56620.89	53390.59
Lead	18.1 J	12.8 J	8.3 J	31.27	46.83	55.43	48.59	22.03 B	19.66 B		19.7 B	15.85	59.91	30.85	28.38
Magnesium	3420 J	3890 J	702 J	12553.78	2272.6 B	5758.56	6134.2	1354.95 B	1535.06 B		1477.28 B	2819.16	1368.2 B		4338.93
Manganese	374 J	643 J	303 J	1233.98	372.53	3069.85	833.92	2397.03	3247.97	446.93	391.82	221.98	2533.42	1031.95	354.68
Mercury	0.03	0.05	0.03	0.11 R R		0.19 J		0.11 R R			0.67 J	0.12 J	0.12 UJ U.		J 0.13 UJ UJ
Nickel	51	64.4	35.9	166.86	87.59	198.54	177.86	180.05	334.53	141.88	211.76	87.13	312.51	140.79	64.25
Potassium	1570 J	1110 J	117 J	1644.62	656.22 B	2127.92	440.01 B	359.25 B	458.97 B		338.14 B	393.9 B		285.16 B	
Selenium	R		R	7.05 U U		7.54 U L		15 U U	14.62 U U		15.6 U U	7.61 U U	18.73 U U	6.74 U U	
Silver	5 U U		5 U U	1.99 B		1.7 E		2.14 B	1.82 B		1.72 B	1.7 B		1.75 B	1.76 B
Sodium	44.5	31.2	22.9	57.25 B	48.63 B	117.97 E	3 26.72 B	31.4 U U	30.6 U U	30.01 U U	32.63 U U	23.6 B	39.19 U U	14.11 U U	21.78 B
Strontium Total	0.05		0.05.111.11	5 00 111 11	40.00.00.00	5 05 111	5 10 11 11		40.00.111	40.75.111.11			44.00 111		5 00 111
Thallium	0.35 J	0.24 UJ UJ	0.25 UJ U.	5.29 UJ U	J 12.66 UJ UJ	5.65 UJ U	JJ 5.42 UJ U.	J 11.24 UJ U.	J 10.96 UJ U	J 10.75 UJ UJ	11.68 UJ U	J 5.7 UJ U.	J 14.03 UJ U.	J 7.39 J	5.29 UJ UJ
Tin															
Titanium	93.2	69.2	102	60.33	141.14	00.05	125.19	118.12	194.85	141.08	100.14	100.8	192.09	00.70	100.20
Vanadium Zinc	48.8	48.6	20.2	73.2	57.32	90.25 135.53	72.13	47.09	70.23	58.97	129.14 49.73	42.17	64.28	98.73 55.79	109.38 58.3
Zirconium Additional Parameters (mg/kg)	40.0	40.0	20.2	13.2	51.52	155.55	12.13	47.03	10.23	30.97	43.73	42.17	04.20	33.79	
Cyanide				1.14 U U	1.16 U U	1.24 U U	J 1.24 U U	1.23 U U	1.23 U U	1.22 U U	1.26 U U	1.26 U U	1.25 U U	1.17 U l	J 1.26 U U
VOCs (µg/kg)				· · ·							· ·				
2-HEXANONE	14 U U	14 U U	14 U U												
ACETONE	10 J	7 J	14 U U												
CHLOROFORM	14 U U	14 U U	14 U U												
ETHYLBENZENE	14 U U	14 U U	14 U U												
METHYLENE CHLORIDE	6 B		14 U U												
TOLUENE	13 J	14 U U	14 U U												
TOTAL XYLENES	18 J		14 U U												

TABLE B.2 SPAULDING-RANKIN DETECTIONS											Old RA Sar	nples			
Sample ID	POI21-23-12	POI21-23-13	POI21-23-15/16	SVPOI21/23-1	SVPOI21/23-2	SVPOI21/23-3	SVPOI21/23-4	SVPOI21/23-5	SVPOI21/23-6	SVPOI21/23-7	SVPOI21/23-8	SVPOI21/23-9	SVPOI21/23-10	SVPOI21/23-11	SVPOI21/23-12
Sample Date	EPA '99	EPA '99	EPA '99	USACE '95	USACE '95	USACE '95									
Parameter															
SVOCs (µg/kg)		1 1	1 1		1 1	- I - I	1 1		- 1 1	- 1 1				1 1	- I I
Benzo(a)anthracene	840 U L	780 U U	840 U U												
Benzo(a)pyrene	840 U L														
Benzo(b)fluoranthene	840 U L														
Chrysene	840 U L														
BIS(2 - ETHYLH EXYL) PHTH ALATE															
DI - N - BUTYLPHTH ALATE	650 J		530 J												
FLUORANTHENE	330 U L	J 330 U U	330 U U												
Pesticides/PCBs (µg/kg)															
4,4'-DDD	3.6 U L	J 3.6 U U	3.6 U U												
4,4'-DDE	1.6 J	3.6 U U													
4,4'-DDT	1.5 J	3.6 U U	3.6 U U												
ALPHA-CHLORDANE	0.8 J														
METHOXYCHLOR	2.8 E														
Notes:															
Blank cell means no analysis for this parameter.															
· · · ·															

TABLE B.2 SPAULDING-RANKIN DETECTIONS										Old RA S	Samples			
Sample ID	SVPOI21/23-13	SVPOI21/23-14	SVPOI21/23-15	SV-POI21SS-01	SV-POI22SS-01	SV-POI22SS-02	SV-POI22SS-03	SV-POI22SS-04	SV-POI22SS-05	SV-POI21SB-01	SV-POI21SB-02	SV-POI21SB-03	SV-POI21SB-04	SV-POI21SB-05
Sample Date	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	USACE '95	Jan-95	Jan-95	Jan-95	Jan-95	Jan-95
Parameter														
Metals (mg/kg)						· · ·				•				
Aluminum	22107.37	20570.66	21713.57											
Antimony	3.78 UJ UJ													
Arsenic	1.35 J	3.3 J	8.82 J	0.32	3.6 J	26.9 J	2.4 J	2.2 J	1.9 J	1.56	2.5	2.26	2.3	2.39
Barium	78.45 J	293.57 J	39.5 JB											
Beryllium	1.6	1.43	1.85 B											
Cadmium	1.35	1.51	1.67 B											
Calcium	841.93 JB		878.53 JB											
Chromium	833.86	128.88	925.23											
Cobalt	33.95	19.69	54.02											
Copper	24.67	185.96	68.86											
Iron Lead	56922.38	26308.21 217.56	81773.87 47.56											
Magnesium	4242.95	6578.33	1764.66 B											
Magnese	742.39	1029.57	478.94											
Mercury	0.11 J	0.15 J	0.18 J											
Nickel	98.19	36.38	112.74											
Potassium	1146.43 B	3246.43	713.2 B											
Selenium	7.84 U U	8.09 U U	14.35 U U											
Silver	1.66 B	2.38 B	3.73 B											
Sodium	28.87 B	199.29 B	30 U U											
Strontium Total														
Thallium	5.87 UJ UJ	6.06 UJ UJ	10.74 UJ UJ											
Tin														
Titanium														
Vanadium 	118.93	47.23	177.39											
Zinc	82.79	236	67.44							┨──────┤				
Zirconium Additional Parameters (mg/kg)														
	1.29 U	1 22 11 11	1 24 11 11	1.11		1	J 1.86	1 1 1	1 11	1 411	1 11	1111	1 11	1 11
Cyanide	1.290 0	1.33 U U	1.24 U U	1 U	U 1 R R	1	1.00	1 U L	J 1 U U	ן 10 נ	J 1 U I	J 1 U I	J 1 U I	J 1 U U
VOCs (µg/kg)														
2-HEXANONE														
ACETONE														
CHLOROFORM														
ETHYLBENZENE														
METHYLENE CHLORIDE														
TOLUENE														
TOTAL XYLENES														

TABLE B.2 SPAULDING-RANKIN DETECTIONS										Old RA S	Samples			
Sample ID	SVPOI21/23-13	SVPOI21/23-14	SVPOI21/23-15	SV-POI21SS-01	SV-POI22SS-01	SV-POI22SS-02	SV-POI22SS-03	SV-POI22SS-04	SV-POI22SS-05	SV-POI21SB-01	SV-POI21SB-02	SV-POI21SB-03	SV-POI21SB-04	SV-POI21SB-05
Sample Date	USACE '95	Jan-95	Jan-95	Jan-95	Jan-95	Jan-95								
Parameter														
SVOCs (µg/kg)	•			· ·				· ·	· ·	· · ·			· ·	
Benzo(a)anthracene														
Benzo(a)pyrene														
Benzo(b)fluoranthene														
Chrysene														
BIS(2 - ETHYLH EXYL) PHTH ALATE														
DI - N - BUTYLPHTH ALATE FLUORANTHENE														
										1				
Pesticides/PCBs (µg/kg)														
4,4'-DDD														
4,4'-DDE														
4,4'-DDT														
ALPHA-CHLORDANE														
METHOXYCHLOR														
Notes:														
Blank cell means no analysis for this parameter.														
										+ +				

TABLE B.2 SPAULDING-RANKIN DETECTIONS									Old	RA Samples				
Sample ID	SV-POI21SB-06	SV-POI21SB-07	SV-POI23SS-01	SV-POI23SB-01	SV-POI23SB-02	SV-POI23SB-03	SV-POI23SB-04	SV-POI23SB-05	SV-POI23SB-06	SV-POI23SB-07	SV-POI23PD-01	POI21SS-01	POI21SB-02	POI21SB-05
Sample Date	Jan-95	Jan-95	Dec-94	EPA '99	EPA '99	EPA '99								
Parameter														
Metals (mg/kg)	•					, ,						•		
Aluminum												8520	11000	9660
Antimony												8.7		
Arsenic	2.44	2.35	0.2 J	0.78	1.2	1.16	1.03	0.91	1.04	1.06	131	1 U L		
Barium												16 E		
Beryllium												0.65		
Cadmium												0.49 U L		
Calcium												200 E		
Chromium												718	365	449
Cobalt												39.9 J	34.3	J 43.8 J
Copper												16.1	34.3	26
Iron												26100	32600	27800
Lead												0.82	19.1	19.6
Magnesium												7470	2800	4350
Manganese												789	J 1130	J 1890 J
Mercury												0.17	0.13 U	U 0.13 U U
Nickel												142	58.7	74
Potassium												138 U L		
Selenium												1.2 U L	J 1.2 U L	J 1.2 U U
Silver												1.5 U L	J 1.5 U L	J 1.5 U U
Sodium												108 U L	J 85.1 U L	J 84.2 U U
Strontium Total														
Thallium												1 U L	J 1.3 U L	J 1.2 U U
Tin														
Titanium														
Vanadium												61.3	74	61
Zinc												48.7	47.1	52.9
Zirconium														
Additional Parameters (mg/kg)	1	1 1	1 1	1 1	1 1	1	1 1	1 1	1 1	1 1	1 1	1		
Cyanide	1 U l	J 1 U เ	U ND U	1 U l	J 1 U	ป 1 ป เ	J 1 U	J 1 U l	J 1 U	U 1 U	U 1.66			
VOCs (µg/kg)														
2-HEXANONE						1						11 U L	J 13 U เ	J 13 U U
ACETONE						+						11 U U		
CHLOROFORM		+ +				++	+ +			++				
		+				+	+			++		11 U U		
	_									++		11 U U		
METHYLENE CHLORIDE										_		5 J		
TOLUENE												11 U L		
TOTAL XYLENES												11 U L	J 13 U เ	J 13 U U

TABLE B.2 SPAULDING-RANKIN DETECTIONS									Old F	RA Samples				
Sample ID	SV-POI21SB-06	SV-POI21SB-07	SV-POI23SS-01	SV-POI23SB-01	SV-POI23SB-02	SV-POI23SB-03	SV-POI23SB-04	SV-POI23SB-05	SV-POI23SB-06	SV-POI23SB-07	SV-POI23PD-01	POI21SS-01	POI21SB-02	POI21SB-05
Sample Date	Jan-95	Jan-95	Dec-94	EPA '99	EPA '99	EPA '99								
Parameter														
SVOCs (µg/kg)														
Benzo(a)anthracene												370 U l	J 430 U U	J 430 U U
Benzo(a)pyrene												370 U l	J 430 U U	J 430 U U
Benzo(b)fluoranthene												370 U l		
Chrysene												370 U l		
BIS(2 - ETHYLH EXYL) PHTH ALATE												370 U U	J 430 U U	
DI - N - BUTYLPHTH ALATE												370 U U	J 430 U U	430 U U
FLUORANTHENE												370 U U	J 430 U U	430 U U
Pesticides/PCBs (µg/kg)														
4,4'-DDD												3.7 U U	J 4.2 U U	4.2 U U
4,4'-DDE												3.7 U U	J 2.8 J	6.9
4,4'-DDT												3.7 U U	J 4.2 U U	4.2 U U
ALPHA-CHLORDANE												1.9 U U	J 2.2 U U	2.2 U U
METHOXYCHLOR												19 U U	J 22 U U	22 U U
Notes:														
Blank cell means no analysis for			+											
this parameter.														

TABLE B.2 SPAULDING-RANKIN DETECTIONS										Old RA S	amples						
Sample ID	POI21SB-06	POI22SS-01	POI22SS-02	POI22SS-03	POI22SS-04	POI23SS-01	POI23SB-01	POI23SB-03	POI23SB-04	POI23SB-06	SV-07-A	SV-08-A	SV-09-A	SV-07-02	SV-08	SV-09	SV-10
Sample Date	EPA '99	EPA '99	EPA '99	EPA '99		ι	JSACE DATA	AS REPORTE	D IN EPA '99								
Parameter																	
Metals (mg/kg)	1		1			1 1		1 1					р. — р.				
Aluminum	8650	4520	10200	7870	9680	13500	9090	10500	9190	9180	23659	23504	23753	19341	37428	23026	20850
Antimony	9.4 U U						J 4.3 UL L				7.2	7.8	11.7	8.9	16.5	11.2	7.8
Arsenic	1.8 B	2.8	59.1	2.2	3.2	0.83 UL UL	1.1	1.3 L			2.1 U U	2.1 U U	2.9	2.1 U U	2.3	2 U U	2 U U
Barium	76.9	44.8	55.2	36.3	26.3	55	30.8	30.9	26	30.2	48.69	46.68	52.38	30.86	173.2	63.45	41.29
Beryllium	0.62 B	0.41	0.79	0.6	0.75	0.93	J 0.7	0.98	0.59	0.64	1.4	1.5	1.3	1.3	1.9	2	1.8
Cadmium	0.49 U U	0.36 U U	J 0.62 L	0.36 U U	0.36 U U	0.12 U U	0.33 U U	0.33 U U	0.33 U U	0.33 U U	0.98 B	0.89 B	0.84 B	0.84 B	1.05 B	110	0.55
Calcium	590 B	1900	1380	1520	1550	350 J	206 J	324 J	198 J	216 J	428.4 B	563.5 B	959.5 B	1078.6 B	246.15 B	412.88 B	165.58 B
Chromium	430	243	646	549	590	670	482	539	451	465	642	633	659	721	157	84.7	49.3
Cobalt	42.5 J	93.1	77.4	49.2	41.3	34 L	35.3	29 J	32.7	36.3	80.57	38.64	53.46	49.63	32.93	25.74	11.96
Copper	28.6	18.8	43.8	71.1	21.1	5.7 K	12.9 B	17.5 K	13 B	13.2 B	32.56	45.15	28.52	24.91	76.03	44.12	61.45
Iron	25100	18400	50000	37500	47900	38800	31600 J	40500	29700 J	33500 J	65812	67324	64091	71859	72090	54809	42823
Lead	19.3	10.7	868	17.3	10	2.2		J 11.8			12.1	11.4	26	12.5	23.7	18.2	12.1
Magnesium	4780	1050	1550	1460	1040	9570	3880	3810	3980	3720	8942	8932	6261	5712	14476	8395	7230
Manganese	2310 J		1170	686	638	1120	J 821	478	450	549	1564	818	902	873	760	900	517
Mercury	0.13 U U						J 0.06 UL L										
Nickel	77.3	105	J 57.8	J 47.2			_ 57.2	71.3	47.4	50.7	135	97.6	77.6	83.1	67.3	49.1	31.7
Potassium	163 U U	220	196	141	179	2590 U U	374 U U		429 U								
Selenium	1.2 U U	0.91 J	0.79 J	0.66 U U		1 U U	0.72 U U				33.8	34.6	37.3	35.2	47.1	38	30.5
Silver	1.5 U U	0.49 U U	J 0.49 U U	0.49 U U			1.6 J	0.49 U U		2.8 J	1.61 U U	1.61 U U	1.5 U U	1.51 U U	1.61 B	1.5	0.77 U U
Sodium	86.1 U U	35.1 B	36.6 B	48.5 B	63 B	31.8 U U	26.5 B	30.2	46.9 B	37.2 B	26.08 B	65.47 B	31.11 B	18.47 B	99.62 B	65.4 B	31.6 B
Strontium Total	4.01111	0.05.11		4.11		4.01111	0.40.111.11		0.40111.11	0.44.111.111	40.0	45.0	44.0	40.0	75 7	45.4	44.0
Thallium	1.2 U U	0.95 U U	J 0.98 U U	1 U U	1.1 U U	1.3 U U	0.43 UL U	L 0.22 U U	0.42 UL UI	0.41 UL_UL	40.9	45.8	41.2	43.2	75.7	45.1	41.3
Tin Titopium											45.24	44.83	43.36	44.72	59.95	40.07	34.36
Titanium Vanadium	53	39.6	97.9	73.2	95.5	86.3	65.4	86.5	59.2	67.5	614.06 103	720.82	637.88 107	524.66 109	1383 136	722.32 64.3	376.94 42.8
Zinc	50.8	58.4	82.5	151	40.9	54.8	34.7 J			29 J	92.9	79.8	72.58	60.35	133.96	127.02	88.11
Zirconium	50.0	50.4	02.0	131	40.9	54.0	54.7 5	30.7 L	29.0 5	29 3	52.5	73.0	72.00	00.33	133.90	127.02	00.11
Additional Parameters (mg/kg)	1	1 1	1	1	1	1	1	- 1	1	1	I			1 1	I _ I		
Cyanide											1.18 U U	1.17 U U	1.17 U U	1.19 U U	1.16 U U	1.13 U U	1.11 U U
VOCs (µg/kg)			1 1		1 1	1 1	1 1	1 1	1 1		• ·						
2-HEXANONE	13 U U	30 U U	J			10 U U	12 U U		12 U U	12 U U	18.01	14.95	13.65	5.83 U U	5.79 U U	5.67 U U	5.56 U
ACETONE	13 U U					10 U U	12 U U		12 U U	12 U U	23.54	12.26	14.93	11.27	24.33	10.31	23.48
CHLOROFORM	13 U U	10 U U	J			10 U U	12 U U		12 U U	12 U U	6.94	10.86	5.83 U U		13.44	5.67 U U	5.01
ETHYLBENZENE	13 U U	1			+ +	10 U U	12 U U		12 U U	12 U U	5.88 U U	5.84 U U	5.83 U U		5.79 U U	5.67 U U	5.56 U
METHYLENE CHLORIDE	14 JE					10 U U	1 B		12 U U	12 U U	38.84	66.58	30.32	74.72	49.83	14.17	19.81
TOLUENE	13 U U	1			+ +	10 U U	12 U U		12 U U	12 U U	5.88 U U	5.84 U U	5.83 U U		5.79 U U	5.67 U U	5.56 U
TOTAL XYLENES	13 U U	1		+	+	10 U U	12 U U		12 U U		5.88 U U	5.84 U U	5.83 U U		5.79 U U	5.67 U U	5.56 U U

TABLE B.2 SPAULDING-RANKIN DETECTIONS										Old RA S	amples						
Sample ID	POI21SB-06	POI22SS-01	POI22SS-02	POI22SS-03	POI22SS-04	POI23SS-01	POI23SB-01	POI23SB-03	POI23SB-04	POI23SB-06	SV-07-A	SV-08-A	SV-09-A	SV-07-02	SV-08	SV-09	SV-10
Sample Date Parameter	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99	EPA '99			USACE DATA	AS REPORTE	D IN EPA '99		
SVOCs (µg/kg)						i i	· ·										
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Chrysene BIS(2 - ETHYLH EXYL) PHTH ALATE DI - N - BUTYLPHTH ALATE FLUORANTHENE Pesticides/PCBs (µg/kg) 4,4'-DDD 4,4'-DDE 4,4'-DDT	430 U U 430 U U 430 U U 430 U U 430 U U 46 J 430 U U 65 J 4.2 U U 11 6.1 J	J 665 U U J 665 U U J 665 U U G65 U U 665 U U 665 U U 665 U U				330 UL UL 330 UL UL 330 UL UL 330 UL UL 330 U U 330 U U 330 U U 330 U U 330 U U 330 U U 330 U U 3.3 U U 3.3 U U	- 398 U U - 398 U U	410 U U 410 U U	J 393 U J 393 U J 393 U J 393 U J 393 U J 393 U J 393 U J 390 U U 390 U U 3.9 U U 3.9 U U	U 388 U U U 388 U U U 388 U U 390 U U 840 B 390 U U 390 U U 3.9 U U 3.9 U U	23.54 U U 23.54 U U	23.36 U 23.36 U 23.36 U 23.36 U 23.36 U 23.36 U	U 23.33 U U U 23.33 U U U 23.33 U U J 23.33 U U J 23.33 U U J 23.33 U U		23.17 U U 23.17 U U 23.17 U U 23.17 U U 23.17 U U 23.17 U U	22.67 U U 22.67 U U 22.67 U U 22.67 U U 22.67 U U 22.67 U U 22.67 U U	22.26 U U 22.26 U U 22.26 U U 22.26 U U 22.26 U U
ALPHA-CHLORDANE	2.2 U U					1.7 U U	2 U U	2.1 U U									
METHOXYCHLOR	22 U U	2.8 U U				17 U U	20 U U	21 U U	20 U U	20 U U							
Notes: Blank cell means no analysis for this parameter.			J analyte pres K Analyte dete L analyte pres U not detected UJ Analyte no UL not detected R unreliable re	sent; the reported ected, reported va sent; reported va d; the associated t detected, repo ed; quantitation esult; analyte ma	d value may not value is biased l lue may be bias d number indica rted PQL may b limit may be ina ay or may not be	be accurate or pr high, actual value sed low, the actua tes the approxima ie inaccurate or im ccurate or imprect present in the sa	may be lower. I value is expected ite sample concer iprecise.	d higher htration necessary	ry to be detected								

TABLE B.3 SOUTHERN AU DETECTIONS				E	ERT 'Recent	' Samples								'OTHER' Sai	mples	
Sample ID	EVAL- AU-1(0.5)	EVAL- AU-2(0.5)	EVAL- AU-3(0.5)	EVAL- AU-4(0.5)	EVAL- AU-5(0.5)	EVAL- AU-6(0.5)	EVAL- AU-7(0.5)	EVAL- AU-8(0.5)	EVAL- AU-9(0.5)	EVAL- AU-10(2)	AU11-TP2-01	OU4-BAK03-1	OU4-BAK03-2	OU4-BAK03-3	OU4-BAK03-SB-2	OU4-BAK03-SB-4
Sample Date	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/23/2009	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001
Parameter																
	I				I	1 1		I	1 1	, ,	1 1	l.		, <u>,</u>	1 1	
Metals (mg/kg) Aluminum									1	1	13700					
Antimony	0.681 J	0.492 J	0.721 J	0.435 J	0.726 J	J 0.613 J	0.367 J	0.65	J 0.416 J	J 0.795 J	0.93 U U					
Arsenic	0.001 0	0.432 0	0.721 0	0.400 0	0.720 0	0.010 0	0.007 0	0.00 0	0.410 0	0.135 5	2.5					
Barium											56.8					
Beryllium											1.4					
Cadmium											0.19 U U					
Calcium											593 J					
Chromium											21.8					
Cobalt											17.3					
Copper											31					
Iron											21900					
Lead											36.4					
Magnesium											5420					
Manganese											394					
Mercury											0.16					
Nickel											16.4					
Phosphorous																
Potassium											3640					
Selenium											0.6 U U					
Silicon																
Silver											0.23 U U					
Sodium											160 U U					
Strontium																
Sulfur	4.00	4.04	0.700	4.00	0.5	4.70	47	4.00								
Thallium	1.33 J	1.04	0.763 J	1.29 J	2.5	4.73	1.7 J	1.89 J	J 0.95 U U	J 2.64	13 U U					
Tin																
Titanium		20	20.0	20.0	E A A		27.0	25	40.0	44.0						
Vanadium	26.6	39	30.3	36.6	54.1	68	37.6	35	46.2	44.6	23.4 99.1					
Zinc											99.1					
Additional Parameters (mg/kg	g)															
Cyanide											0.073 J					
VOCs (µg/kg)																
Methylene Chloride											6.8 J					
1,1,1-Trichloroethane											4.8 U U					
2-Butanone											4.8 U U					
Acetone											48 U U					
Chloroform											4.8 U U					
Chloromethane																
Dichlorodifluoromethane																
Toluene											4.8 U U					

TABLE B.3																
SOUTHERN AU DETECTIONS					ERT 'Recent'	Samples								'OTHER' Sam	ples	
Sample ID	EVAL- AU-1(0.5)	EVAL- AU-2(0.5)	EVAL- AU-3(0.5)	EVAL- AU-4(0.5)	EVAL- AU-5(0.5)	EVAL- AU-6(0.5)	EVAL- AU-7(0.5)	EVAL- AU-8(0.5)	EVAL- AU-9(0.5)	EVAL- AU-10(2)	AU11-TP2-01	OU4-BAK03-1	OU4-BAK03-2	OU4-BAK03-3	OU4-BAK03-SB-2	OU4-BAK03-SB-4
Sample Date	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/18/2012	9/23/2009	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001
Parameter																
SVOCs (µg/kg)																
Anthracene											190 U U	396 U L	J 90.6 J	434 U U	457 U U	391 U U
Benzo(a)anthracene											190 U U			210 J	457 U U	
Benzo(a)pyrene											190 U U			216 J	457 U U	
Benzo(b)fluoranthene											190 U U			322 J	457 U U	
Benzo[g,h,i]perylene											190 U U				457 U U	
Benzo[k]fluoranthene											190 U U		J 377 J	95.4 J	457 U U	391 U U
Benzoic Acid											940 U U					
Bis(2-ethylhexyl) phthalate											190 U U				457 U U	
											190 U U			248 J	457 U U	
Dibenz(a,h)anthracene Dibenzofuran											190 U U 190 U U				457 U U 457 U U	
Diethyl Phthalate											380 U U				457 U U	
Fluoranthene											190 U U			485	457 U U	
Indeno(1,2,3-c,d)Pyrene											190 U U			112 J	457 U U	
Phenanthrene											190 U U				457 U U	
Pyrene											190 U U			408 J	457 U U	
Pesticides/PCBs (µg/kg)	•						1	1	1		•	1	1			
4,4'-DDD																
4,4'-DDE																
4,4'-DDT																
Alpha-Chlordane																
Dieldrin																
Endosulfan II																
Endrin																
Endrin Aldehyde	_															
Endrin Ketone																
Heptachlor																
Neteo																
Notes: Blank cell means no analysis																
for this parameter.																
		ı I			и I.	· ·			<u> </u>	. I.		1. I.	- I	· · · · ·		· · · · · · · · · · · · · · · · · · ·

TABLE B.3														
SOUTHERN AU DETECTIONS							'OTHEF	R' Samples						
Sample ID	OU4-BAK03-SB-6	TCRA-AU-BK05A	TCRA-AU-BK05B	TCRA-AU-BK05C	TCRA-AU-BK05D	TCRA-AU-BK05E	TCRA-AU-BK05F	TCRA-AU-03-(0-6)	TCRA-AU-03-(3')	TCRA-AU-03-(5')	TCRA-AU-03-A(1)	TCRA-AU-03-B(1)	TCRA-AU-03-C(1)	BA-512 SW-AU18- (160,280)GB-3
Sample Date	3/14/2001	8/23/2002	8/23/2002	8/23/2002	8/23/2002	8/23/2002	8/23/2002	12/17/2002	12/17/2002	12/17/2002	12/19/2002	12/19/2002	12/19/2002	12/6/2009
Parameter														
Metals (mg/kg)														
Aluminum														12800
Antimony														0.24 UL JL
Arsenic														10.1 J
Barium														33.8
Beryllium														0.39 J
Cadmium														0.017 U U
Calcium														1180
Chromium														43.7
Cobalt														16.1
Copper Iron														27000
Lead														13.4
Magnesium														1280 J
Manganese														128 J
Mercury														0.028 J
Nickel														11.4
Phosphorous														
Potassium														522
Selenium														0.18 U U
Silicon														
Silver														0.048 U U
Sodium														95 J
Strontium														5.3
Sulfur														
Thallium		0.26	0.39	0.67	0.38	0.51	0.65	0.15 U	U 0.91 U	U 0.85 U I	J 1.97 U	U 0.43	JB 1.6 JI	3 1 J
Tin														2.7 B 194
Titanium														194
Vanadium														45.7 33.3
Zinc														33.3
Additional Parameters (mg/kg)													
Cyanide														
VOCs (µg/kg)														
VOCs (µg/kg) Methylene Chloride														
1,1,1-Trichloroethane														
2-Butanone														
Acetone														
Chloroform														
Chloromethane														
Dichlorodifluoromethane														
Toluene														

TABLE B.3 SOUTHERN AU							'OTHEI	R' Samples	
DETECTIONS									
Sample ID	OU4-BAK03-SB-6	TCRA-AU-BK05A	TCRA-AU-BK05B	TCRA-AU-BK05C	TCRA-AU-BK05D	TCRA-AU-BK05E	TCRA-AU-BK05F	TCRA-AU-03-(0-6)	TCRA-AU-
Sample Date	3/14/2001	8/23/2002	8/23/2002	8/23/2002	8/23/2002	8/23/2002	8/23/2002	12/17/2002	12/1
Parameter									
SVOCs (µg/kg)	•	- 1 1	1 1	- 1 1	,		1 1		
Anthracene	375 U	U							
Benzo(a)anthracene	375 U	U							
Benzo(a)pyrene	375 U								
Benzo(b)fluoranthene	375 U								
Benzo[g,h,i]perylene	375 U								
Benzo[k]fluoranthene	375 U								
Benzoic Acid									
Bis(2-ethylhexyl) phthalate	20.3	J							
Chrysene	375 U								
Dibenz(a,h)anthracene	375 U								
Dibenzofuran	375 U								
Diethyl Phthalate	375 U								
Fluoranthene	375 U								
Indeno(1,2,3-c,d)Pyrene	375 U								
Phenanthrene	375 U								
Pyrene	375 U								
Pesticides/PCBs (µg/kg)									
4,4'-DDD									1
4,4'-DDE									
4,4'-DDT									
Alpha-Chlordane									
Dieldrin									
Endosulfan II									
Endrin									
Endrin Aldehyde									
Endrin Ketone									
Heptachlor									
Notes:									
Blank cell means no analysis									
for this parameter.									
•									
L									

'OTHEI	R' Samples						
AU-BK05F	TCRA-AU-03-(0-6)	TCRA-AU-03-(3')	TCRA-AU-03-(5')	TCRA-AU-03-A(1)	TCRA-AU-03-B(1)	TCRA-AU-03-C(1)	BA-512 SW-AU18- (160,280)GB-3
8/23/2002	12/17/2002	12/17/2002	12/17/2002	12/19/2002	12/19/2002	12/19/2002	12/6/2009
		1 1					I

TABLE B.3 SOUTHERN AU					'OTHER' Samples							
DETECTIONS												
Sample ID	OU4-WATKN-SB-1	OU4-WATKN-SB-2	OU4-WATKN-SB-3	OU4-WATKN-SB-4	WATKN-SB-5 (4-5)	WATKN-SB-5 (5-6)	WATKN-SB-5 (6-7)	WATKN-SB-5 (7-8)	190, 470 TCRA-AU-(540,380)-8	290, 430 TCRA-AU-(640,340)- 4	BACKFILL replaces OU3 - SB05	SV-02A
Sample Date	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/2/2003	3/2/2003		
Parameter												
Metals (mg/kg)												
Aluminum	31800	19200	25100	19600	17400	13500	16000	13600			17653	13700 J
Antimony	1.3 UJ	1.2 UJ	1.5 J	1.6 J	1 UJUJ	1 J	0.88 J	0.79 J			0.657	0.84 B
Arsenic	0.64 R	0.61 R	2.1 J	0.64 J	4.1	1.9 J	1.2 J	0.74 J		15.3	5.85	2.8 L
Barium	50.5	37.2	71.1	60.8	93.2	60.2	83.7	46.7			170	36 J
Beryllium	4.5	1.6	0.82	0.68	1.3	1.1	1.2	0.96			0.994	1.2
Cadmium	0.64 U U	0.61 U U	0.54	0.55 U U	0.52 U U	0.51 U U	0.39 U U	0.36 U U			0.204	1.23 U U
Calcium	416	723	1080	1710	534	490	6540	1080			3729	1030
Chromium	136	209	373	359	207	228	197	254			44.8	448 J
Cobalt	40.7 J	107 J	43 J	27.4 J	35.6 J	31.4 J	26.6 J	24.5 J			17.3	61.2 J
Copper	19.9	90.1	111	50.6	50.7	34.7	46.6	34.8			42.2	32.2 J
Iron	33900	21200	33800	24900	26500	22300	25000	17300			36181	32100 J
Lead	12.2	9.1	3 J	5.3 J	32.3 J	21.9 J	17.7 J	11.8 J			19.5	144 J
Magnesium	2600	6050	10700	17100	7580	5960	7480	7490			13025	5690 J
Manganese	677	1860	1080 J	470 J	1310 J	728 J	624 J	594 J 1.7			294 0.046	1020 J
Mercury Nickel	0.06 U 57.6	0.06 U 142	0.05 U U 129 J	0.05 U U 101 J	0.76 57.3 J	1.2 45.5 J	0.46 49 J	56.5 J			17.5	0.12
Phosphorous	71.9 J	27.5 J	42.7 J	79.4 J	198 J	45.5 J 148 J	49 J 170 J	79.1 J			17.5	0.12
Potassium	230	716	1820	2400	3070	148 5	3010	2030			9081	976 J
Selenium	0.64 UJ U.				0.52 UJUJ	0.51 UJ UJ					1.05	0.51 K
Silicon	2240 J	1480 J	1250 J	831 J	1300 J	1440 J	1470 J	1240 J			1.00	0.01 1
Silver	0.64 U U	0.61 U U	0.47 U U	0.55 U U	0.52 U U	0.51 U U	0.39 U U	0.36 U U				
Sodium	600	165	389	302	52.5 U U	50.6 U U	54	47.5			119	1228.5 U U
Strontium	2.9	5	7.5	6.4	20	3.8	20.7	4.1				
Sulfur	255	6.1 U U		18.9	130	122	114	55.4				
Thallium	1.3 U U	1.2 U U	0.94 U U	1.1 U U	1 U U		0.78 U U	0.72 U U			0.703	2.46 ULJL
Tin	2.6 U U	2.4 U U	1.9 U U	2.2 U U	2.1 U U	2 U U	1.6 U U	1.4 U U				
Titanium	290	327	668	896	609	454	575	475				
Vanadium	89.2	51.9	55.8	55.3	63.1	50.9	57.9	37.5			55	72.4 J
Zinc	25.6	76.3	77	45.6	64.8	60.1	70.9	74			88.95	81.3 J
Additional Parameters (mg/k	a)											
Cyanide	5/								0.25 UL U	JL 0.64 L	0.81	
VOCs (µg/kg)												
Methylene Chloride 1,1,1-Trichloroethane											2.85 U	
2-Butanone											5.71 U	
Acetone											9.32 U	
Chloroform											2.85 U	
Chloromethane											5.71 U	
Dichlorodifluoromethane											2.90 U	
Toluene											2.85 U	
	I.										2.00 0	

TABLE B.3 SOUTHERN AU DETECTIONS					'OTHER' Samples							
Sample ID	OU4-WATKN-SB-1	OU4-WATKN-SB-2	OU4-WATKN-SB-3	OU4-WATKN-SB-4	WATKN-SB-5 (4-5)	WATKN-SB-5 (5-6)	WATKN-SB-5 (6-7)	WATKN-SB-5 (7-8)	190, 470 TCRA-AU-(540,380)-8	290, 430 TCRA-AU-(640,340)- 4	BACKFILL replaces OU3 - SB05	SV-02A
Sample Date	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/14/2001	3/2/2003	3/2/2003		
Parameter												
SVOCs (µg/kg)				, , , ,				'	·		•	
Anthracene												
Benzo(a)anthracene	74 U U	70 U U	80 U U	77 U U	11 、	J 11 J	73 U U	71 U U	J			
Benzo(a)pyrene												
Benzo(b)fluoranthene	74 U U	70 U U	80 U U	77 U U	15	J 74 U U	73 U U	71 U U	J			
Benzo[g,h,i]perylene											192 U	
Benzo[k]fluoranthene											188 U	
Benzoic Acid	220 U U	210 U U	240 U U	230 U U	56	J 220 U U	210 J	210 U U	J			
Bis(2-ethylhexyl) phthalate												
Chrysene	74 U U	70 U U	80 U U	77 U	11 、	J 13 J	73 U U	71 U U	J		194 U	
Dibenz(a,h)anthracene												
Dibenzofuran											188 U	
Diethyl Phthalate	24 J		80 U U		73 U L							
Fluoranthene	74 U U	70 U U	80 U U	77 U U	22 、	J 14 J	73 U U	71 U U]		217 U	
Indeno(1,2,3-c,d)Pyrene												
Phenanthrene	74 U U				11 、							
Pyrene	74 U U	70 U U	80 U U	77 U U	17	J 20 J	73 U U	71 U U			200 U	
Pesticides/PCBs (µg/kg)												
4,4'-DDD											1.07 U	
4,4'-DDE											1.13 U	
4,4'-DDT											1.37 U	
Alpha-Chlordane											0.98 U	
Dieldrin											0.97 U	
Endosulfan II											0.95 U	
Endrin Endrin Aldehyde											0.95 U 0.95 U	
Endrin Ketone											0.95 U	
Heptachlor											0.95 U	
											0.00 0	
Notes:												
Blank cell means no analysis												
for this parameter.												
· · ·												

TABLE B.3															
SOUTHERN AU					Old RA S	amples									
DETECTIONS															
Sample ID	SV-03A	SV-04A	SV-12A	SV-13A	SV-14A	BACKFILL replaces AU-11	BACKFILL replaces POI24-15	POI24-16	BACKFILL replaces POI24-17	POI24-18	POI24-19	BACKFILL replaces SV-01	SV-02	SV-03	SV-19
Sample Date															
Parameter															
Metals (mg/kg)															
Aluminum	17900 J	13700 J	26900 J	13000 J	16000 J	17653	17653	8720	17653	11600	6350	17653	8190 J	8010 J	13500 J
Antimony	0.83 B	1.6 L	R	1 J	R	0.657	0.657	7 UL UL	0.657	8 UL UL	0.76 L	0.657	0.77 B	14.89 UL UL	14.78 UL UL
Arsenic	2.54 UL UL	2.36 U U	2.1 K	5.5	1.2 K	5.85	5.85	8.2	5.85	6.3	17.1	5.85	3.9 L	4.2 L	4 L
Barium	37.8 J	20.4	155	20.6	56.2	170	170	37.1	170	58.9	54.8	170	51 J	37.4 J	20.9 J
Beryllium	1.9	1.3	19	1.2	1.4	0.994	0.994	0.45	0.994	0.71	0.4	0.994	0.86	0.89	0.94
Cadmium	1.27 U UL	1.18 U U	1.24 U U	1.26 U U	1.14 U U	0.204	0.204	0.65	0.204	0.69	0.55	0.204	0.83 B	0.25 B	1.23 U U
Calcium	1269.04 U UL	1210 J	2550 J	731 J	717 J	3729	3729	1120	3729	1570	3070	3729	1880	945	1218.03 U U
Chromium	460 J	586 J	155 J	331 J	23.7 J	44.8	44.8	34.8	44.8	85.1	80.9	44.8	168 J	257 J	365 J
Cobalt	62.2 J	29.5	26.5	67.4	15.3 15.6 J	<u> </u>	17.3	5.5 17.3	17.3 42.2	16.9 29.8	15.7 17.7	17.3 42.2	35.2 J	103 J	43.2 J
Copper Iron	19.5 J 44900 J	41.9 J 36300 J	55.5 J 45600 J	21.1 J 33900 J	24400 J	36181	36181	23000	36181	29.8	13000	36181	19.7 J 21700 J	15.1 J 26200 J	40.9 J 28300 J
Lead	8.3 J	2.7	13.8	6.9	11.8	19.5	19.5	40.8	19.5	24400	60.6	19.5	41.6 J	49.6 J	15.8 J
Magnesium	5480 J	6590 J	14000 J	4100 J	7740 J	13025	13025	2240	13025	5860	2550	13025	14100 J	2410 J	5700 J
Manganese	473 J	242 J	815 J	407 J	367 J	294	294	213	294	524	429	294	391 J	1090 J	326 J
Mercury	0.08	0.11	0.08	0.08	0.08	0.046	0.046	0.21 B	0.046	0.13 B	0.97	0.046	0.19	0.45	0.25
Nickel	0.08	0.11	0.08	0.08	0.08	17.5	17.5	18.7	17.5	37.6	21	17.5	158 J	53.5 J	57.3 J
Phosphorous															
Potassium	242 J	209 J	5400 J	363 J	5110 J	9081	9081	1080 J	9081	2810 J	471 J	9081	1010 J	443 J	372 J
Selenium	1.27 U U	1.18 UL UL	1.24 UL UL	1.26 UL UL	1.14 UL UL	1.05	1.05	R	1.05	R	R	1.05	0.54 K	0.69 K	1.23 U U
Silicon															
Silver															
Sodium	1269.04 U U	61.8 B	1243.78 U U	UU	1144.16 U U	119	119	589 U U	119	652 U U	740 U U	119	1381.22 U U	1240.69 U U	38.1 B
Strontium															
Sulfur															
Thallium	2.54 UL UL	2.36 U U	2.49 U U	2.52 U U	2.29 U U	0.703	0.703	0.14 L	0.703	0.27 L	0.12 L	0.703	2.76 UL UL	2.48 UL UL	2.46 UL UL
Tin															
Titanium		70.0	405		00.5			07.0		45.4	07.5		54.4 L	5441	50.0 1
Vanadium Zinc	89.8 J 64.3 J	76.2 52.1	105 85.1	82 58.7	30.5 83.6	55 88.95	55 88.95	37.6 45.7	55	45.4 70.5	37.5	55	51.1 J 209 J	54.1 J 68.4 J	58.9 J 78.2 J
	04.3 J	52.1	1.00	56.7	03.0	00.90	C6.00	45.7	88.95	70.5	61	88.95	209 J	00.4 J	70.2 J
Additional Parameters (mg/kg)								1		[]					
Cyanide								0.36	0.58 U	0.65 U U	0.74				
VOCs (µg/kg)															
Methylene Chloride															
1,1,1-Trichloroethane						2.85 U			2.85 U			2.85 U			
2-Butanone						5.71 U			5.71 U			5.71 U			
Acetone						9.32 U			9.32 U			9.32 U			
Chloroform						2.85 U			2.85 U			2.85 U			
Chloromethane						5.71 U			5.71 U			5.71 U			
Dichlorodifluoromethane						2.90 U			2.90 U			2.90 U			
Toluene						2.85 U	2.85 U		2.85 U			2.85 U			

TABLE B.3						• •									
SOUTHERN AU					Old RA	Samples									
DETECTIONS															
						BACKFILL replaces	BACKFILL replaces		BACKFILL replaces			BACKFILL			
Sample ID	SV-03A	SV-04A	SV-12A	SV-13A	SV-14A	AU-11	POI24-15	POI24-16	POI24-17	POI24-18	POI24-19	replaces SV-01	SV-02	SV-03	SV-19
Sample Date															
Parameter															
		1 1					I	I							1 1
SVOCs (µg/kg) Anthracene															
Benzo(a)anthracene															
Benzo(a)pyrene															
Benzo(b)fluoranthene															
Benzo[g,h,i]perylene						192 U	192 U		192 U			192 U			
Benzo[k]fluoranthene						188 U			188 U			188 U			
Benzoic Acid															
Bis(2-ethylhexyl) phthalate															
Chrysene						194 U	194 U		194 U			194 U			
Dibenz(a,h)anthracene															
Dibenzofuran						188 U	188 U		188 U			188 U			
Diethyl Phthalate															
Fluoranthene						217 U	217 U		217 U			217 U			
Indeno(1,2,3-c,d)Pyrene															
Phenanthrene															
Pyrene						200 U	200 U		200 U			200 U			
Pesticides/PCBs (µg/kg)															
4,4'-DDD						1.07 U	1.07 U		1.07 U			1.07 U			
4,4'-DDE						1.13 U	1.13 U		1.13 U			1.13 U			
4,4'-DDT						1.37 U			1.37 U			1.37 U			
Alpha-Chlordane						0.98 U	0.98 U		0.98 U			0.98 U			
Dieldrin						0.97 U			0.97 U			0.97 U			
Endosulfan II						0.95 U			0.95 U			0.95 U			
Endrin						0.95 U	0.95 U		0.95 U			0.95 U			
Endrin Aldehyde						0.95 U	0.95 U		0.95 U			0.95 U			
Endrin Ketone						0.95 U			0.95 U			0.95 U			
Heptachlor						0.95 U	0.95 U		0.95 U			0.95 U			
Notoo															
Notes:															
Blank cell means no analysis for this parameter.															

TABLE B.3 SOUTHERN AU		Old	I RA Samples												
DETECTIONS Sample ID	SV-20	SV-21	SV-22	SV-23	SV-04	SV-05	SV-06	SV-07	SV-08	BACKFILL replaces SV-09	BACKFILL replaces SV-10	SV-11	SV-12	SV-13	SV-14
Sample Date															
Parameter															
	I I I				1 1		1 1								1
Metals (mg/kg) Aluminum	20100 J	19600 J	23300 J	27800 J	9570 J	13000 J	13500 J	10800	J 5930 J	17653	17653	19500 J	17100 J	9840 J	12600 J
Antimony	15.44 UL UL	15.69 UL UL	15.09 UL UL	16.88 UL UL	1.5 L	R	0.76 L	0.9 L		0.657	0.657	R	0.83 J	9840 J	R
Arsenic	5 L	3.3 J	0.76 [J]	2 [J]	3.5 K	3.6 K	3.6 K	5.1		5.85	5.85	9.1	4.2 K	15	2.2 K
Barium	41.6 J	41.1 J	62.6 J	55.8 J	40.7	46.8	35.6	45.4	27.9	170	170	69.9	101	36.7	78.3
Beryllium	1.6	1.7	1.3	2.6	0.84	1.1	0.95	0.92	0.61	0.994	0.994	1.2	1.2	0.91	1.1
Cadmium	1.29 U U	1.31 U UL	1.26 U U	0.51 B	0.15 B	1.38 U U	1.32 U U	1.36 U I		0.204	0.204	1.41 U U	1.32 U U	1.25 U U	1.37 U U
Calcium	1130	1360	1257.85 U U	2780	1060 J	1379.31 UJ UJ		978 、		3729	3729	2490 J	1500 J	1250 J	1910 J
Chromium	145 J	105 J	293 J	274 J	277 J	190 J	289 J	299 、		44.8	44.8	311 J	128 J	162 J	30.9 J
Cobalt	14.3 J	121 J	68.1 J	120 J	32.7	39.2	51.3	22.9	21.1	17.3	17.3	41.7	19.1	48.7	12.2
Copper	34.5 J	152 J	154 J	128 J	23.6 J	20.1 J	17.4 J	14.1、		42.2	42.2	44.4 J	35.1 J	20.4 J	31.6 J
Iron	28000 J	44400 J	64400 J	64800 J	21500 J	29400 J	40500 J	32800 、		36181	36181	38800 J	29400 J	24400 J	23100 J
Lead	9.7 J	53.5 J	6.5 J	28.9 J	104	42.1	25	35.4	22.9	19.5	19.5	28.5	30.8	22.2	36.7
Magnesium	3580 J	3200 J	3340 J	4400 J	4830 J	2720 J	1610 J	2140 、		13025	13025	9590 J	6840 J	2800 J	5680 J
Manganese	96.9 J	673 J	739 J	1390 J	497 J	584 J	414 J	352 、		294	294	1090 J	752 J	457 J	380 J
Mercury	0.09	0.12	0.08	0.1	2.3	0.62	0.32	0.76	0.22	0.046	0.046	0.13	0.11	0.22	0.14
Nickel	32.7 J	56.8 J	69.6 J	150 J	51.2	35.4	51.2	39.3	16 K	17.5	17.5	143	51.7	39	25
Phosphorous	000 1	0.40	000 1	070 1	700 1	4000 1	500 1	500	405 1	0004	0001	4000	0400 1	4000	45.40
Potassium	628 J	949 J	328 J	379 J	760 J	1060 J	502 J	536		9081	9081	1330 J	3190 J	1060 J	4540 J
Selenium Silicon	1.29 U U	0.92 K	0.51 K	1.41	1.28 UL UL	1.38 UL UL	1.32 UL UL	1.36 UL I	UL 1.27 UL UL	1.05	1.05	1.41 UL UL	1.32 UL UL	1.25 UL UL	1.37 UL UL
Silver															
Sodium	1287 U U	1307.19 U U	1257.86 U U	1283.7 U U	1379.31 U U	1379.31 U U	1315.79 U U	1356.85 U I	U 1270.65 U U	119	119	1.41 U U	1324.5 U U	1250 U U	1366.12 U U
Strontium	1207 0 0	1307.19.0.0	1257.8000	1203.7 0 0	1379.3100	1379.3100	1315.7900	1550.85 0 0	0 1270.05 0 0	119	119	1.4100	1324.3 0 0	1250 0 0	1300.12.0.0
Sulfur															
Thallium	2.57 UL UL	2.61 UL UL	2.52 UL UL	2.81 UL UL	2.57 U U	2.76 U U	2.63 U U	2.71 U I	U 2.54 U U	0.703	0.703	2.82 U U	2.65 U U	2.5 U U	2.73 U U
Tin	2.07 02 02	2.01 02 02		2.01 02 02	2.07 0 0	2.7000	2.00 0 0	2.710	2.0400	0.700	0.700	2.02.0.0	2.00 0 0	2.000	2.7000
Titanium															
Vanadium	53.5 J	75.6 J	293 J	170 J	51.3	67.4	87.6	72.5	37.2	55	55	81.4	63.6	50.4	34.8
Zinc	47.3 J	71 J	73.6 J	189 J	73.4	60.1	50.2	55.9	35.6	88.95	88.95	95.1	85.9	43.4	75.9
Additional Parameters (mg/kg)		· · ·	· · · ·		1 1 1										
Cyanide															
VOCs (µg/kg)											1	1			
Methylene Chloride										0.05	0.05				
1,1,1-Trichloroethane										2.85 U					
2-Butanone										5.71 U					
Acetone Chloroform										9.32 U					
Chloromethane										2.85 U 5.71 U					
Dichlorodifluoromethane										2.90 U					
Toluene										2.90 U 2.85 U					
roluene										2.00 U	2.00 U				

TABLE B.3 SOUTHERN AU DETECTIONS		Ol	d RA Samples												
Sample ID	SV-20	SV-21	SV-22	SV-23	SV-04	SV-05	SV-06	SV-07	SV-08	BACKFILL replaces SV-09	BACKFILL replaces SV-10	SV-11	SV-12	SV-13	SV-14
Sample Date															
Parameter															
·			1 1	· · ·	1 1	1 1		1 1				· · · · · ·			1 1
SVOCs (µg/kg) Anthracene															
Benzo(a)anthracene															
Benzo(a)pyrene															
Benzo(b)fluoranthene															
Benzo[g,h,i]perylene										192	U 192 U				
Benzo[k]fluoranthene										188					
Benzoic Acid															
Bis(2-ethylhexyl) phthalate															
Chrysene										194	U 194 U				
Dibenz(a,h)anthracene															
Dibenzofuran										188	U 188 U				
Diethyl Phthalate															
Fluoranthene										217	U 217 U				
Indeno(1,2,3-c,d)Pyrene															
Phenanthrene															
Pyrene										200	U 200 U				
Pesticides/PCBs (µg/kg)															
4,4'-DDD										1.07	U 1.07 U				
4,4'-DDE										1.13					
4,4'-DDT										1.37					
Alpha-Chlordane										0.98					
Dieldrin										0.97					
Endosulfan II										0.95					
Endrin										0.95					
Endrin Aldehyde										0.95					
Endrin Ketone										0.95					
Heptachlor										0.95	U 0.95 U				
Neteo															
Notes:															
Blank cell means no analysis for this parameter.															
									-						

TABLE B.3																
SOUTHERN AU DETECTIONS	Old RA San	nples												Old RA	Samples	
Sample ID	BACKFILL replaces SV-15	BACKFILL replacesSV-16	SV-17	SV-18	AU-01	AU-02	AU-03	AU-04	AU-05	BACKFILL replaces AU-06	BACKFILL replaces AU- 07/08	BACKFILL replaces AU-09	AU-10	BAKER-03	BACKFILL replaces BAKER-04	BACKFILL replaces BAKER-05
Sample Date																
Parameter																
Metals (mg/kg)																
Aluminum	17653	17653	25900 J	3740 J	38700	42800	57700	11700	9120	27131	27131	27131	18300	16000	27131	27131
Antimony	0.657	0.657	R	0.54 L	16.3 L	19.1 L	40.4 L	11.1 L	8.7 B		1.46 U U		36.3 L	6.9		
Arsenic	5.85	5.85	5.7	4.6 K	2.1 L	2.6 L	10.6 L	9 L	11.4 L	2.21	2.21	2.21	4.3 L	8.4	L 2.21	2.21
Barium	170	170	61.5	170	73.9	32.6	77.4	25.7	15.2	170	170	170	50	47.8		170
Beryllium	0.994	0.994	0.7	0.27	1.3	2	3.3	0.51	0.23 U U	1.72	1.72	1.72	0.96	0.84	1.72	1.72
Cadmium	0.204	0.204	1.34 U U	0.76	1.4 K	1.3 K	1.9 K	0.58 K	ND	0.204	0.204	0.204	ND	0.61		0.204
Calcium	3729	3729	2880 J	3040 J	283	196	985	632	216	3,729	3,729	3,729	598	3,600		3,729
Chromium	44.8	44.8	93.5 J	33.8 J	424	391	651	33.9	24.9	73.7	73.7	73.7	56	95		73.7
Cobalt	17.3	17.3	61	15.4	55.7	193	54.5	3	1.1	17.3	17.3	17.3	25.4	11.1		17.3
Copper	42.2	42.2	37.5 J	59 J	156	157	209	11.1 L	19.3 L	42.2	42.2	42.2	54 K	18.2		42.2
Iron	36181	36181	36900 J	17600 J	58,300	62,500	135,000	35,100	20,300	36,181	36,181	36,181	46,900	27,100		36,181
Lead	19.5	19.5	20.4	158	14.9	11.5	7.2	14.6	13.2	40.5	40.5	40.5	13.2	48.1	40.5	40.5
Magnesium	13025	13025	1190 J	13900 J	11,600	4,580	12,200	475	249	13,025	13,025	13,025	3,710	2,690		13,025
Manganese	294	294	432 J	528 J	1760 J	1610 J	701 J	73.5 J	23.9 J	681	681	681	475 J	287		681
Mercury	0.046	0.046	0.12	0.18	0.12 U U	0.13 U U	0.15 U U	0.27	1.3	0.024	0.024	0.024	0.56	0.72		0.024
Nickel	17.5	17.5	12.9	170	107	112	143	7.7	2.3	43.3	43.3	43.3	21 J	22.1	43.3	43.3
Phosphorous	9081	9081	631 J	447 J	1,250	166	456	C04	896	9081	0001	9081	2 200	766	9081	9081
Potassium Selenium	1.05	1.05	1.34 UL UL	0.47 B	1,250 1.3 U	1.3 U	1.3 U	621 1.3 U	096 1.3 U		9081	1.05	2,290 1.3 U	1.3		1.05
Silicon	1.05	1.05	1.34 UL UL	0.47 D	1.5 0	1.5 0	1.5 U	1.3 U	1.3 0	1.05	1.05	1.05	1.3 0	1.3	0 1.05	1.05
Silver																
Sodium	119	119	1340.48 U U	191 B	256	256	603	329	317	119	119	119	262	365	119	119
Strontium	119	119	1340.46 0 0	191 D	250	230	003	529	517	119	119	119	202	303	119	119
Sulfur																
Thallium	0.703	0.703	2.68 U U	2.46 U U	1.5 U U	1.6 U U	1.8 U U	1.4 U U	1.4 U U	1.74	1.74	1.74	1.4 U U	1.4 U	U 1.74	1.74
Tin																
Titanium																
Vanadium	55	55	82.7	24.6	133	178	627	46.7	28	85.2	85.2	85.2	77.8	52.8		85.2
Zinc	88.95	88.95	36.3	96.4	87.5	57.8	147	34 K	18 K	89.0	89.0	89.0	55.5	68.4	89.0	89.0
Additional Parameters (mg/kg))															
Cyanide																
VOCs (µg/kg)																
Methylene Chloride																
1,1,1-Trichloroethane	2.85 U	2.85 U			13 U	13 U	13 U	13 U	13 U	2.75 U	2.75 U			13	U 2.75 L	J 2.75 U
2-Butanone	5.71 U	5.71 U			13 U	13 U	13 U	13 U	13 U	5.50 U	5.50 U		13 U	13	U 5.50 U	
Acetone	9.32 U	9.32 U			13 U	13 U	13 U	13 U	13 U		16.9	16.9	13 U	13		16.9
Chloroform	2.85 U	2.85 U			13 U	13 U	2 J	13 U	13 U		2.75 U		13 U	13		
Chloromethane	5.71 U	5.71 U			13 U	13 U	13 U	13 U	13 U		5.50 U	5.50 U	13 U	13		J 5.50 U
Dichlorodifluoromethane	2.90 U	2.90 U			13 U	13 U	13 U	13 U	13 U				13 U	13		
Toluene	2.85 U	2.85 U			13 U	13 U	13 U	13 U	13 U	2.75 U	2.75 U	2.75 U	13 U	13	U 2.75 L	J 2.75 U

TABLE B.3																
SOUTHERN AU DETECTIONS	Old RA Sar	nples												Old RA	Samples	
Sample ID	BACKFILL replaces SV-15	BACKFILL replacesSV-16	SV-17	SV-18	AU-01	AU-02	AU-03	AU-04	AU-05	BACKFILL replaces AU-06	BACKFILL replaces AU- 07/08	BACKFILL replaces AU-09	AU-10	BAKER-03	BACKFILL replaces BAKER-04	BACKFILL replaces BAKER-05
Sample Date																
Parameter																
SVOCs (µg/kg)	•			· · · ·										, i i i i i i i i i i i i i i i i i i i		
Anthracene	I															
Benzo(a)anthracene					402 U U	458 U U	478 UJ UJ	398 U U	371 U U	192	192	192	398 U U	3800	192	192
Benzo(a)pyrene					402 U U	458 U U	478 UJ UJ	398 U U	371 U U		186	186	398 U U	2800	186	186
Benzo(b)fluoranthene					402 U U	458 U U	478 UJ UJ	398 U U	371 U U		210	210	398 U U	3400	210	210
Benzo[g,h,i]perylene	192 U	192 U			330 U	330 U	330 U	330 U	330 U		182	182	330 U	330 L	J 182	182
Benzo[k]fluoranthene	188 U	188 U			330 U	330 U	330 U	330 U	330 U	178	178	178	330 U	330 L	J 178	178
Benzoic Acid																
Bis(2-ethylhexyl) phthalate																
Chrysene	194 U	194 U			330 U	330 U	330 U	330 U			195 U	195 U	330 U	330 L	J 195 L	J 195 U
Dibenz(a,h)anthracene					402 U U	458 U U	478 U U	398 U U						1100		
Dibenzofuran	188 U	188 U			330 U	330 U	330 U	330 U	330 U	177 U	177 U	177 U	330 U	69 J	177 L	J 177 U
Diethyl Phthalate																
Fluoranthene	217 U	217 U			330 U	330 U	330 U	330 U					330 U	330 L		
Indeno(1,2,3-c,d)Pyrene					402 U U	458 U U	478 UJ U	398 U U	371 U U	177	177	177	407 U U	2000	177	177
Phenanthrene	200 11	200 11			220 11	220 11	220 11	220 11	220 11	004 11	004	004 11	220 11	2201		1 004 11
Pyrene	200 U	200 U			330 U	330 U	330 U	330 U	330 U	231 U	231 U	231 U	330 U	330 L	J 231 ไ	J 231 U
Pesticides/PCBs (µg/kg)				, , , ,					1				1 1			
4,4'-DDD	1.07 U				3.3 U	3.3 U	3.3 U	9.8	78 J		1.26 U		3.3 U	1500 J		
4,4'-DDE	1.13 U	1.13 U			3.3 U	3.3 U	3.3 U	3.3 U		1.45 U	1.45 U		3.3 U	100 J		
4,4'-DDT	1.37 U	1.37 U			3.3 U	3.3 U	3.3 U	23 J	100	2.16 U	2.16 U		3.3 U	560 J		
Alpha-Chlordane	0.98 U	0.98 U			1.7 U	1.7 U	1.7 U	1.7 U			0.988 U	0.988 U	1.7 U	1.7 L		
Dieldrin	0.97 U 0.95 U	0.97 U 0.95 U			3.3 U 3.3 U	3.3 U 3.3 U	3.3 U 3.3 U	3.3 U 3.3 U			0.981 U	0.981 U 0.916 U	3.3 U 3.3 U	22 J 14 J		
Endosulfan II Endrin	0.95 U				3.3 U	3.3 U	3.3 U	3.3 U 3.3 U			0.916 U 0.916 U		3.3 U	23 J		
Endrin Aldehyde	0.95 U	0.95 U			3.3 U	3.3 U	3.3 U	3.3 U			0.916 U		3.3 U	3.3 L		
Endrin Ketone	0.95 U	0.95 U			3.3 U	3.3 U	3.3 U	3.3 U			0.916 U		3.3 U	26 J		
Heptachlor	0.95 U				1.7 U	2.7 J	3.6 J	2.2 J		0.916 U			1.7 U	20 3		
	0.00 0	0.00 0				2.7 0	0.00	2.2 0	2.0		0.0.0		0			
Notes:																
Blank cell means no analysis																
for this parameter.																
· ·																

TABLE B.3 SOUTHERN AU DETECTIONS									Old RA Samples				
Sample ID	SV-AU-01	SV-AU-02	SV-AU-03	SV-AU-04	SV-AU-05	BACKFILL replaces SV-AU-06	BACKFILL replaces SV-AU-07	BACKFILL replaces SV-AU-08	BACKFILL replaces SV-AU-09	SV-AU-10	SV-BAKER-03	BACKFILL replaces SV-BAKER-04	BACKFILL replaces SV-BAKER-05
Sample Date													
Parameter													
Metals (mg/kg)			' 		' '							, ,	
Aluminum	56137.93	47198.63	40004.96	11907.91	8679.24	27131	27131	27131	27131	19293.41	10711.29	27131	27131
Antimony	9.15 UJ UJ	10.34 UJ UJ	9.29 UJ						1.46 U U	8.98 UJ UJ			
Arsenic	0.10 U U	4.6	4.23		7.32		2.21	2.21	2.21	1.68	5.93	2.21	2.21
Barium	87.46	78.64	62.52		14.5		170	170	170	49.38	60.78	170	170
Beryllium	1.96 U U	2.7	2.38		0.67	1.72	1.72	1.72	1.72	1.1	0.97	1.72	1.72
Cadmium	2.96	2.3	3.21		1.04	0.204	0.204	0.204	0.204	0.29	1.98	0.204	0.204
Calcium	416.35	351.85	776.49	709.1	387.42		3,729	3,729	3,729	406.36	1046.8	3,729	3,729
Chromium	479.66 J	406.18 J	375.3	J 33.13 J	24.47	J 73.7	73.7	73.7	73.7	55.54 J	44.05 J	73.7	73.7
Cobalt	108.82	193.12	48.46		1.59 U		17.3	17.3	17.3	18.78	7.24	17.3	17.3
Copper	180.86	175.12	172.32		18.93	42.2	42.2	42.2	42.2	57.83	16.95	42.2	42.2
Iron	66141.63	68056.16	90475.19		21004.59	36,181	36,181	36,181	36,181	46582.04	21004.66	36,181	36,181
Lead	39.38	33.9	17.56				40.5	40.5	40.5	15.59 U U	39.95	40.5	40.5
Magnesium	21639.16	5180.68	10963.52		316.54	13,025	13,025	13,025	13,025	3462.28	3811.64	13,025	13,025
Manganese	3069.83 J	2562.47 J	967.28		32.19		681	681	681	447.59 J	414.18 J	681	681
Mercury	0.11 UJ UJ	0.11 UJ UJ	0.09 UJ		9.74		0.024	0.024	0.024	0.56	0.54 J	0.024	0.024
Nickel	176.49	160.84	110.17	10.93	5.8	43.3	43.3	43.3	43.3	24.68	15.77	43.3	43.3
Phosphorous													
Potassium	1433.37	521.21 U U	468.36 U			9081	9081	9081	9081	1793.89	891.73	9081	9081
Selenium	23.89 U U	27.03 U U	24.28 U	U 23.53 U U	23.02 U	U 1.05	1.05	1.05	1.05	23.47 U U	22.97 U U	1.05	1.05
Silicon													
Silver	05.01111	00.0411	000.04		00.00.11		440	440			400.00		
Sodium	85.2 U U	96.34 U U	288.04	83.88 U U	82.06 U	U 119	119	119	119	83.68 U U	106.98	119	119
Strontium													
Sulfur	40.001111	40 44 11 11	20.50	40.0011	45 00 11	11 4 74	4.74	4.74	4 74	45.00 11 11	45.00 11 11	4.74	4.74
Thallium	16.28 U U	18.41 U U	28.56	16.03 U U	15.69 U	U 1.74	1.74	1.74	1.74	15.99 U U	15.66 U U	1.74	1.74
Tin Titanium													
Vanadium	147.99	212.93	488.01	43.02	28.98	85.2	85.2	85.2	85.2	17.07	34.12	85.2	85.2
Zinc	147.99	66.55	488.01		28.98		85.2	85.2	85.2	50.96	68.24	85.2	85.2
	• • •	00.55	110.15	10.50	24.44	89.0	09.0	09.0	89.0	50.90	00.24	09.0	09.0
Additional Parameters (mg/kg	g)												
Cyanide													
VOCs (µg/kg)													
Methylene Chloride	10 U U	10 U	36	10 U	13 U	U 6.86	6.86	6.86	6.86	10 U U	68 J	6.86	6.86
1,1,1-Trichloroethane	10 U U	10 U U	10 U							10 U U	10 UJ U.		
2-Butanone	10 U U	10 U	3J						5.50 U	2J J	3J J	5.50 l	
Acetone	10 U U	10 U	10 U				16.9	16.9	16.9	10 U U	16J J	16.9	16.9
Chloroform	10 U U	10 U	10 U							10 U U	5J J	2.75 l	
Chloromethane	1 J J	3 J J	10 U							1 J J	10 UJ U.	J 5.50 L	
Dichlorodifluoromethane	10 U U	10 U	10 U		10 U	U				2 J J	10 UJ U.		
Toluene	10 U U	10 U	10 U				2.75 U	2.75 U	2.75 U	10 U U	2J J		J 2.75 U

TABLE B.3 SOUTHERN AU DETECTIONS									Old RA Samples				
Sample ID	SV-AU-01	SV-AU-02	SV-AU-03	SV-AU-04	SV-AU-05	BACKFILL replaces SV-AU-06	BACKFILL replaces SV-AU-07	BACKFILL replaces SV-AU-08	BACKFILL replaces SV-AU-09	SV-AU-10	SV-BAKER-03	BACKFILL replaces SV-BAKER-04	BACKFILL replaces SV-BAKER-05
Sample Date													
Parameter													
SVOCs (µg/kg)													
Anthracene	400 U U	400 U	U 400 U U	400 U U	400 U	U 181 U	181 U	181 U	181 U	400 U U	400 U U	181 U	181 U
Benzo(a)anthracene	400 U U	400 U	U 400 U U	400 U U	400 U	U 192	192	192	192	400 U U	2400	192	192
Benzo(a)pyrene	400 U U	400 U		400 U U	400 U		186	186	186	400 U U	2000	186	186
Benzo(b)fluoranthene	400 U U	400 U		400 U U			210	210	210	400 U U	1700	210	210
Benzo[g,h,i]perylene	400 U U	400 U		400 U U			182	182	182	400 U U	400 U U		182
Benzo[k]fluoranthene	400 U U	400 U		400 U U			178	178	178	400 U U	2200	178	178
Benzoic Acid	400 U U	400 U		400 U U						400 U U	400 U U		
Bis(2-ethylhexyl) phthalate	400 U U	400 U		400 U U			131	131	131	400 U U	400 U U		131
Chrysene	400 U U	400 U	U 400 U U	400 U U	400 U		195 U	195 U		400 U U	2700	195 U	
Dibenz(a,h)anthracene Dibenzofuran	400 U U	400 U	U 400 U U	400 U U	400 U	U 184 U U 177 U	184 U U 177 U	184 U U 177 U		400 U U	400 U U 400 U U		
Diethyl Phthalate	400 U U	400 U		400 U U			184 U U	184 U U		400 U U	400 U U		
Fluoranthene	400 U U	400 U		400 U U			278 U	278 U		400 U U	4200	278 U	
Indeno(1,2,3-c,d)Pyrene	400 U U	400 U		400 U U			177	177	177	400 U U	400 U U	177	177
Phenanthrene	400 U U	400 U		400 U U	400 U		212	212	212	400 U U	2000	212	212
Pyrene	400 U U	400 U		400 U U			231 U			400 U U	5500	231 U	
Pesticides/PCBs (µg/kg)		I.						l l					
4,4'-DDD						1.26 U	1.26 U	1.26 U	1.26 U			1.26 U	1.26 U
4,4'-DDE						1.45 U	1.45 U	1.45 U				1.45 U	
4,4'-DDT						2.16 U	2.16 U	2.16 U				2.16 U	2.16 U
Álpha-Chlordane						0.988 U	0.988 U	0.988 U				0.988 U	0.988 U
Dieldrin						0.981 U	0.981 U	0.981 U				0.981 U	0.981 U
Endosulfan II						0.916 U	0.916 U	0.916 U	0.916 U			0.916 U	0.916 U
Endrin						0.916 U	0.916 U	0.916 U	0.916 U			0.916 U	0.916 U
Endrin Aldehyde						0.916 U	0.916 U	0.916 U				0.916 U	
Endrin Ketone						0.916 U	0.916 U	0.916 U				0.916 U	
Heptachlor						0.916 U	0.916 U	0.916 U	0.916 U			0.916 U	0.916 U
Notes:													
Blank cell means no analysis for this parameter.													

TABLE B.3 SOUTHERN AU DETECTIONS								Old RA Samples				
Sample ID	BACKFILL replaces SV-POI24-12 POI24-13	POI24-14 BAKER-06	POI24-01/02	POI24-03	POI24-04	BACKFILL replaces POI24-05	BACKFILL replaces POI24-06	BACKFILL replaces POI24-07	BACKFILL replaces POI24-08	BACKFILL replaces POl24-09	BACKFILL replaces POI24-10	BACKFILL replaces POI24- 11
Sample Date												
Parameter												
Metals (mg/kg)			, ,									
Aluminum	27131		14100	17600	21500	12914	12914	12914	12914	12914	12914	12914
Antimony	1.46 U U		6.3 B		14.9 B					0.244 U U	0.244 U U	0.244 U U
Arsenic	2.21		7.5 L	7.7 L	11.6 L	7.67	7.67	7.67	7.67	7.67	7.67	7.67
Barium	170		66.8	56.7	54.8	34.46	34.46	34.46	34.46	34.46	34.46	34.46
Beryllium	1.72		0.58	0.62	0.86	0.632	0.632	0.632	0.632	0.632	0.632	0.632
Cadmium	0.204		0.57 K		0.53 K		0.08	0.08	0.08	0.08	0.08	0.08
Calcium	3,729		1,320	1,530	1,860	428.5	428.5	428.5	428.5	428.5	428.5	428.5
Chromium	73.7		26.2	44.7	59.3	30.3	30.3	30.3	30.3	30.3	30.3	30.3
Cobalt	17.3		5.9	6.7	5.9	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Copper	42.2		13.4 L	26.1 L	23.2 L	9	9	9	9	9	9	9
Iron	36,181		16,100	30,200	39,300	27416	27416	27416	27416	27416	27416	27416
Lead	40.5		40.5	59.2	32.4	8.97	8.97	8.97	8.97	8.97	8.97	8.97
Magnesium	13,025		1,930	2,590	3,830	498.4	498.4	498.4	498.4	498.4	498.4	498.4
Manganese	681		210 J		177 J	100	100	100	100	100	100	100
Mercury	0.024		0.18	0.26	0.15	0.057	0.057	0.057	0.057	0.057	0.057	0.057
Nickel	43.3		12.7	24	29.8	4.53	4.53	4.53	4.53	4.53	4.53	4.53
Phosphorous	0001		864	1 000	4.070	402.0	402.0	402.0	402.0	402.0	402.0	402.0
Potassium	9081			1,290	1,870	483.8	483.8	483.8	483.8	483.8	483.8	483.8
Selenium	1.05		1.3 L	J 1.3 U	1.3 U	0.81	0.81	0.81	0.81	0.81	0.81	0.81
Silicon Silver						0.02	0.02	0.02	0.02	0.02	0.02	0.02
Sodium	119		230	326	323	65.7	65.7	65.7	65.7	65.7	65.7	65.7
Strontium	119		230	320	525	05.7	05.7	03.7	05.7	05.7	05.7	05.7
Sulfur												
Thallium	1.74		10 U U	10 U	10 U U	0.183 UL U	JL 0.183 UL U	L 0.183 UL UI	0.183 UL UL	0.183 UL UL	. 0.183 UL UL	0.183 UL UL
Tin					1000	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Titanium						2.1			2.1		2.1	2.1
Vanadium	85.2		33.9	64.2	70.1	39.9	39.9	39.9	39.9	39.9	39.9	39.9
Zinc	89.0		44 K		44.5 K		14.1	14.1	14.1	14.1	14.1	14.1
			I	<u>ц</u> – Ц	I	I I						
Additional Parameters (mg/kg					Í							
Cyanide	1.15 U	U 1.13 U 1.12 U										
VOCs (µg/kg)			1									
Methylene Chloride	6.86											
1,1,1-Trichloroethane	2.75 U		13 U						2.90 U	2.90 U	2.90 U	2.90 U
2-Butanone	5.50 U		13 U						5.81 U	5.81 U	5.81 U	5.81 U
Acetone	16.9		13 U	13 U	13 U				5.81 U	5.81 U	5.81 U	5.81 U
Chloroform	2.75 U		13 U		13 U				2.90 U	2.90 U	2.90 U	2.90 U
Chloromethane	5.50 U		13 U						5.81 U	5.81 U	5.81 U	5.81 U
Dichlorodifluoromethane	0.75 11		13 U						2.90 U	2.90 U	2.90 U	2.90 U
Toluene	2.75 U		13 U	13 U	13 U	2.90 L	J 2.90 U	2.90 U	2.90 U	2.90 U	2.90 U	2.90 U

	1			1									
TABLE B.3													
SOUTHERN AU									Old RA Samples				
DETECTIONS													
Sample ID	BACKFILL replaces SV-POI24-12	POI24-13	POI24-14 BAKER-06	POI24-01/02	POI24-03	POI24-04	BACKFILL replaces POI24-05	BACKFILL replaces POI24-06	BACKFILL replaces POI24-07	BACKFILL replaces POI24-08	BACKFILL replaces POI24-09	BACKFILL replaces POI24-10	BACKFILL replaces POl24- 11
Sample Date				1									
Parameter													
SVOCs (µg/kg)	1	1				1 1	1 1		1 1	1 1	1 1	1 1	1 1
Anthracene	181 ไ			1									
Benzo(a)anthracene	192	<u> </u>		87 J	29 J	28 J	188 U L	188 U U	188 U L	J 188 U U	188 U U	188 U U	188 U U
Benzo(a)pyrene	186			90 J	418 J	23 J			193 U L		193 U U	193 U U	193 U U
Benzo(b)fluoranthene	210			88 J	28 J	393 U U			193 U L		193 U U	193 U U	193 U U
Benzo[g,h,i]perylene	182					30 J			197 U				
Benzo[k]fluoranthene	178			64 J	16 J		193 L		193 U				
Benzoic Acid													
Bis(2-ethylhexyl) phthalate	131												
Chrysene	195 l	U		77 J	25 J	35 J	193 L	193 U					
Dibenz(a,h)anthracene	184 U U	U											
Dibenzofuran	177 l			330 U	330 U	330 U	193 L	193 U					
Diethyl Phthalate	184 U U												
Fluoranthene	278 l	J		130 J	50 J	34 J			186 U				
Indeno(1,2,3-c,d)Pyrene	177			388 U U	418 U U	29 J	193 U L	193 U U	193 U l	J 193 U U	193 U U	193 U U	193 U U
Phenanthrene	212												
Pyrene	231 ไ	U		100 J	40 J	32 J	185 L	185 U					
Pesticides/PCBs (µg/kg)													
4,4'-DDD	1.26 L	J		34 L	3.3 U	3.3 U	0.969 L	0.969 U					
4,4'-DDE	1.45 L	J		4.4 J	3.3 U	3.3 U	0.969 L	0.969 U					
4,4'-DDT	2.16 L	J		45 J	3.3 U	3.3 U			0.969 U				
Alpha-Chlordane	0.988 L			1.7 U		1.7 U			0.969 U				
Dieldrin	0.981 L			3.3 U					0.969 U				
Endosulfan II	0.916 L			3.3 U					0.969 U				
Endrin	0.916 L			3.3 U					0.969 U				
Endrin Aldehyde	0.916 L			3.3 U					0.969 U				
Endrin Ketone	0.916 L			3.3 U					0.969 U				
Heptachlor	0.916 L)		1.7 U	1.7 U	1.7 U	0.969 L	0.969 U					
Notoo													
Notes: Blank cell means no analysis													
for this parameter.		ma/ka mill	igrams per kilogram, µg/kg mi	erograme per kilogr	om								
			• • • • •	· · ·									
			present; the reported value may	•									
			detected, reported value is bias		,								
			present; reported value may be to			-	any to be detected						
			cted; the associated number inc				ary to be detected						
		,	e not detected, reported PQL ma tected; quantitation limit may be										
			le result; analyte may or may no			data necessar	to confirm result						
			ontamination, the analyte was de	•									
L						1							

APPENDIX C: COPC SCREENING TABLES

- Table C.1: AOI 9 EU COPC Screening
- Table C.2:
 Spaulding-Rankin EU COPC Screening
- Table C.3:
 Southern AU EU COPC Screening
- Table C.4a: Southern AU EU COPC Screening Outlier Location SV-04
- Table C.4b: Southern AU EU COPC Screening Outlier Location SV-AU-05
- Table C.4c:
 Southern AU EU COPC Screening Outlier Location AU-10
- Table C.4d: Southern AU EU COPC Screening Outlier Location SV-12A
- Table C.4e: Southern AU EU COPC Screening Outlier Location SV-AU-03 and AU-03
- Table C.4f:Southern AU EU COPC Screening Outlier Location SV-BAKER-03 andBAKER-03

Table C.1								
AOI 9 - Provisio	nal COPCs	-					INITI	AL SCREEN
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale
AOI 9	Aluminum	mg/kg	NC	7700	19100	51900	YES	MAX > BG and RSL
	Antimony	mg/kg	NC	3.1	5.2	44.2	YES	MAX > BG and RSL
60 samples	Arsenic	mg/kg	С	0.61	12.6	8.6	NO	MAX < BG
-	Barium	mg/kg	NC	1500	172	110	NO	MAX < BG and RSL
	Beryllium	mg/kg	NC	16	1.9	6.0	NO	MAX < RSL
	Boron	mg/kg	NC	160	NS	8.9	NO	MAX < RSL
	Calcium	mg/kg		NS	NS	858	NO	essential nutrient
	Chromium	mg/kg	NC	12000	51.3	118	NO	MAX < RSL
	Cobalt	mg/kg	NC	2.3	17.8	70.1		MAX > BG and RSL
	Copper	mg/kg	NC	310	49.65	227	NO	MAX < RSL
	Iron	mg/kg	NC	5500	32400	91100	YES	MAX > BG and RSL
	Lead	mg/kg		400	194	367	NO	MAX < RSL
	Magnesium	mg/kg	NS	NS	6950	13600	YES	MAX > BG
	Manganese	mg/kg	NC	180	968	2040	YES	MAX > BG and RSL
	Mercury	mg/kg	NC	1	0.25	0.32	NO	MAX < RSL
	Nickel	mg/kg	NC	150	33.5	73.5	NO	MAX < RSL
	Phosphorus	mg/kg		NS	NS	502	NO	essential nutrient
	Potassium	mg/kg		NS	NS	10400	NO	essential nutrient
	Silicon	mg/kg		NS	NS	2410	NO	limited toxicity at level detected ²
	Silver	mg/kg	NC	39	0.87	1.4	NO	MAX < RSL
	Sodium	mg/kg		NS	NS	323	NO	essential nutrient
	Strontium	mg/kg	NC	4700	53	9.3	NO	MAX < BG and RSL
	Sulfur	mg/kg		NS	NS	116	NO	limited toxicity at level detected ²
	Tellurium	mg/kg	NS	NS	5	3.4	NO	MAX < BG
	Thallium	mg/kg	NC		2.2	2.1	NO	MAX < BG
	Tin	mg/kg	NC		8.4	30.5	NO	MAX < RSL
	Titanium	mg/kg		NS	2690	930	NO	MAX < BG
	Vanadium	mg/kg	NC	39	75.5	307	YES	MAX > BG and RSL
	Zinc	mg/kg	NC	2300	158	162	NO	MAX < RSL
	Zirconium	mg/kg	NC		48.3	6.38	NO	MAX < BG
	Perchlorate	µg/kg	NC		0.612	0.75	NO	MAX < RSL
	Cyanide	mg/kg	NC		0.26	0.51	NO	MAX < RSL
	Fluoride	mg/kg	NC		11	9.7	NO	MAX < BG and RSL
	1,4-dithiane	µg/kg		61000	NS	9.6	NO	MAX < RSL
	1,4-oxathiane	µg/kg	NC		NS	12	NO	MAX < RSL
	1,2-Dichloroethane	µg/kg	C	430	18	1.1	NO	MAX < BG and RSL
	2-Hexanone	μg/kg	NC		18	5	NO	MAX < BG and RSL
	4-Methyl-2-pentanone	μg/kg	NC		18	2	NO	MAX < BG and RSL
	Acetone	μg/kg	NC		554.7	429	NO	MAX < BG and RSL
	Acrolein	μg/kg	NC		NS	30.3	NO	MAX < RSL

AOI 9 - Provisio	nal COPCs							AL SCREEN
-UI 3 - MOVISIO								
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale
	Benzene	µg/kg	С	1100	18	1.1	NO	MAX < BG and RSL
	Chloroethane	µg/kg	NC	NS	18	1.1	NO	MAX < BG
	Chloromethane	µg/kg	NC	12000	18	1.1	NO	MAX < BG and RSL
	Dibromochloromethane	µg/kg	С	680	18	1.1	NO	MAX < BG and RSL
	Ethyl benzene	µg/kg	С	NS	18	1.5	NO	MAX < BG
	Methyl Tertbutyl Ether	µg/kg	С	150	357.5	0.84	NO	MAX < BG and RSL
	Methylene chloride	µg/kg	С	56000	18	2.6	NO	MAX < BG and RSL
	Naphthalene	µg/kg	С	3600	510	0.987	NO	MAX < BG and RSL
	Toluene	µg/kg	NC	500000	18	11.3	NO	MAX < BG and RSL
	Total Xylenes	µg/kg	NC	63000	18	3.5	NO	MAX < BG and RSL
	Anthracene	µg/kg	NC	1700000	510	75	NO	MAX < BG and RSL
	Benzo(a)anthracene	µg/kg	С	150	357.5	340	NO	MAX < BG
	Benzo(g,h,i)perylene	µg/kg		NS	331.5	97	NO	MAX < BG
	Benzo(a)pyrene	µg/kg	С	15	375	168	NO	MAX < BG
	Benzo(b)fluoranthene	µg/kg	С	150	365.7	300	NO	MAX < BG
	Benzo(k)fluoranthene	µg/kg	С	1500	356.6	155	NO	MAX < BG and RSL
	Benzoic Acid	µg/kg		NS	510	419	NO	MAX < BG
	Bis(2-Ethylhexyl)phthalate	µg/kg	С	35000	1479	51	NO	MAX < BG and RSL
	Chrysene	µg/kg	С	15000	400.9	169	NO	MAX < BG and RSL
	di-n-Butylphthalate	µg/kg	NC	610000	510	34	NO	MAX < BG and RSL
	Diphenylamine	µg/kg	NC	150000	510	650	NO	MAX < BG and RSL
	Fluoranthene	µg/kg	NC	230000	699.9	650	NO	MAX < BG and RSL
	Hexachlorocyclopentadiene	µg/kg	NC	37000	510	120	NO	MAX < BG and RSL
	Pentachlorophenol	µg/kg	С	890	1200	270	NO	MAX < BG and RSL
	Phenanthrene	µg/kg		NS	407.4	350	NO	MAX < BG
	Phenol	µg/kg	NC	1800000	510	450	NO	MAX < BG and RSL
	Pyrene	µg/kg	NC	170000	626.4	450	NO	MAX < BG and RSL
	Heptachlor Epoxide	µg/kg	С	53	NS	46	NO	MAX < RSL
	Endosulfan I	µg/kg	NC	37000	NS	2.6	NO	MAX < RSL
	Dieldrin	µg/kg	С	30	NS	2	NO	MAX < RSL
	4,4'-DDE	µg/kg	С	1400	NS	250	NO	MAX < RSL
	Endosulfan II	µg/kg	NC	37000	NS	4.6	NO	MAX < RSL
	4,4'-DDD	µg/kg	С	2000	NS	2	NO	MAX < RSL
	4,4'-DDT	µg/kg	С	1700	NS	58	NO	MAX < RSL
	Alpha-chlordane	µg/kg	С	1600	NS	45	NO	MAX < RSL
	Gamma-chlordane	µg/kg	С	1600	NS	24	NO	MAX < RSL
	mber 2013 RSLs. NC adjusted do				vala data stad tha			
	available = these compounds (silic	on, suilur) na	ve III M	ted toxicity at the lev	veis uelecteu, the			
NA not applicabl								
	gen, C carcinogen		_					
mg/kg_milligrams	s per kilogram, μg/kg microgram	is per kilogran	n					
	Provisional COPC							

	Table C.2 Spaulding-Rankin - Provisional COPCs						INITIAL	SCREEN
xposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale
paulding-Rankin	Aluminum	mg/kg	NC	7700	19100	37428	YES	MAX > BG and RSL
	Antimony	mg/kg	NC	3.1	5.2	18.5	YES	MAX > BG and RSL
0 samples	Arsenic	mg/kg	С	0.61	12.6	131	YES	MAX > BG and RSL
-	Barium	mg/kg	NC	1500	172	293.57	NO	MAX < BG
	Beryllium	mg/kg	NC	16	1.9	3.3	NO	MAX < RSL
	Cadmium	mg/kg	NC	7	2.36	110.0	YES	MAX > BG and RSL
	Calcium	mg/kg		NS	NS	25590.57	NO	essential nutrient
	Chromium	mg/kg	NC	12000	51.3	15866.71	YES	MAX > BG and RSL
	Cobalt	mg/kg	NC	2.3	17.8	426.52	YES	MAX > BG and RSL
	Copper	mg/kg	NC	310	49.65	481	YES	MAX > BG and RSL
	Iron	mg/kg	NC	5500	32400	140536.16	YES	MAX > BG and RSL
	Lead	mg/kg		400	194	868	YES	MAX > BG and RSL
	Magnesium	mg/kg		NS	6950	14900	YES	MAX > BG
	Manganese	mg/kg	NC	180	968	3248	YES	MAX > BG and RSL
	Mercury	mg/kg	NC	1	0.25	2.5	YES	MAX > BG and RSL
	Nickel	mg/kg	NC	150	33.5	335	YES	MAX > BG and RSL
	Potassium	mg/kg		NS	NS	3246.43	NO	essential nutrient
	Selenium	mg/kg	NC	39	1.2	47.07	YES	MAX > BG and RSL
	Silver	mg/kg	NC	39	0.87	3.73	NO	MAX < RSL
	Solum	mg/kg		NS	NS	199.29	NO	essential nutrient
	Strontium Total		NC	4700	53	24	NO	MAX < RSL
		mg/kg	NC				YES	
		mg/kg	NC	0.078	2.2	75.72		MAX > BG and RSL
	Tin	mg/kg	NC	4700	8.4	45.24	NO	MAX < RSL
	Titanium	mg/kg	10	NS	2690	1383	NO	MAX < BG
	Vanadium	mg/kg	NC	39	75.5	195	YES	MAX > BG and RSL
		mg/kg	NC	2300	158	13600	YES	MAX > BG and RSL
	Zirconium	mg/kg	NC	0.63	48.3	3.94	NO	MAX < BG
	Cyanide	mg/kg	NC	2.2	0.26	1.86	NO	MAX < RSL
	Benzo(a)anthracene	µg/kg	C	150	357.5	110	NO	MAX < BG and RSL
	Benzo(a)pyrene	µg/kg	С	15	375	86	NO	MAX < BG
	Benzo(b)fluoranthene	µg/kg	C	150	365.7	84	NO	MAX < BG and RSL
	Bis(2-ethylhexyl)phthalate	µg/kg	С	35000	1479	61	NO	MAX < BG and RSL
	di-n-Butylphthalate	µg/kg	NC	610000	510	840	NO	MAX < RSL
	Fluoranthene	µg/kg	NC	230000	699.9	65	NO	MAX < BG and RSL
	2-Hexanone	µg/kg	NC	21000	18	18.01	NO	MAX < RSL
	Acetone	µg/kg	NC	6100000	554.7	24.33	NO	MAX < BG and RSL
	Chloroform	µg/kg	С	290	18	21.35	NO	MAX < RSL
	Chrysene	µg/kg	С	15000	400.9	110	NO	MAX < BG and RSL
	Ethylbenzene	µg/kg	С	NS	18	5.56	NO	MAX < BG
	Methylene Chloride	µg/kg	С	56000	18	74.72	NO	MAX < RSL
	Toluene	µg/kg	NC	500000	18	15	NO	MAX < BG and RSL
	Total Xylenes	µg/kg	NC	63000	18	21	NO	MAX < RSL
	4,4'-DDD	µg/kg	С	2000	NS	48	NO	MAX < RSL
	4,4'-DDE	µg/kg	С	1400	NS	60	NO	MAX < RSL
	4,4'-DDT	µg/kg	C	1700	NS	87	NO	MAX < RSL
	Alpha-chlordane	µg/kg	C	1600	NS	1.3	NO	MAX < RSL
	Methyoxychlor	µg/kg	NC	31000	NS	3.9	NO	MAX < RSL
LISEDA November								
	er 2013 RSLs. NC adjusted downward by t NC non-carcinogen, C carcinogen	actor 01 10						
	er kilogram, μg/kg micrograms per kilogra	m						
uku niiiiuanans De	τι κποφιατή, μφ/κφ πησιοφιατής ρεί κποφία		1				1	1

Table C.3												
	AU - Provisional COPCs								INITIAL SC	REEN		
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier Test 1 Is Max ≥ 10X the Avg of Remaining Data?	NEXT Maximum Detected Value	Provisional COPC (NEXT max > higher of current RSL or 2008 background)?	Rationale
Southern AU	Aluminum	mg/kg	NC	7700	19100	57700	YES	MAX > BG and RSL	NO, but max was from removed sample	56138	YES	MAX > BG and RSL
	Antimony	mg/kg	NC	3.1	5.2	40.4	YES	MAX > BG and RSL	YES, remove sample AU-03	36.3	YES	MAX > BG and RSL
115	Arsenic	mg/kg	С	0.61	12.6	17.1	YES	MAX > BG and RSL	NO			
samples	Barium	mg/kg	NC	1500	172	170	NO	MAX < BG and RSL				
	Beryllium	mg/kg	NC	16	1.9	19	YES	MAX > BG and RSL	YES, remove sample SV-12A	4.5	NO	MAX < BG
	Cadmium	mg/kg	NC	7000	2.36	3.21	NO	MAX < RSL				
	Calcium	mg/kg		NS	NS	6540	NO	essential nutrient				
	Chromium	mg/kg	NC	12000	51.3	651	NO	MAX < RSL				
	Cobalt	mg/kg	NC	2.3	17.8	193		MAX > BG and RSL	NO			
	Copper	mg/kg	NC	310	49.65	181	NO	MAX < RSL				
	Iron	mg/kg	NC	5500	32400	90475		MAX > BG and RSL	NO, but max was from removed sample	68056	YES	MAX > BG and RSL
	Lead	mg/kg		400	194	158	NO	MAX < BG and RSL				
	Magnesium	mg/kg		NS	6950	21639		MAX > BG	NO			
	Manganese	mg/kg	NC	180	968	3070	YES	MAX > BG and RSL	NO			
	Mercury	mg/kg	NC	1	0.25	9.74		MAX > BG and RSL	YES, remove sample SV-AU-05	2.3	YES	MAX > BG and RSL
	Nickel	mg/kg	NC		33.5	176		MAX > BG and RSL	NO			
	Phosphorous	mg/kg		NS	NS	198	NO	essential nutrient				
	Potassium	mg/kg		NS	NS	9081	NO	essential nutrient				
	Selenium	mg/kg	NC	39	1.2	1.41	NO	MAX < RSL				
	Silicon	mg/kg		NS	NS	2240	NO	limited toxicity at level detected ²				
	Silver	mg/kg	NC	39	0.87	0.023	NO	MAX < BG and RSL				
	Sodium	mg/kg		NS	NS	600	NO	essential nutrient				
	Strontium	mg/kg	NC	4700	53	20.7	NO	MAX < BG and RSL				
	Sulfur	mg/kg		NS	NS	255	NO	limited toxicity at level detected ²				
	Thallium	mg/kg	NC	0.078	2.2	28.6	YES	MAX > BG and RSL	YES, remove sample SV-AU-03	4.73	YES	MAX > BG and RSL
	Tin	mg/kg	NC	4700	8.4	2.7	NO	MAX < BG and RSL				
	Titanium	mg/kg		NS	2690	896	NO	MAX < BG				
	Vanadium	mg/kg	NC	39	75.5	627	YES	MAX > BG and RSL	NO, but max was from removed sample	293	YES	MAX > BG and RSL
	Zinc	mg/kg	NC	2300	158	209	NO	MAX < RSL				
	Cyanide	mg/kg	NC		0.26	0.81	NO	MAX < RSL				
	1,1,1-Trichloroethane	µg/kg	NC	870000	18	1	NO	MAX < BG and RSL				
	2-Butanone	µg/kg	NC	2800000	18	3	NO	MAX < BG and RSL				
	Acetone	µg/kg	NC	6100000	554.7	17	NO	MAX < BG and RSL				
	Chloroform	µg/kg	C	290	18	5	NO	MAX < BG and RSL				
	Chloromethane	µg/kg	NC	12000	18	3	NO	MAX < BG and RSL				

Table C.3												
outhern	AU - Provisional COPCs							1	INITIAL SC	REEN		1
xposure nit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	Outlier Test 1 Is Max ≥ 10X the Avg of Remaining Data?	NEXT Maximum Detected Value	Provisional COPC (NEXT max > higher of current RSL or 2008 background)?	Rationale
	Dichlorodifluoromethane	µg/kg	NC	9400	18	2	NO	MAX < BG and RSL				
	Methylene Chloride	µg/kg	С	56000	18	68	NO	MAX < RSL				
	Toluene	µg/kg	NC	500000	18	2	NO	MAX < BG and RSL				
	Anthracene	µg/kg	NC	1,700,000	510	181.25	NO	MAX < BG and RSL				
	Benzo(a)anthracene	µg/kg	с	150	357.5	3800	YES	MAX > BG and RSL	YES, remove sample BAKER-03	773	YES	MAX > BG and RSL
	Benzo(a)pyrene	µg/kg	С	15	375	2800	YES	MAX > BG and RSL	NO, but max was from removed sample	595	YES	MAX > BG and RSL
	Benzo(b)fluoranthene	µg/kg	С	150	365.7	3400	YES	MAX > BG and RSL	YES, remove sample BAKER-03	895	YES	MAX > BG and RSL
	Benzo(g,h,i)perylene	µg/kg		NS	331.5	244	NO	MAX < BG				
	Benzo(k)fluoranthene	µg/kg	с	1500	356.6	2200	YES	MAX > BG and RSL	YES, remove sample SV-BAKER-03	377	NO	MAX < RSL
	Benzoic Acid	µg/kg	NC	24000000	510	210	NO	MAX < BG and RSL				
	Bis(2-ethylhexyl) phthalate	µg/kg	С	35000	1479	131	NO	MAX < BG and RSL				
	Chrysene	µg/kg	С	15000	400.9	2700	NO	MAX < RSL				
	Dibenz(a,h)anthracene	µg/kg	с	15	510	1100	YES	MAX > BG and RSL	Remaining data all ND, but max was from removed sample	ND (DL=184- 478)	NO	DL < BG
	Dibenzofuran	µg/kg	NC	7800	510	69	NO	MAX < BG and RSL				
	Diethyl Phthalate	µg/kg	NC	4900000	510	24	NO	MAX < BG and RSL				
	Fluoranthene	µg/kg	NC	230000	699.9	4200	NO	MAX < RSL				
	Indeno(1,2,3-c,d) Pyrene	µg/kg	С	150	334.7	2000	YES	MAX > BG and RSL	YES, remove sample BAKER-03	273	NO	MAX < BG
	Phenanthrene	µg/kg		NS	407.4	2000	YES	MAX > BG	YES, remove sample SV-BAKER-03	327	NO	MAX < BG
	Pyrene	µg/kg	NC	170000	626.4	5500	NO	MAX < RSL				
	Arochlor-1260	mg/kg	С	0.22	NS	1.3	YES	MAX > RSL	NO		NO. Max result exc	avated; remainder N
	4,4'-DDD	µg/kg	С	2000	NS	1500	NO	MAX < BG				
	4,4'-DDE	µg/kg	С	1400	NS	100	NO	MAX < BG				
	4,4'-DDT	µg/kg	C	1700	NS	560	NO	MAX < BG				
	Alpha-Chlordane	µg/kg	C	1600	NS	2.5	NO	MAX < BG				
	Dieldrin	µg/kg	C	30	NS	22	NO	MAX < BG				
	Endosulfan II	µg/kg	NC	37000	NS	14	NO	MAX < BG				
	Endrin Endrin Aldebude	µg/kg	NC		NS	23	NO	MAX < BG				
	Endrin Aldehyde	µg/kg		NS	NS	6.6	NO	No BG or RSL				
	Endrin Ketone	µg/kg	^	NS 52	NS	26	NO	No BG or RSL				
	Heptachlor	µg/kg	С	53	NS	3.6	NO	MAX < BG	1			
No SL c	November 2013 RSLs. NC a or BG available = these compo	•		•		the levels de	tected, therefore a	re not further evaluated				
IA not ap												
	arcinogen, C carcinogen											
ng/kg mil	ligrams per kilogram, μg/kg	micrograms	s per	kilogram								
	Provisional COPC											2

Table C.4A									
Southern A	U - Screening Review for	or Outlier Sa	mple	e SV-04				INITIAL SCREEN	
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES
	Aluminum	mg/kg	NC	7700	19100	9570	NO	MAX < BG	
	Antimony	mg/kg	NC	3.1	5.2	1.5	NO	MAX < BG and RSL	
Sample	Arsenic	mg/kg	С	0.61	12.6	3.5	NO	MAX < BG	
SV-04	Barium	mg/kg	NC	1500	172	40.7	NO	MAX < BG and RSL	
	Beryllium	mg/kg	NC	16	1.9	0.84	NO	MAX < BG and RSL	
	Cadmium	mg/kg	NC	7000	2.36	0.15	NO	MAX < BG and RSL	
	Calcium	mg/kg		NS	NS	1060	NO	No BG or RSL	
	Chromium	mg/kg	NC	12000	51.3	277	NO	MAX < RSL	
	Cobalt	mg/kg	NC	2.3	17.8	33	YES	MAX > BG and RSL	
	Copper	mg/kg	NC	310	49.65	24	NO	MAX < BG and RSL	
	Iron	mg/kg	NC	5500	32400	21500	NO	MAX < BG	
	Lead	mg/kg		400	194	104	NO	MAX < BG and RSL	
	Magnesium	mg/kg		NS	6950	4830	NO	MAX < BG	
	Manganese	mg/kg	NC		968	497	NO	MAX < BG	
	Mercury	mg/kg	NC		0.25	2.3	YES	MAX > BG and RSL	
	Nickel	mg/kg	NC		33.5	51	NO	MAX < RSL	
	Potassium	mg/kg		NS	NS	760	NO	No BG or RSL	
	Vanadium	mg/kg	NC		75.5	51.3	NO	MAX < BG	
	Zinc	mg/kg	NC	2300	158	73.4	NO	MAX < BG and RSL	
1. USEPA N	November 2013 RSLs. N	C adjusted do	ownu	ard by factor o	of 10				
NA not app	licable, NC non-carcino	gen, C carci	inoge	n, NS none	specified				
	grams per kilogram								
	Provisional COPC								

	Screening Review for O	Outlier San Units	nple :	SV-AU-05				INITIAL SCREEN	
Exposure Unit D	Detected Analytes*	Units							
				USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES
A	luminum	mg/kg	NC	7700	19100	8679.24	NO	MAX < BG	
Sample A	vrsenic	mg/kg	С	0.61	12.6	7.32	NO	MAX < BG	
SV-AU-05 B	Barium	mg/kg	NC	1500	172	14.5	NO	MAX < BG and RSL	
В	Beryllium	mg/kg	NC	16	1.9	0.67	NO	MAX < BG and RSL	
С	Cadmium	mg/kg	NC	7000	2.36	1.04	NO	MAX < BG and RSL	
С	Calcium	mg/kg		NS	NS	387.42	NO	essential nutrient	
C	Chromium	mg/kg	NC	12000	51.3	24.47	NO	MAX < BG and RSL	
C	Copper	mg/kg	NC	310	49.65	19	NO	MAX < BG and RSL	
Ir	ron	mg/kg	NC	5500	32400	21005	NO	MAX < BG	
M	lagnesium	mg/kg		NS	6950	317	NO	MAX < BG	
M	langanese	mg/kg	NC	180	968	32	NO	MAX < BG and RSL	
M	//ercury	mg/kg	NC	1	0.25	9.74	YES	MAX > BG and RSL	
N	lickel	mg/kg	NC	150	33.5	6	NO	MAX < BG and RSL	
P	otassium	mg/kg		NS	NS	695	NO	essential nutrient	
V	/anadium	mg/kg	NC	39	75.5	28.98	NO	MAX < BG and RSL	
Z	linc	mg/kg	NC	2300	158	24.44	NO	MAX < BG and RSL	
С	Chloromethane	µg/kg	NC	12000	18	1	NO	MAX < BG and RSL	
1. USEPA Noven	mber 2013 RSLs. NC a	adjusted dov	vnwa	rd by factor of	10				
	le, NC non-carcinoger								
mg/kg_milligrams				-					
<u> </u>	Provisional COPC								

Table C.4C									
Southern AU - S	Screening Review for Outlier Sa	ample AU-10)	1	ļ			INITIAL SCREEN	
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES
	Aluminum	mg/kg	NC	7700	19100	18300	NO	MAX < BG	
Sample	Antimony	mg/kg	NC	3.1	5.2	36.3	YES	MAX > BG and RSL	
AU-10	Arsenic	mg/kg	С	0.61	12.6	4.3	NO	MAX < BG	
	Barium	mg/kg	NC	1500	172	50	NO	MAX < BG and RSL	
	Beryllium	mg/kg	NC	16	1.9	0.96	NO	MAX < BG and RSL	
	Calcium	mg/kg		NS	NS	598	NO	essential nutrient	
	Chromium	mg/kg	NC	12000	51.3	56	NO	MAX < RSL	
	Cobalt	mg/kg	NC	2.3	17.8	25.4	YES	MAX > BG and RSL	
	Copper	mg/kg	NC	310	49.65	57.83	NO	MAX < BG	
	Iron	mg/kg	NC	5500	32400	46900	YES	MAX > BG and RSL	
	Lead	mg/kg		400	194	13.2	NO	MAX < BG and RSL	
	Manganese	mg/kg	NC	180	968	475	NO	MAX < BG	
	Magnesium	mg/kg		NS	6950	3710	NO	MAX < BG	
	Mercury	mg/kg	NC	1	0.25	0.56	NO	MAX < RSL	
	Nickel	mg/kg	NC	150	33.5	21	NO	MAX < BG and RSL	
	Potassium	mg/kg		NS	NS	2290	NO	essential nutrient	
	Sodium	mg/kg		NS	NS	262	NO	essential nutrient	
	Vanadium	mg/kg	NC	39	75.5	77.8	YES	MAX > BG and RSL	
	Zinc	mg/kg	NC	2300	158	55.5	NO	MAX < BG and RSL	
	2-Butanone	µg/kg	NC	2800000	18	2	NO	MAX < BG and RSL	
	Chloromethane	µg/kg	NC	12000	18	1	NO	MAX < BG and RSL	
	Dichlorodifluoromethane	µg/kg	NC	9400	18	2	NO	MAX < BG and RSL	
	mber 2013 RSLs. NC adjusted d								
	ble, NC non-carcinogen, C carc	inogen, NS	nor	ne specified					
mg/kg milligram	ns per kilogram								
	Provisional COPC								

Table C.4D										
Southern AU ·	- Screening Review for	Outlier San	nple	SV-12A		INITIAL SCREEN				
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES	
	Aluminum	mg/kg	NC	7700	19100	26900	YES	MAX > BG and RSL		
	Arsenic	mg/kg	С	0.61	12.6	2.1	NO	MAX < BG		
Sample	Barium	mg/kg	NC	1500	172	155	NO	MAX < BG and RSL		
SV-12A	Beryllium	mg/kg	NC	16	1.9	19	YES	MAX > BG and RSL		
	Calcium	mg/kg		NS	NA	2550	NO	No BG or RSL		
	Chromium	mg/kg	NC	12000	51.3	155	NO	MAX < RSL		
	Cobalt	mg/kg	NC	2.3	17.8	27	YES	MAX > BG and RSL		
	Copper	mg/kg	NC	310	49.65	56	NO	MAX < RSL		
	Iron	mg/kg	NC	5500	32400	45600	YES	MAX > BG and RSL		
	Lead	mg/kg		400	194	13.8	NO	MAX < BG and RSL		
	Magnesium	mg/kg		NS	6950	14000	YES	MAX > BG		
	Manganese	mg/kg	NC	180	968	815	NO	MAX < BG		
	Mercury	mg/kg	NC	1	0.25	0.08	NO	MAX < BG and RSL		
	Nickel	mg/kg	NC	150	33.5	0.08	NO	MAX < BG and RSL		
	Potassium	mg/kg		NS	NA	5400	NO	No BG or RSL		
	Vanadium	mg/kg	NC	39	75.5	105	YES	MAX > BG and RSL		
	Zinc	mg/kg	NC	2300	158	85.1	NO	MAX < BG and RSL		
NA not applica	rember 2013 RSLs. NC able, NC non-carcinoge ms per kilogram									
	Provisional COPC									

Southern AU -	Screening Review for C	Outlier SV-A	U-03	and AU-03 Sa	amples		INITIAL SCREEN			
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES	
	Aluminum	mg/kg	NC	7700	19100	57700	YES	MAX > BG and RSL		
	Antimony	mg/kg	NC	3.1	5.2	40.4	YES	MAX > BG and RSL		
	Arsenic	mg/kg	С	0.61	12.6	10.6	NO	MAX < BG		
2 samples:	Barium	mg/kg	NC	1500	172	77.4	NO	MAX < BG and RSL		
SV-AU-03	Beryllium	mg/kg	NC	16	1.9	3.3	NO	MAX < RSL		
AU-03	Cadmium	mg/kg	NC	7000	2.36	3.21	NO	MAX < RSL		
	Calcium	mg/kg		NS	NA	985	NO	No BG or RSL		
	Chromium	mg/kg	NC	12000	51.3	651	NO	MAX < RSL		
	Cobalt	mg/kg	NC	2.3	17.8	54.5	YES	MAX > BG and RSL		
	Copper	mg/kg	NC	310	49.65	209	NO	MAX < RSL		
	Iron	mg/kg	NC	5500	32400	135000	YES	MAX > BG and RSL		
	Lead	mg/kg		400	194	17.56	NO	MAX < BG and RSL		
	Magnesium	mg/kg		NS	6950	12200		MAX > BG		
	Manganese	mg/kg	NC	180	968	967.28	NO	MAX < BG		
	Nickel	mg/kg	NC	150	33.5	143	NO	MAX < RSL		
	Potassium	mg/kg		NS	NS	468	NO	essential nutrient		
	Sodium	mg/kg		NS	NA	603	NO	essential nutrient		
	Thallium	mg/kg	NC	0.078	2.2	28.56	YES	MAX > BG and RSL		
	Vanadium	mg/kg	NC	39	75.5	627		MAX > BG and RSL		
	Zinc	mg/kg	NC	2300	158	116.15	NO	MAX < BG and RSL		
	2-Butanone	µg/kg	NC	2800000	18	3	NO	MAX < BG and RSL		
	Chloroform	µg/kg	С	290	18	2	NO	MAX < BG and RSL		
	Methylene Chloride	µg/kg	С	56000	18	36	NO	MAX < RSL		
	Heptachlor	µg/kg	С	53	NS	3.6	NO	MAX < RSL		
1. USEPA Nove	ember 2013 RSLs. NC a	djusted dow	nward	d by factor of a	10					
NA not applica	ble, NC non-carcinogen	, C carcino	gen,	NS none spe						
mg/kg milligran	ns per kilogram, μg/kg n	nicrograms	ber kil	ogram						
	Provisional COPC									

Table C.4F										
Southern AU - S	Screening Review for Out	lier BAKER-0	3 and	d SV-BAKER-	03 Samples		INITIAL SCREEN			
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES	
	Aluminum	mg/kg	NC	7700	19100	16000	NO	MAX < BG		
	Antimony	mg/kg	NC	3.1	5.2	6.9	YES	MAX > BG and RSL		
	Arsenic	mg/kg	С	0.61	12.6	8.4	NO	MAX < BG		
2 samples:	Barium	mg/kg	NC	1500	172	60.78	NO	MAX < BG and RSL		
BAKER-03	Beryllium	mg/kg	NC	16	1.9	0.97	NO	MAX < BG and RSL		
SV-BAKER-03	Cadmium	mg/kg	NC	7000	2.36	1.98	NO	MAX < BG and RSL		
	Calcium	mg/kg		NS	NS	3600	NO	essential nutrient		
	Chromium	mg/kg	NC	12000	51.3	95	NO	MAX < RSL		
	Cobalt	mg/kg	NC	2.3	17.8	11.1	NO	MAX < BG		
	Copper	mg/kg	NC	310	49.65	18.2	NO	MAX < BG and RSL		
	Iron	mg/kg	NC	5500	32400	27100	NO	MAX < BG		
	Lead	mg/kg		400	194	48.1	NO	MAX < BG and RSL		
	Magnesium	mg/kg		NS	6950	3811.64	NO	MAX < BG		
	Manganese	mg/kg	NC	180	968	414.18	NO	MAX < BG		
	Mercury	mg/kg	NC	1	0.25	0.72	NO	MAX < RSL		
	Nickel	mg/kg	NC	150	33.5	22	NO	MAX < BG and RSL		
	Potassium	mg/kg		NS	NS	891.73	NO	No BG or RSL		
	Sodium	mg/kg		NS	NS	365	NO	essential nutrient		
	Vanadium	mg/kg	NC	39	75.5	52.8	NO	MAX < BG		
	Zinc	mg/kg	NC	2300	158	68.4	NO	MAX < BG and RSL		
	2-Butanone	µg/kg	NC	2800000	18	3	NO	MAX < BG and RSL		
	Acetone	µg/kg	NC	6100000	554.7	16	NO	MAX < BG and RSL		
	Chloroform	µg/kg	С	290	18	5	NO	MAX < BG and RSL		
	Methylene Chloride	µg/kg	С	56000	18	68	NO	MAX < RSL		
	Toluene	µg/kg	NC	500000	18	2	NO	MAX < BG and RSL		

Table C.4F									
Southern AU - S	Screening Review for Outlie	r BAKER-0)3 an	d SV-BAKER-	03 Samples	INITIAL SCREEN			
Exposure Unit	Detected Analytes*	Units		USEPA Nov 2013 RSLs ¹	2008 Background Conc.	Maximum Detected Value	Provisional COPC (max > higher of current RSL or 2008 background)?	Rationale	NOTES
	Anthracene	µg/kg	NC	1,700,000	510	181.25	NO	MAX < BG and RSL	
	Benzo(a)anthracene	µg/kg	С	150	357.5	3800	YES	MAX > BG and RSL	
	Benzo(a)pyrene	µg/kg	С	15	375	2800	YES	MAX > BG and RSL	
	Benzo(b)fluoranthene	µg/kg	С	150	365.7	3400	YES	MAX > BG and RSL	
	Benzo(k)fluoranthene	µg/kg	С	1500	356.6	2200	YES	MAX > BG and RSL	
	Chrysene	µg/kg	С	15000	400.9	2700	NO	MAX < RSL	
	Dibenz(a,h)anthracene	µg/kg	С	15	510	1100	YES	MAX > BG and RSL	
	Dibenzofuran	µg/kg	NC	7800	510	69	NO	MAX < BG and RSL	
	Fluoranthene	µg/kg	NC	230000	699.9	4200	NO	MAX < RSL	
	Indeno(1,2,3-c,d) Pyrene	µg/kg	С	150	334.7	2000	YES	MAX > BG and RSL	
	Phenanthrene	µg/kg		NS	407.4	2000	YES	MAX > BG	
	Pyrene	µg/kg	NC	170000	626.4	5500	NO	MAX < RSL	
	4,4'-DDD	µg/kg	С	2000	NS	1500	NO	MAX < RSL	
	4,4'-DDE	µg/kg	С	1400	NS	100	NO	MAX < RSL	
	4,4'-DDT	µg/kg	С	1700	NS	560	NO	MAX < RSL	
	Dieldrin	µg/kg	С	30	NS	22	NO	MAX < RSL	
	Endosulfan II	µg/kg	NC	37000	NS	14	NO	MAX < RSL	
	Endrin	µg/kg	NC	1800	NS	23	NO	MAX < RSL	
	Endrin Ketone	µg/kg		NS	NS	26	NO	No BG or RSL	
	Heptachlor	µg/kg	С	53	NS	2	NO	MAX < RSL	
. USEPA Nover	mber 2013 RSLs. NC adjuste	ed downwa	rd by	factor of 10					
	le, NC non-carcinogen, C d	-			d				
ng/kg milligram	s per kilogram, μg/kg microg	grams per k	ilogra	im 🛛					
	Provisional COPC								