
USACE Updates

CERCLA Process

(The Comprehensive Environmental Response, Compensation, and Liability Act)

The CERCLA Process

Site Inspection

Remedial Investigation

General Purpose: Collect data to characterize site conditions; determine the nature of the waste; assess risk to human health and the environment. & evaluate treatment ootions.

Feasibility Study

General Purpose: To develop, screen, and evaluate of alternatives for clean-up.

The RI and FS are conducted concurrently.

Information gathered as part of the RI influences the development of the FS which, in turn, may require further data collection and field investigations.

At the Spring Valley FUDS, any munitions or contaminants recovered as part of the RNFS phase are disposed of as necessary.

A report is produced for the RNFS phase.

Decision Document

General Purpose: Select the alternative as well as provide an overview of the project. This would include site history, previous and current investigations, and characterization of contamination

Proposed Plan

General Purpose: Presents the evaluation of clean-up alternatives and provides a recommendation for the preferred alternative.

This document is made available for public review and comment.

Removal Action

General Purpose: If prompt action is deemed appropriate prior to the completion of the RI/FS process, begin removal of contaminants of concern.

Remedial Design/ Remedial Action

General Purpose: Implementation of the action determined in the Decision Document.

Long Term Monitoring

General Purpose: To conduct any long term monitoring necessary and conduct five year reviews of the Formerly Used Defense Site.

Spring Valley FUDS Site-Wide RI Introduction

This RI is notably different from traditional RIs because no singular set of objectives or work plan was established.

- While typical RIs follow the CERCLA sequence of events, this RI is an extremely complex site involving several ongoing and concurrent activities over many years, focusing on different potential hazards and/or investigation types or locations, as well as time-critical and non-time critical removal actions.
- Each of these ongoing and concurrent activities resulted in completed standalone reports documenting the findings.

Spring Valley Military History

CIVIL WAR

Ft. Gaines & otherforts located near SV area during Civil War era.

WWI

American University Experiment Station (AUES) 1917-1919. **Built for CWM** development & testing

WWI

1917-1919, Built for troop training

WWII

Disposal School 1942-1946, on AU campus for research & education

SPRING VALLEY FUDS TIMELINE 1993 – 2015

2000 – 2011 Munitions investigations conducted on 90 Spring Valley properties

January 5, 1993

Army leads Operation Safe Removal

(OSR) as an Emergency Response Action

1994 - 1996

Spaulding & Capt. Rankin

Area Investigation

1999

4825 Glenbrook

Rd. surveyed

adjacent to

Pits 1 & 2

1998

Mar. 1999 - Mar. 2001 Intrusive investigation of Pits 1 & 2

of Test Pit 23 (aka: Pit 3) 2002

Sedgwick Trench Investigation completed

May 2001 -

Mar. 2002

High prob.

investigation

AU Small Disposal Area &AU Lot 18 investigated

2003 Containers of CWM (including Lewisite), found at Lot 18

Recovered chemical & conventional munitions destroyed

2008 - 2010 AU Public Safety Bldg. area excavated

Oct. 2007 - Mar. 2009 FUDS western boundary High prob. investigation of Pit 3 resumes & near Dalecarlia Pkwy is completed

2007 - 2008

4835 Glenbrook

Test Pits

2001 - 2012 Site-wide arsenic sampling & removal at 1,600 Spring Valley properties / lots

April 2004 Formation of Spring Valley Partnership

& Woods investigated 2009 - 2010 Sept. 2011 4825 High 4825 RI & FS

2010

Recovered chemical

munitions destroyed

2004 - Ongoing groundwater study begins, 80+ site-wide & surrounding locations sampled

March 2008

AUES Chemical

Parameters Report

Released

2009 - 2011

Prob. Test Pits Reports released Aug. 2010

4825 becomes separate CERCLA project site to expedite cleanup

Winter 2012 -4825 & AU areas PRP Investigation begins

Munitions Glenbrook Rd. Groundwater Soil

Documents Munitions Destruction Health

4825 Proposed Plan accepted.

Demolition & cleanup begins

Fall 2012 -

Remedial Action:

2011 & 2012 Recovered conventional munitions destroyed

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Areas of Interests Task Force

(AOITF) find 28 areas (AOIs) to be

addressed in addition to 54 POIs

1993

Feb. 1993

OSR Phase I

completed

1993 - 1995

OSR Phase II

Remedial Investigation

conducted

AUES Historical Report issued & 54 Points of Interest (POIs) established

July 1996 DC Dept. of Health report critical of USACE investigation released

June 1995 Remedial nvestigation Report issued

June 1995 No Further Action Record of Decision released, never finalized

January 2000

Soil investigation of 9 properties & several lots on AU, including the Child Dev. Center - munitions investigations conducted

2001 Child Dev.

Center soil remediation completed

2000

Extensive soil sampling at 4825

soil removal

1999 - 2001 Pits 1 & 2 area 2005

AU Kreeger Hall

Elevated perchlorate found in groundwater near Sibley Hospital &

2012 SV perchlorate determined to be from Chilean source

Fall 2012 AOI Sampling completed

USACE begins drafting Site Wide

Remedial Investigation Report &

follow-on CERCLA documents

Mar. 2015 Site Wide RI Report Released

March 2001 RAB established

2002

2002 - 2007

Two ATSDR studies consider potential health risks from SV arsenic concentrations 2006

Johns Hopkins Univ. (JHU) study finds SV resident health very good overall

2005

ATSDR Study determines munitions pits from former SV military activities are public health hazards

2011 - 2013 JHU follow-on health study

June 2011 -

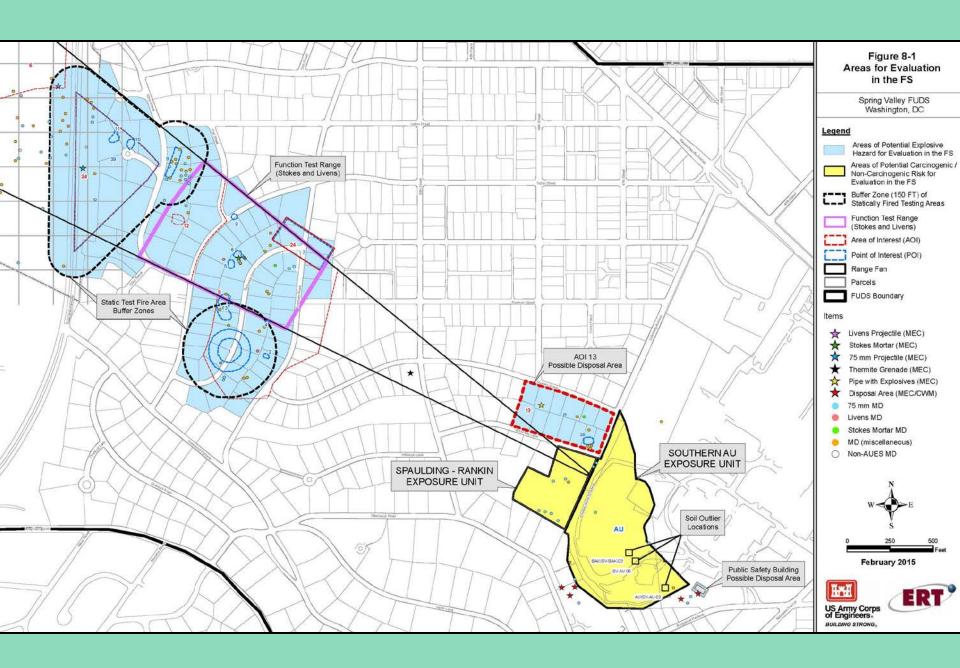
2011 -ATSDR Study of 4825 initiated

Rev. 1/26/2015

BUILDING STRONG®

Spring Valley FUDS Site-Wide RI Report Organization

Table of Contents:


- Executive Summary
- Section 1 Introduction
- Section 2 Physical Characteristics
- Section 3 RI Objectives and Conceptual Site Models (CSMs)
- Section 4 Field Activities
- Section 5 Investigation Results
- Section 6 Contaminant Fate and Transport
- Section 7 Risk Assessment
- Section 8 Summary and Conclusions *
 - * Dr. Peter DeFur will present his evaluation of the RI and its conclusions next.
- Appendices A through G

Spring Valley FUDS Section 8 Summary and Conclusions

The conclusions of the Spring Valley RI are:

- Certain areas will proceed to the Feasibility Study (FS) due to potential concerns with risks identified in the Human Health Risk Assessment (HHRA).
 - Southern American University Exposure Unit, and the Spaulding and Captain Rankin Area (SCRA).
- Certain areas will proceed to the Feasibility Study (FS) due to potential concerns with hazards identified in the Munition and Explosives of Concern Hazard Assessment (MEC HA)
 - Function Test Range, Static Test Fire Area, Area of Interest
 (AOI) 13, and the Public Safety Building.

Spring Valley FUDS Tentative Schedule for Site-Wide RI Report

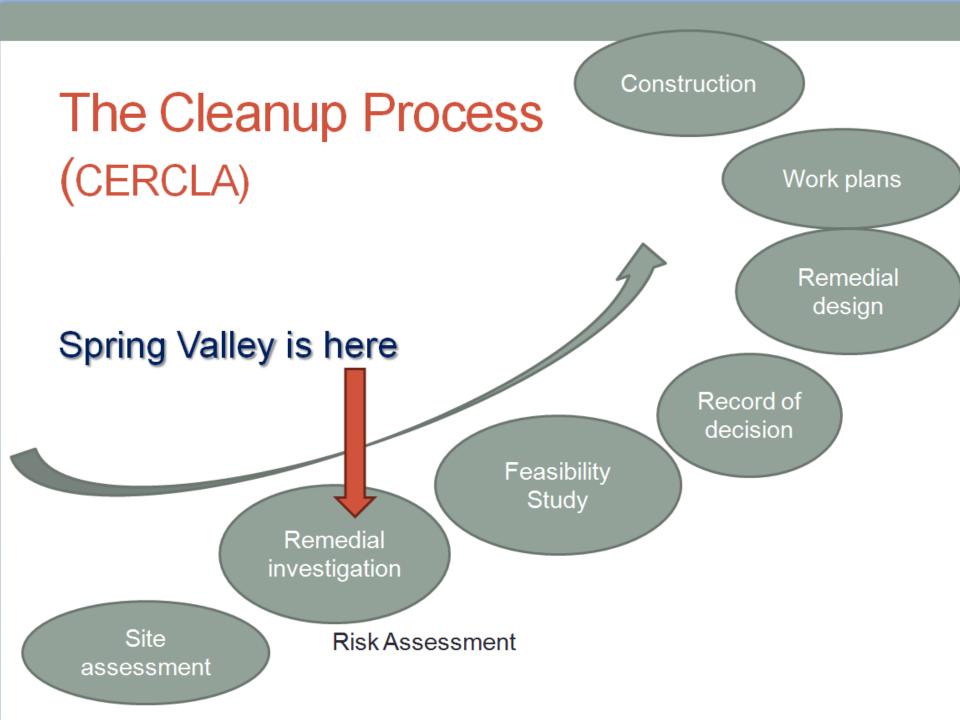
March 10	USACE and Dr. Peter DeFur brief the RI conclusions at the RAB meeting.		
Early-April	Tentative start of the formal 45-day public comment period.		
Late-April	Community meeting to brief the community on the RI document's content and conclusions.		
Late-May	Public comment period ends. USACE addresses public comments and finalizes the report.		
	Feasibility Study to be conducted to evaluate alternatives for addressing any unacceptable risks or hazards identified in the Final RI Report in Fall 2015.		
Next Steps	Prepare the Proposed Plan and start public comment period in Winter 2015/2016.		
	Prepare and sign the Decision Document in Summer 2016		
	Begin remedial design/remedial action plan/conduct clean-up action from ~2017-2020		

Spring Valley FUDS Restoration Advisory Board

Community Items:

Site-Wide Remedial Investigation Document

by Peter deFur, Technical Consultant under the Technical Assistance for Public Participation Program (TAPP)



SPRING VALLEY: Site Wide Remedial Investigation Report March 2015

Dr. Peter deFur

President, Environmental Stewardship Concepts, LLC

Henrico, VA

Remedial Investigation/Feasibility Study

- Nature and extent of the problem
 - Soil sampling
 - Water sampling
 - Geophysical surveys
- What can be done?

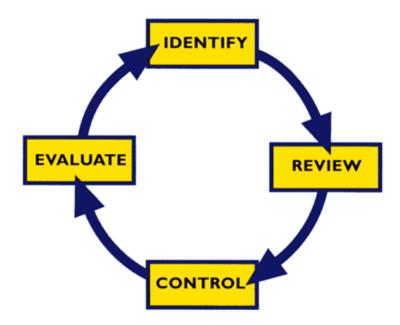
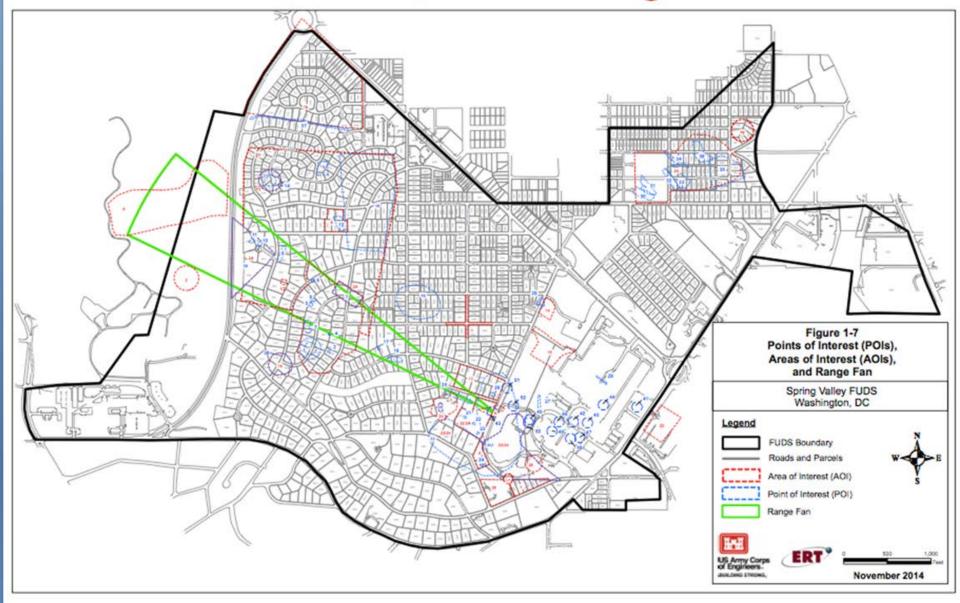


Photo from USGS web

- Treat
- Remove
- Cover to isolate
- Institutional Controls

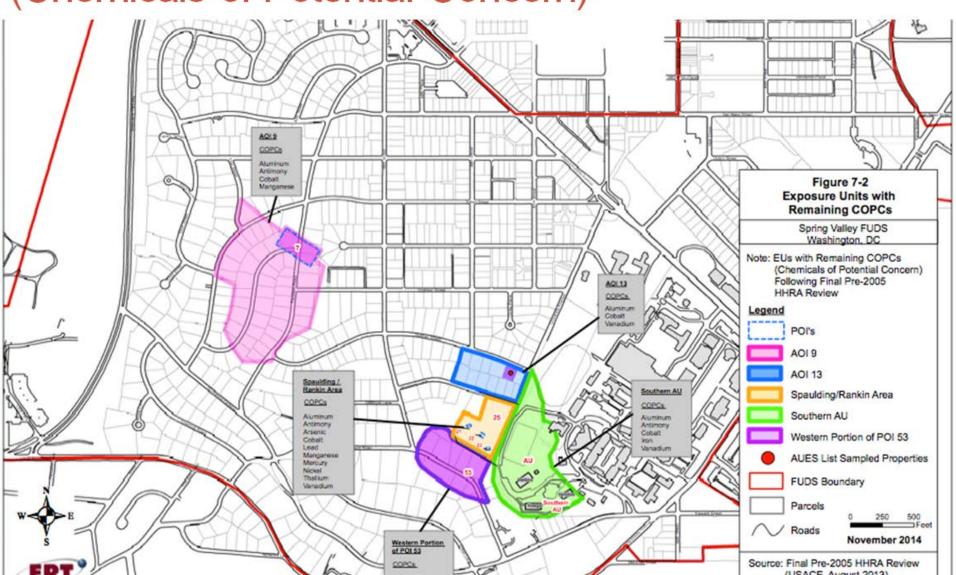
What is risk assessment?

- Evaluation of the environmental and human health impacts that may result from exposure to contaminants
- Part of the remedial investigation

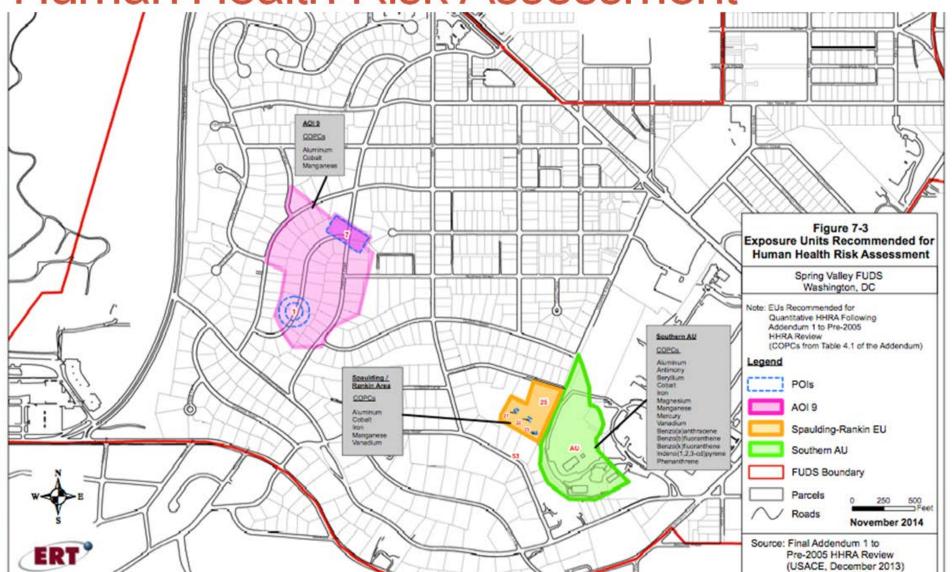

Spring Valley

- Soil investigation determined the nature and extent of soil contamination over >15 years
- 178 properties/lots identified for cleanup
 - Mostly arsenic contamination
- Cleanup activities completed at all properties/lots as of 2012, except Glenbrook Rd.
- Including Munitions and Explosives of Concern (MEC)
- Single items
- Pits and trenches

Remedial Investigation (RI)


- Nature and extent of contamination at the site
- Determines threats to human health and the environment
- Remedial Investigation Report
 - Summarizes field observations and analytical data collected from the site
 - Includes the Baseline Risk Assessment
 - Human Health Risk Assessment
 - Ecological Risk Assessment
- Reports, maps and photographs
- Began with Points of Interest (POI), then Areas of Interest (AOI)

POIs, AOIs, and Range Fan



Exposure Units with Remaining COPCs

(Chemicals of Potential Concern)

Exposure Units Recommended for Human Health Risk Assessment

Human Health Risk Assessment (HHRA)

 Estimates the nature and probability of future health impacts to people who may be exposed to the contaminants at the site

Munitions and Explosives of Concern Hazard Assessment (MEC HA)

 Estimates threats to people from MEC (Munitions and Explosives of Concern)

Munitions and Explosives of Concern Hazard Assessment (MEC HA)

Explosive Hazard		Relationship to "Traditional" CSM ←	Conceptual site model (CSM)		
Component	Input Factor	Categories	model (Oom)		
	Type of filler				
	Amount of filler				
	Proximity to Inhabited Buildings or	Source			
Severity	Commonly Used Public Facilities	Pathway			
	Proximity to Critical Infrastructure,	Tathway			
	Cultural Resources, or Ecological				
	Resources				
	Site accessibility				
	Frequency of entry	Pathway			
Accessibility	Amount of MEC	Receptor			
Accessionity	Minimum MEC depth/Maximum intrusive depth Migration potential		Source: Hazard		
			Assessment for		
Sensitivity	MEC Category		Munitions and		
	Fuzing sensitivity Source		Explosives of		
	MEC portability	Receptor	Concern Concept		
	Intensity of Activity		Paper		

Spring Valley MEC HA – Example:

Table 2-4. Input Factor Maximum Scores and Resulting Weights

Explosive Hazard Component	Input Factor	Maximum Scores	Weights
Severity	Energetic Material Type	100	10%
	Location of Additional Human Receptors	30	3%
	130	13%	
	Site Accessibility	80	8%
	Total Contact Hours	120	12%
Accessibility	Amount of MEC	180	18%
	Minimum MEC Depth/Maximum Intrusive Depth	240	24%
	Migration Potential	30	3%
	650	65%	
Sensitivity	MEC Classification	180	18%
	MEC Size	40	4%
	Component total	220	22%
	Total Score	1,000	100%

Source: Munitions and Explosives of Concern Hazard Assessment Methodology, by EPA, DoD, Dol

Table 7-23: MEC HA Scoring Summary Sitewide RI for SV 12/2014 (Draft Final)

	Safety Buffer Livens		Function Test Range Stokes Mortar		Function Test Range Livens		Generic Disposal Area	
	Hazard Level Category	Score	Hazard Level Category	Score	Hazard Level Category	Score	Hazard Level Category	Score
Current Use	4	505	3	710	3	640	3	670
Land Use Controls	4	440	3	645	3	575	3	605
Sub-surface Cleanup	4	345	4	435	4	300	4	405

Recommendations

- Conduct a Feasibility Study to address potential unacceptable risks from explosives:
 - Impact areas for Stokes and Livens
 - Buffer area around static fire area
 - Possible disposal

AGREE

- Conduct Feasibility Study for soil contamination on American University in the region described as the southern AU exposure unit.

 AGREE
- On going discussions regarding residual soil contamination on Spaulding-Captain Rankin exposure unit.

Questions?

Dr. Peter <u>deFur</u>
Environmental Stewardship Concepts, LLC
www.estewards.com

Spring Valley FUDS Tentative Schedule for Site-Wide RI Report

March 10	USACE and Dr. Peter DeFur brief the RI conclusions at the RAB meeting.		
Early-April	Tentative start of the formal 45-day public comment period.		
Late-April	Community meeting to brief the community on the RI document's content and conclusions.		
Late-May	Public comment period ends. USACE addresses public comments and finalizes the report.		
Next Steps	 Feasibility Study to be conducted to evaluate alternatives for addressing any unacceptable risks or hazards identified in the Final RI Report in Fall 2015. Prepare the Proposed Plan and start public comment period in Winter 2015/2016. 		
	 Prepare and sign the Decision Document in Summer 2016 Begin remedial design/remedial action plan/conduct clean-up action from ~2017-2020 		